
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 3721–3735
December 6-10, 2023 ©2023 Association for Computational Linguistics

ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph
Jinhao Jiang1,3, Kun Zhou2,3, Wayne Xin Zhao1,3∗, Yaliang Li4, Ji-Rong Wen1,2,3

1Gaoling School of Artificial Intelligence, Renmin University of China.
2School of Information, Renmin University of China.

3Beijing Key Laboratory of Big Data Management and Analysis Methods.
4Alibaba Group.

{jiangjinhao,jrwen}@ruc.edu.cn,francis_kun_zhou@163.com
yaliang.li@alibaba-inc.com, batmanfly@gmail.com

Abstract

Question Answering over Knowledge Graph
(KGQA) aims to seek answer entities for
the natural language question from a large-
scale Knowledge Graph (KG). To better per-
form reasoning on KG, recent work typically
adopts a pre-trained language model (PLM) to
model the question, and a graph neural net-
work (GNN) based module to perform multi-
hop reasoning on the KG. Despite the effective-
ness, due to the divergence in model architec-
ture, the PLM and GNN are not closely inte-
grated, limiting the knowledge sharing and fine-
grained feature interactions. To solve it, we aim
to simplify the above two-module approach,
and develop a more capable PLM that can di-
rectly support subgraph reasoning for KGQA,
namely ReasoningLM. In our approach, we
propose a subgraph-aware self-attention mech-
anism to imitate the GNN for performing struc-
tured reasoning, and also adopt an adaptation
tuning strategy to adapt the model parame-
ters with 20,000 subgraphs with synthesized
questions. After adaptation, the PLM can be
parameter-efficient fine-tuned on downstream
tasks. Experiments show that ReasoningLM
surpasses state-of-the-art models by a large
margin, even with fewer updated parameters
and less training data. Our codes and data
are publicly available at https://github.com/
RUCAIBox/ReasoningLM.

1 Introduction

Question answering over knowledge graph
(KGQA) (Sun et al., 2018; He et al., 2021) has gar-
nered significant attention in recent years, which
aims to find answers for the natural language ques-
tions based on knowledge graphs (KGs), e.g., Free-
base (Bollacker et al., 2008) and Wikidata (Tanon
et al., 2016). Since a massive amount of world
knowledge has been formatted into a structured
form (e.g., a triple ⟨head, relation, tail⟩) in the

∗ Corresponding author.

KG, we can develop KGQA methods by leveraging
structural semantics of KG to more accurately infer
the answer entities to complex factual questions.

Starting from the topic entities mentioned in the
question, a typical KGQA approach (Sun et al.,
2018) is to perform the multi-hop reasoning along
with relations on the KG, until finding a path that
can reach the answer entities. To develop this ap-
proach, existing methods (Sun et al., 2018; He et al.,
2021; Shi et al., 2021) mostly incorporate a text
encoder to produce the representation of the given
question, and a reasoning module to perform multi-
hop reasoning on the KG using the question rep-
resentation. Typically, recent work (Jiang et al.,
2022b,a) adopts the pre-trained language mod-
els (PLM) (e.g., BERT (Devlin et al., 2019)) and
graph neural networks (GNN) (e.g., GAT (Velick-
ovic et al., 2017)) to implement the text encoder
and reasoning module respectively, which can bet-
ter understand the semantic information in the ques-
tion and structured knowledge from the KG, im-
proving the final performance

Despite the effectiveness, there are two major
shortcomings with the aforementioned approach
that combines a PLM encoder and a GNN reasoner.
First, due to different model architectures, PLM
and GNN are often integrated in a loose way (e.g.,
relevance score sharing), which largely limits the
knowledge sharing and fine-grained interaction be-
tween the question and KG (a subgraph spanned
by related entities). Second, the GNN based rea-
soner performs reasoning mainly based on sub-
graph structure, which lack rich semantic knowl-
edge as that in PLMs, making the reasoning results
likely to be less effective, especially for complex
questions. In addition to the two shortcomings,
such a approach also requires a complicated im-
plementation in practice, since it involves in two
different modules.

To address these issues, we aim to simplify the
above two-module approach and develop a more

3721

https://github.com/RUCAIBox/ReasoningLM
https://github.com/RUCAIBox/ReasoningLM

capable PLM that can directly support structural
subgraph reasoning for KGQA. Our approach is
inspired by the finding that the Transformer archi-
tecture consisting of stacked self-attention mod-
ules can be explained as a fully-connected graph
encoder (Dwivedi and Bresson, 2020) in a mathe-
matically equivalent way. Therefore, Transformer
essentially has the potential to effectively model
graph data and further performs graph reasoning,
which has been shown in existing work (Ying et al.,
2021). While, these attempts based on graph Trans-
formers either neglect the modeling in text seman-
tics, or cannot capture fine-grained semantic inter-
action between question and KG subgraph, making
them infeasible for KGQA tasks.

To this end, in this paper, we propose a subgraph
reasoning enhanced PLM, called ReasoningLM, en-
abling both effective question understanding and
KG reasoning in a unified approach. As the major
contribution, we propose a subgraph-aware self-
attention mechanism, which can imitate the GNN
to model the entities and their relations via attend-
ing to neighboring nodes on the KG. Further, such a
structural attention mechanism has been integrated
into a constrained masking framework, to jointly
model question attention, KG to question attention,
and KG attention. In this way, we can not only
perform the knowledge interaction and sharing be-
tween the question and KG, but also leverage PLM
to perform structural reasoning as GNN. However,
since the PLM is originally trained by learning
from general-purpose natural language text, it is
necessary to adapt it to the special input format and
attention mechanism. Thus, we propose an adapta-
tion tuning strategy that utilizes 20,000 subgraphs
with synthesized questions to adapt the parameters
of the PLM. After adaptation, the PLM has been
well adapted for subgraph reasoning, hence it can
be fine-tuned on different downstream KGQA tasks
in a parameter-efficient manner, achieving better
performance with only a few parameters trained.

To evaluate the effectiveness of our approach,
we conduct extensive experiments on three KGQA
datasets. Experimental results demonstrate that our
proposed approach can surpass existing state-of-
the-art models by a large margin, even with fewer
updated parameters and less training data.

Our contributions can be summarized as follows:

• We enable the PLM to simultaneously model
question understanding, deep interaction between
question and subgraph, and reasoning over sub-

graph by leveraging an adapted subgraph-aware
self-attention mechanism.
• We propose an automatic data construction

method for the KGQA task format using LLMs to
support the adaptation of PLM to the special input
format and attention mechanism.

2 Related Work

Question Answering over Knowledge Graph.
Multi-hop KGQA aims to find answer entities
that are multiple hops away from the topic enti-
ties in a large-scale KG. Existing work (Sun et al.,
2018) typically first retrieves a question-relevant
subgraph from the KG to reduce the search space
and then performs multi-hop reasoning to find the
answer entities. Several methods (Sun et al., 2018;
He et al., 2021) have been developed to facilitate
the answer reasoning over the KG. These methods
typically consist of a question encoder to repre-
sent the question, and a reason module to perform
multi-hop reasoning over the KG using the question
representation. Early work (Sun et al., 2018, 2019)
uses a simple LSTM to encode the question and a
GNN to model the reasoning over KG. However, a
singular representation of the entire question cre-
ates confusion for the GNN regarding the specific
relation that should be attended to at each step. To
address this concern, subsequent work (He et al.,
2021) attempts to decompose the semantics of the
question and send the corresponding representation
to the GNN module at each step. With the develop-
ment of PLMs, recent work (Shi et al., 2021; Jiang
et al., 2022b) proposes to enhance the question un-
derstanding by using PLM as the question encoder.
They use PLM to compute the semantic similarity
between the question and relations at each step and
use a simpler GNN to propagate similarity infor-
mation and update entity scores over KG.

PLM for Knowledge Graph Reasoning. Besides
KGQA, PLM has also been used for other knowl-
edge graph reasoning tasks, such as commonsense
reasoning (Yasunaga et al., 2021) or predicting
missing facts (Zamini et al., 2022). There are
mainly two methods for PLM to leverage the KG.
Several studies (Yasunaga et al., 2021) attempt to
fuse the representation of the KG into the PLM,
which is modeled by the GNN. It can make the
PLM aware of the KG to some extent through the
modeled representation. However, it’s not easy to
bridge the gap between the PLM and GNN given

3722

the different model architecture and initialized pa-
rameters, leading to a sufficient understanding of
KG for PLM. In contrast, a more direct way is
to linearize the KG as a sequence and input it to
PLMs (Xie et al., 2022; Saxena et al., 2022). In
this way, the PLM can directly utilize the KG to
perform reasoning. Despite its simplicity, such a
way neglects the structure of KG, which is an im-
portant feature. In contrast, we propose to model
the question and KG in a single PLM, while captur-
ing the structure information with subgraph-aware
self-attention mechanism.

3 Preliminary

In this section, we present the notations utilized
throughout the paper, followed by a formal defini-
tion of the KGQA task.

Knowledge Graph (KG). A knowledge graph is
commonly composed of a collection of triples, ex-
pressed as G = {⟨e, r, e′⟩|e, e′ ∈ E , r ∈ R}, where
E and R denote the entity set and relation set, re-
spectively. A triple ⟨e, r, e′⟩ describes the fact that
a relation r exists between head entity e and tail
entity e′. Furthermore, we introduce entity neigh-
borhood to denote both incoming and outgoing
triples for an entity e, denoted as Ne = {⟨e, r, e′⟩ ∈
G} ∪ {⟨e′, r, e⟩ ∈ G}. In this way, we can simplify
the definition of the neighborhood triples for an
entity e as Ne = {⟨e, r, e′⟩ ∈ G}.

Question Answering over Knowledge Graph
(KGQA). Given a natural language question q and
a KG G, the task of KGQA aims to find answer en-
titie(s), denoted as Aq ∈ E , to the question on the
KG. Following previous work (Sun et al., 2018),
we assume that the entities mentioned in the ques-
tion have already been linked with entities on KG,
called topic entities, denoted as Tq ⊂ E . In this
work, we focus on solving the KGQA task where
the answer entities are multiple hops away from
the topic entities over the KG. Considering the
trade-off between efficiency and accuracy, we fol-
low existing work (Sun et al., 2018) that solves this
task using a retrieval-then-reasoning framework.
In the two-stage framework, given a question q
and topic entities Tq, the retrieval stage aims to re-
trieve a small question-relevant subgraph Gq from
the large-scale input KG G, while the reasoning
stage finds answer entities Aq by reasoning over
the retrieved subgraph Gq.

4 Approach

In this section, we present our proposed approach,
i.e., ReasoningLM, which enables both effective
question understanding and KG reasoning in a sin-
gle PLM for better solving the KGQA task.

4.1 Overview

Existing KGQA methods (Sun et al., 2018) typi-
cally adopt a PLM to encode the question into latent
representation, and a GNN to perform the reason-
ing over KG guided by the representation. How-
ever, due to the architecture divergence, it is hard
to closely integrate the PLM and GNN for knowl-
edge sharing and feature interaction. Inspired by
recent work (Dwivedi and Bresson, 2020) that re-
veals the similarity between GNN and Transformer
architecture of PLMs, we take a different perspec-
tive to simplify the above two-module approach
and develop a more capable PLM that can support
structural subgraph reasoning for KGQA.

Our basic idea is to implement a GNN within
the PLM, to bridge the knowledge gap for question
understanding and KG reasoning. To achieve it, we
propose the ReasoningLM, enabling both effective
question understanding and KG reasoning in a uni-
fied approach. Concretely, we first adapt the PLM
to implement the functionality of GNN to aggre-
gate the information from the neighboring entities
and relations with subgraph-aware self-attention
mechanism (Section 4.2). Then, we adopt adap-
tation tuning to optimize the PLM parameters to
better adapt it to the special input format and atten-
tion mechanism (Section 4.3). Finally, we apply
the adapted PLM to solve the KGQA task with
parameter-efficient fine-tuning (Section 4.4).

The overview of ReasoningLM is shown in Fig-
ure 1. In our model, as the PLM can understand
the question and perform reasoning in KG in a uni-
fied approach, it can freely share and interact with
the knowledge from both for improving the KGQA
task. Besides, such a way also enables the PLM to
fully participate in the KG reasoning process (in-
stead of GNN solely), which can make full use of
its rich knowledge and strong reasoning capacity.

4.2 Adapting PLM for Subgraph Reasoning

In this section, we discuss how to adapt PLM
for subgraph reasoning. Next, we introduce the
subgraph data serialization and then present the
subgraph-aware self-attention mechanism to unify
question understanding and subgraph reasoning

3723

Transformer Layer with
Subgraph-aware Self-Attention

𝐶𝐿𝑆 𝑞! 𝑞"… 𝑒# 𝑒! 𝑒$ 𝑒% 𝑒&𝑟! 𝑟$ 𝑟&𝑟%𝑆𝐸𝑃
Input

Embeddings

Transformer
Encoder

Output
Hidden States

Linear Layer

𝐶𝐿𝑆 𝑞! 𝑞"… 𝑒# 𝑒! 𝑒$ 𝑒% 𝑒&𝑟! 𝑟$ 𝑟&𝑟%𝑆𝐸𝑃

Masked Attention visible
invisible

Predicted
Entity Scores

(x N)

{what, is, the, name, of, justin, bieber, brother}Question 𝑒#: Justin
Bieber 𝑟!:sibling

𝑒!: Jaxon
Bieber

…

{ Jaxon
Bieber

,Justin
Bieber

, ,sibling gender, ,sibling femaleJazmyn
Bieber

,male, }gender ,Subgraph

0.0 0.7 0.1 0.2 0.0 !"#
!!

!"
…

#$%

!"# !! !"… #$% ## $! $$ #$#! $% $&#% #&

$!

$$
#$

#!

$%

$&
#%

#&

##

A D

B C

Subgraph

Justin
Bieber

Male
sibling

sibling

Jaxon
Bieber

Jazmyn
Bieber

Female

gender

gender

Figure 1: The illustration of performing answer entity reasoning over a subgraph according to the question using
ReasoningLM with our proposed subgraph serialization and subgraph-aware self-attention.

within a single PLM, respectively.

4.2.1 BFS-based Subgraph Serialization
For KGQA task, the input data typically consists
of the natural language question q and its relevant
subgraph Gq retrieved from the KG. To enable the
PLM to capture the structured information from the
subgraph and perform reasoning on it, we propose
a breadth-first search (BFS) based subgraph serial-
ization to convert the subgraph into a sequence.

Concretely, starting from a topic entity e0 ∈ Tq,
we perform the BFS to visit all triples on Gq. It
first visits all the triples whose head entity is the
topic entity, e.g., ⟨e0, r1, e1⟩, and then moves on to
the triples whose head entities have been visited
before, and so forth. Based on the order in the
BFS process, we concatenate all the visited triples
as a long sequence. To reduce the node sequence
length, we only concatenate the entities or relations
for the first time that they are visited, hence the
final serialized subgraph consists of all the visited
entities and relations, denoted as:

SGq = {e0, r1, e1, r2, e2, ..., rm, em}, (1)

where m is the total number of triples in SGq .
In this way, we can preserve the structure infor-

mation of the subgraph within a relatively short
sequence (with length as the count of entities and
relations in SGq), which can be varied according to
the context length of language models.

4.2.2 Subgraph-aware Self-Attention
Based on the serialized subgraph, we leverage the
subgraph-aware self-attention mechanism to sup-

port graph reasoning within the PLM, to propa-
gate relevance information along with the relation
edges on KG. We first initialize the embeddings of
the serialized subgraph and the question, and then
perform self-attention with constrained masks to
aggregate their representations.

Embeddings Mapping. Since PLMs do not have
the mapping embeddings for the entities and rela-
tions within the serialized subgraph, we need to
initialize their embeddings before feeding them
into the PLM. To embed them into the semantic
space of the PLM, we first tokenize each entity
or relation into subwords1 using the tokenizer of
the PLM, and then sum their embeddings into a
single embedding to represent it. Finally, we can
obtain the embedding matrix of the whole serial-
ized subgraph, denoted as NGq ∈ Rl×d, where d
is the embedding dimension and l is the length of
the input sequence. Next, we concatenate it with
the token embedding matrix Nq of the question
q after tokenization, to compose the input token
embedding matrix of the PLM:

N = [Nq;NGq] = [nq1 , · · · ,nqn ;ne0 , · · · ,nem]

Based on it, we also add the position embeddings
as NE = N + E to obtain the input embedding
matrix of the PLM.

Self-Attention with Constrained Masks. After
obtaining the input embedding matrix NE , we
feed it into the multi-layer Transformer encoder

1PLMs mostly use Byte-Pair Encoding tokenizer, which
may segment an entity or relation name into several subwords.

3724

of the PLM, to perform reasoning over the sub-
graph based on the given question. To enable the
fine-grained semantic interaction between the ques-
tion and the associated subgraph, we propose a
constrained mask mechanism on the self-attention
layers for controlling the attention interaction, in-
cluding four kinds of attention modes:
• Full question attention. The representations

of each token of question can attend to the other
tokens of question (part A in Figure 1).
• Full subgraph → question attention. The rep-

resentations of all the entities and relations can
attend to the question representations, hence we
can perform reasoning on the KG based on the
question (part B in Figure 1).
• Structural subgraph attention. In the serialized

subgraph, an entity can aggregate the information
from its one-hop neighboring entities and relations
(in a triple), similar to the updated way of node
representations in GNN. Further, a relation can
aggregate the information from its head and tail
entities in the triple, as it establishes a link between
the two entities (part C in Figure 1).
• Except for the above ways, other information

flows are forbidden in the self-attention layer. In
addition to the constraint on the subgraph struc-
ture, we also prevent the question attending to the
subgraph, which can avoid the question representa-
tions to be influenced by the irrelevant information
in the subgraph (part D in Figure 1).

To achieve them, we design the constrained self-
attention mask M ∈ Rl×l, where the value in the
i-th raw and j-th column denotes whether the i-th
token can attend to the j-th one (0) or not (-inf),
denoted as:

Mij =

0 xi ∈ SGq and xj ∈ q,

0 xi, xj ∈ SGq and aij = 1,

-INF others,

(2)

where xi and xj represent the tokens (i.e., relations,
entities or words) in the i-th and j-th positions of
the input, and aij = 1 indicates that xi and xj are
adjacent (within a KG triple). Then, we utilize
the mask matrix to compute the constrained self-
attention on the multi-layer Transformer encoder
of the PLM as follows:

Attn(Q,K,V) = softmax(A+M)V , (3)

where A ∈ Rl×l is the original attention matrix,
and Q,K,V ∈ Rl×d are the input representation

matrices of the self-attention layer. In this way,
only the self-attention values between invisible to-
kens would be zero (after softmax activation on
-INF values), avoiding the PLM to aggregate repre-
sentations from them.

4.3 Adaptation Tuning

To help the PLM well adapt into the special in-
put format and attention mechanism, we adopt the
adaptation tuning to adapt the parameters of the
PLM. We first collect the tuning dataset based on
sampled subgraphs and synthesized questions, and
then utilize the answer entity prediction task for
training.

4.3.1 Tuning Data Construction
To enable the PLM to understand the question and
perform reasoning on the KG, we construct an adap-
tation dataset in an automatic way to tune its pa-
rameters. The dataset consists of 20,000 synthe-
sized questions with relevant subgraphs extracted
from the KG, and the answer entities. Next, we
introduce the process of subgraph extraction and
question synthesis.

Subgraph Extraction. We extract the subgraphs
from Wikidata2, a general-domain KG with natural
language descriptions of the entities and relations.
We consider to extract a set of subgraphs centering
around popular entities, to better adapt the PLM for
understanding commonly-used knowledge. Thus,
we use the popular entities in Wikidata5M (Wang
et al., 2021) as our seed topic entity set following
KQA Pro (Cao et al., 2022), then randomly sample
the answer and the subgraph. Starting from the
topic entity, we perform a random walk over the
KG, to sample a reasoning path with no more than
4 hops, whose ending entity is regarded as the an-
swer entity. Then, we randomly extract the entities
and relations around the topic entity to compose
the subgraph, where we guarantee that the entities
and relations from the reasoning path are also in-
cluded. Such a way is easy to conduct and can
automatically extract multiple subgraphs with the
answer entities.

Question Synthesis. Based on the sampled rea-
soning path and answer entities, we also adopt an
automatic way to synthesize the questions. Here,
we propose two approaches, i.e., rule-based synthe-
sis and LLM-based synthesis. For the rule-based

2https://www.wikidata.org/

3725

one, we first hand-craft several general templates,
and then utilize them to convert the topic entity
and the relations on the reasoning path into a natu-
ral language question. However, such a way leads
to a poor diversity of questions, and also needs
human efforts. Recently, as large language mod-
els (e.g., ChatGPT) have shown a powerful gener-
ation capability (Brown et al., 2020; Zhao et al.,
2023) and have been used to generate label-free
datasets (Chen et al., 2023), we seek help from
them to produce more high-quality questions. Con-
cretely, we write a prompt to guide ChatGPT, a pop-
ular LLM, to generate the corresponding question
for the answer entity based on the reasoning path
and the topic entity. In this way, we cost approxi-
mately 15 dollars, and obtain 20,000 questions with
diverse formats and fluent expression. The detail
prompt we used is shown in Appendix D.

4.3.2 Answer Entity Prediction
Given the synthesized question, extracted sub-
graphs and the answer entities, we feed them into
our ReasoningLM, and tune the model parame-
ters via the answer entity prediction task. It is a
multi-classification task to predict which entity in
the subgraph is the answer entity of the question.
Concretely, through the multi-layer Transformer
encoder with constrained self-attention, we can
obtain the hidden state H ∈ Rl×d of the input
sequence at the last layer. Then, we add a linear
prediction layer with the softmax activation func-
tion to transform the hidden state into the answer
scores of all entities:

s = softmax(Linear(H)), (4)

where s ∈ Rl. Then, we minimize the KL di-
vergence between the predicted and ground-truth
answer scores as:

Lat = DKL(s, s
⋆), (5)

where s⋆ is the ground-truth answer scores of all
entities, where an entity is 1 if it is a labeled answer
entity. Note that we only compute the loss for the
entities, as the relations and question words are not
able to be the answer.

4.4 Efficient Fine-tuning
After adaptation tuning, the PLM has been well
adapted to performing reasoning over the general-
domain subgraphs. Therefore, we further perform
parameter-efficiently fine-tuning on the PLM, to

apply it to the subgraph retrieval and answer reason-
ing subtasks respectively, where we only tune the
parameters in the adapters (Houlsby et al., 2019)
but freeze other parameters.

Subgraph Retrieval. We follow Zhang et al.
(2022) to fine-tune our model on the subgraph re-
trieval subtask, where we optimize our model to
learn to predict the similarity between the question
and relevant relations. During inference, starting
from the topic entities, the model iteratively mea-
sures the semantic relevance between the question
and neighboring relations, and adds proper ones
and their corresponding triples into the subgraph,
to extract a question-relevant subgraph.

Answer Reasoning. Based on the retrieved sub-
graph, we also utilize the answer entity prediction
task in Section 4.3.2 to fine-tune our ReasoningLM,
to learn to accurately find the answer entities of the
given question from the subgraph. During infer-
ence, we select the highest scoring entity predicted
by our approach as the answer entity.

5 Experiments

5.1 Experimental Setup

Adaptation Tuning Corpus. Our adaptation tun-
ing corpus is collected from Wikidata (Tanon
et al., 2016), a general domain knowledge
graph. We download the English Wikidata
Dumps (2018/12/31) from the official site, and
extract 2,000 entities from Wikidata5M (Wang
et al., 2021) as seed topic entities. Finally, we
construct 20,000 samples for adaptation tuning and
split 1,000 samples as the validation set for select-
ing the best checkpoint.

Datasets. Following existing work on KGQA (He
et al., 2021), we conduct experiments on three pop-
ular datasets to evaluate our proposed approach,
including WebQuestionsSP (WebQSP) (Yih et al.,
2015), Complex WebQuestions 1.1 (CWQ) (Talmor
and Berant, 2018), and MetaQA (MQA) (Zhang
et al., 2018). Table 5 shows the statistics of the
three datasets. We give a detailed description of
each dataset in Appendix A

Evaluation Protocol. We follow existing work
that treats the reasoning as a ranking task for evalu-
ation (Sun et al., 2018). For each question, we rank
the answer score of all candidate entities and then
assess the correctness of the top-1 answer using the

3726

Table 1: Performance comparison of different methods for KGQA (Hits@1 and F1 in percent). We copy the results
of LLMs from Jiang et al. (2023) and the results of the other baselines from Jiang et al. (2022b). Bold and underline
fonts denote the best and the second-best methods, respectively. “FPT” and “PET” denote the full-parameter tuning
and parameter-efficient tuning, respectively. “Rule-SYN” and “LLM-SYN” refer to synthesize the questions using
rule-based and LLM-based strategies, respectively.

Models Updated
Params

WebQSP CWQ MQA-1H MQA-2H MQA-3H

Hits@1 F1 Hits@1 F1 Hits@1 Hits@1 Hits@1

KV-Mem (Miller et al., 2016a) - 46.7 34.5 18.4 15.7 - - -
GraftNet (Sun et al., 2018) 0.5M 66.4 60.4 36.8 32.7 82.5 - -
PullNet (Sun et al., 2019) - 68.1 - 45.9 - - - -
EmbedKGQA (Saxena et al., 2020) 125M 66.6 - - - 92.0 40.7 34.6
NSM (He et al., 2021) 3M 68.7 62.8 47.6 42.4 94.8 97.0 91.0
TransferNet (Shi et al., 2021) 111M 71.4 - 48.6 - 96.5 97.5 90.1
SR+NSM+E2E (Zhang et al., 2022) 130M 69.5 64.1 49.3 46.3 - - -
UniKGQA (Jiang et al., 2022b) 12M 75.1 70.2 50.7 48.0 97.1 98.2 92.6

Davinci-003 (Ouyang et al., 2022) - 48.3 - - - 52.1 25.3 42.5
ChatGPT - 61.2 - - - 61.9 31.0 43.2
StructGPT (Jiang et al., 2023) - 72.6 - - - 94.2 93.9 80.2

ReasoningLM (FPT, LLM-SYN) 1M 78.5 71.0 69.0 64.0 96.5 98.3 92.7
w FPT, Rule-SYN 1M 78.0 70.5 62.8 55.4 96.1 96.9 91.0
w PET, LLM-SYN 1M 76.7 69.1 68.3 62.4 95.7 97.0 90.9

Table 2: Statistics of the experiment datasets.

Type Task KG Train Dev Test

KGQA

WebQSP Freebase 2,848 250 1,639
CWQ Freebase 27,639 3,519 3,531

MQA-1H OMDb 161 9,992 9,947
MQA-2H OMDb 210 14,872 14,872
MQA-3H OMDb 150 14,274 14,274

Hits@1 metric. Given that a question may have
multiple answers, we also adopt the F1 metric.

Baselines. We consider the following three
types of baseline methods for performance com-
parison: (1) non PLM-based methods: KV-
Mem (Miller et al., 2016b), GraphtNet (Sun et al.,
2018), PullNet (Sun et al., 2019), NSM (He
et al., 2021); (2) PLM-based methods: Embed-
KGQA (Saxena et al., 2020), TransferNet (Shi
et al., 2021), SR+NSM+E2E (Zhang et al., 2022),
UniKGQA (Jiang et al., 2022b); (3) LLM-based
methods: Davinci-003 (Ouyang et al., 2022), Chat-
GPT, StructGPT (Jiang et al., 2023). We give a de-
tailed description of each baseline in Appendix B.

5.2 Implementation Details

In our experiment, we use RoBERTa-base as our
base PLM. During adaptation tuning, we optimize
parameters with the AdamW optimizer, where the
batch size is 40 and the learning rate is 1e-4. We
select the best checkpoint of adaptation tuning ac-
cording to the evaluation of the constructed vali-

dation set. After adaptation tuning, we apply the
ReasoningLM to downstream KGQA tasks with
parameter-efficient fine-tuning. We add the extra re-
trieval and reasoning adapter to the ReasoningLM
for subgraph retrieval and answering reasoning re-
spectively, and only update the reasoning adapter
while freezing other parameters.

For the retrieval stage, we follow the pipeline
of Zhang et al. (2022) to fine-tune our Reason-
ingLM and then perform subgraph retrieval. we
collect question-relation pairs based on the shortest
relation paths between topic entities and answer
entities, and then use these pairs to fine-tune the
model to compute the similarity between the ques-
tion and relations. We directly compute the similar-
ity between the question and relations at each hop
and freeze other parameters except for the adapter
module. we optimize parameters with the AdamW
optimizer, where the batch size is 10 and the learn-
ing rate is 5e-5 for all datasets. Then, we leverage
the model to retrieve the subgraph. Specifically,
starting from the topic entities, the model itera-
tively measures the semantic relevance between
the question and neighboring relations, and adds
top-k relations and their corresponding triples into
the subgraph. We set the k as 15 for WebQSP and
CWQ, and 3 for MetaQA.

For the reasoning stage, we fine-tune Reason-
ingLM on the retrieved subgraph to perform answer
reasoning. Similarly, we only update the adapter
model and freeze other parameters. We optimize

3727

parameters with the AdamW optimizer, where the
batch size is 4 for MetaQA, 60 for WebQSP, and
300 for CWQ while the learning rate is 1e-4 for all
datasets.

5.3 Main Results

We show the results of all five data in Table 1.
First, directly using LLMs (e.g., Davinci-003 and
ChatGPT) can achieve performance comparable
to part of the supervised learning baselines on the
WebQSP dataset. However, LLMs perform not
well on the more complex multi-hop datasets, such
as MQA-2H and MQA-3H. It demonstrates that
LLMs are still hard for effectively solving KGQA
tasks relying solely on the LLM. Despite the incor-
poration of external KG can enhance LLMs (i.e.,
StructGPT), they still have a performance gap com-
pared to the strong supervised learning models.

Secondly, PLM-based methods (e.g., Transfer-
Net, SR+NSM+E2E, and UnikGQA) can achieve
a consistently better performance compared with
methods not using PLM (e.g., GraftNet, PullNet,
and NSM).And UniKGQA achieves a further per-
formance improvement on all datasets, benefiting
from its unified architecture to learn the essential
capability of question-relation semantic matching
for both retrieval and reasoning stages.

Finally, our ReasoningLM is substantially better
than all other competitive baselines in all datasets
with only updating a few parameters (only 1M),
achieving a 4.5% improvement of Hits@1 on We-
bQSP and 36.1% improvement of Hits@1 on more
difficult CWQ compared to the best baseline. Un-
like the other baselines, our approach develops a
subgraph reasoning enhanced PLM to model the
question and subgraph seamlessly. We can utilize
the pre-trained knowledge within PLM, while en-
abling the reasoning process over the subgraph can
directly attend to the question. With further adap-
tation tuning, our model can be applied to down-
stream tasks with parameter-efficient fine-tuning.
These results demonstrate the effectiveness and ef-
ficiency of our ReasoningLM model.

In our approach, we update the full parame-
ters of our model (FPT) during adaptation tun-
ing with LLM synthesis data (LLM-SYN). Ac-
tually, we can accomplish adaptation tuning at a
smaller cost by updating fewer parameters or us-
ing cheaper constructed data. Here, we study it
by proposing two variants of our ReasoningLM:
(1) w FPT, Rule-SYN that updates the full pa-

Table 3: Ablation study of our the subgraph-aware self-
attention mechanism (SA) and adaptation tuning (AT).

Models
WebQSP CWQ

Hits@1 F1 Hits@1 F1

ReasoningLM 78.5 70.1 69.0 64.0

w/o SA 68.5 63.2 40.5 38.2
w/o AT 67.5 60.4 55.2 43.3

Table 4: Performance of implementing ReasoningLM
with different PLMs on CWQ.

CWQ RoBERTa
(base)

RoBERTa
(large)

DeBERTa
(base)

BERT
(base)

Hits@1 69.0 70.0 68.1 67.4
F1 64.0 65.2 63.1 63.0

rameters with rule-based constructed data, (2)
w PET, LLM-SYN that updates an added adapter
while freezing the model parameters with LLM
synthesis data. We can see that although both vari-
ants show varying degrees of performance decline,
they can still achieve better results compared to
the existing baselines on WebQSP and CWQ. For
MetaQA, the two variants only achieve comparable
performance to existing baselines. A possible rea-
son is that limited data makes it difficult to adapt
the model to a specific domain.

5.4 Further Analysis

Ablation Study. Our approach contains two im-
portant technical contributions, the first is the
subgraph-aware self-attention mechanism (SA),
which imitates the GNN reasoning over the graph,
and the second is the adaptation tuning (AT), which
enhances the reasoning capability over KG. Here,
we conduct the ablation study to verify their effec-
tiveness by removing each one individually. We ex-
periment with two variants as: (1) w/o AT removing
the adaptation tuning procedure, (2) w/o SA remov-
ing the subgraph-aware self-attention mechanism
in self-attention mechnism. We show the results of
the ablation study in Table 3. All these variants un-
derperform the complete ReasoningLM, which in-
dicates that the two strategies are both important for
developing a subgraph reasoning enhanced PLM
for KGQA. Besides, we also analyze combining
other reasoning models (e.g., NSM and UniKGQA)
with our retrieval sugraphs in Appendix C.

Variants with Different PLMs. Since our pro-
posed adaptation method does not change the orig-

3728

0.5K 1K 1.5K 2K 2.5K 3K
Number of Fine-tuning Samples

25

35

45

55

65

70

H
its

@
1

(%
)

ReasoningLM
UniKGQA
NSM

Figure 2: The Hits@1 scores of our ReasoningLM on
WebQSP and CWQ after adaptation tuning with a vari-
ous number of samples (Left). And the Hits@1 score
of our ReasoningLM compared with two strong base-
lines (i.e., NSM and UniKGQA) on CWQ when fine-
tuning with various numbers of samples (Right)

inal model architecture, it can be applied to other
different PLMs. To explore the performance with
different PLMs, we conduct experiments with other
three PLMs (i.e., RoBERTa-large, DeBERTa, and
BERT). We show the results in Table 4. It is ob-
served that the utilization of DeBERTa-base and
BERT-base also yields performance comparable
to RoBERTa-base. This suggests that our adapta-
tion method is agnostic to the PLMs used. At the
same time, a larger RoBERTa-large can achieve
further performance improvement compared with
RoBERTa-base. It indicates the potential of our
method to be applied to larger PLMs. Limited
by computational resources, we would apply our
method to larger PLMs in future work.

Adaptation Tuning Efficiency. Although the adap-
tation tuning strategy is important to enhance the
reasoning capability of ReasoningLM, too many
tuning samples require significant construction and
tuning costs. Here, we investigate the downstream
performance of ReasoningLM on WebQSP and
CWQ w.r.t. varying numbers of adaptation tuning
samples. As shown in Figure 2, we can see that
the ReasoningLM can reach a competitive perfor-
mance compared with the best baseline UniKGQA
after adaptation tuning with a few samples (i.e.,
5K). It shows that our approach does not require
too much data to complete a successful adaptation
tuning. Simultaneously, we can observe that as the
number of tuning data increases, our model’s per-
formance will improve even further and eventually
reach a stable state. It indicates that we only need a
few tuning examples to achieve a trade-off between
the tuning costs and downstream performance.

Fine-tuning Efficiency. As our ReasoningLM

model has become familiar with the multi-hop rea-
soning over the subgraph after adaptation tuning,
it can be easily applied to specific downstream
KGQA tasks with fewer labeled samples, which
is meaningful for sparse data scenarios. To ex-
plore it, we compare the final performance changes
of our ReasoningLM with two strong baselines
UniKGQA and NSM w.r.t. the increasing of fine-
tuning samples with the same retrieval model. We
conduct experiments using CWQ, which is more
challenging and has a larger training set. The re-
sults are presented on the right of Figure 2. Reason-
ingLM can obtain consistent performance improve-
ments compared with other two baselines under var-
ious numbers of tine-tuning samples. It indicates
that our ReasoningLM has a better understanding
of the answer reasoning over the KG.

6 Conclusion

In this work, we proposed a subgraph reasoning
enhanced PLM to support question understand-
ing and KG reasoning in a single PLM, namely
ReasoningLM. In our approach, we first adopted
a BFS-based subgraph serialization to enable the
PLM to capture the structured information and then
proposed a subgraph-aware self-attention mecha-
nism to support graph reasoning within the PLM
based on the serialized subgraph. In order to adapt
the PLM to the special input format and attention
mechanism, we further utilized an adaptation tun-
ing strategy with a cheap data construction cost
of 15 dollars by using ChatGPT in an automatic
way. Finally, we applied the ReasoningLM to solve
downstream KGQA tasks with parameter-efficient
fine-tuning. Experimental results have shown that
our approach can significantly improve the perfor-
mance compared to existing strong baselines by
updating only 1M parameters.

7 Limitations

In our approach, we propose a subgraph reasoning
enhanced PLM by adapting existing PLM with-
out modifying its original architecture. Therefore,
the input is usually limited (e.g., 512) for most
of PLMs, causing our model unable to process
the arbitrary size of the retrieved subgraph. We
can relieve it by using the relative position embed-
ding or a better retrieval model to obtain the proper
size of the subgraph. In addition, although we
conduct experiments on multiple KGQA datasets,
there is a lack of evaluation on other KG reasoning

3729

tasks, such as commonsense question answering
and knowledge graph completion. They can be
transformed into the same input format, which can
be potentially solved with our method. From Ta-
ble 4, it can be seen that increasing the model pa-
rameters will lead to further performance improve-
ment. However, due to limited computational re-
sources, we did not conduct experiments on larger
PLMs (e.g., more than 1 Billion parameters).

Acknowledgments

This work was partially supported by Beijing Natu-
ral Science Foundation under Grant No. 4222027,
National Natural Science Foundation of China un-
der Grant No. 62222215, and the Outstanding Inno-
vative Talents Cultivation Funded Programs 2022
of Renmin University of China. This work was
also supported by Alibaba Group through Alibaba
Innovative Research Program. Xin Zhao is the cor-
responding author.

References
Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,

Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Shulin Cao, Jiaxin Shi, Liangming Pan, Lunyiu Nie,
Yutong Xiang, Lei Hou, Juanzi Li, Bin He, and Han-
wang Zhang. 2022. KQA pro: A dataset with explicit
compositional programs for complex question an-
swering over knowledge base. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6101–
6119. Association for Computational Linguistics.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han,
Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang Tang.

2023. Label-free node classification on graphs
with large language models (llms). arXiv preprint
arXiv:2310.04668.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Vijay Prakash Dwivedi and Xavier Bresson. 2020. A
generalization of transformer networks to graphs.
CoRR, abs/2012.09699.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In WSDM ’21, The Fourteenth
ACM International Conference on Web Search and
Data Mining, Virtual Event, Israel, March 8-12, 2021,
pages 553–561. ACM.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Drew A. Hudson and Christopher D. Manning. 2019.
Learning by abstraction: The neural state machine.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 5901–
5914.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt:
A general framework for large language model to
reason over structured data. CoRR, abs/2305.09645.

Jinhao Jiang, Kun Zhou, Ji-Rong Wen, and Xin Zhao.
2022a. $great truths are always simple: $ A rather
simple knowledge encoder for enhancing the com-
monsense reasoning capacity of pre-trained models.
In Findings of the Association for Computational Lin-
guistics: NAACL 2022, Seattle, WA, United States,
July 10-15, 2022, pages 1730–1741. Association for
Computational Linguistics.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong
Wen. 2022b. Unikgqa: Unified retrieval and reason-
ing for solving multi-hop question answering over
knowledge graph. CoRR, abs/2212.00959.

3730

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016a. Key-value memory networks for directly read-
ing documents. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, Novem-
ber 1-4, 2016, pages 1400–1409. The Association for
Computational Linguistics.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016b. Key-value memory networks for directly
reading documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2016, Austin, Texas, USA,
November 1-4, 2016, pages 1400–1409. The Associ-
ation for Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. In Proceedings of
the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 2814–
2828. Association for Computational Linguistics.

Apoorv Saxena, Aditay Tripathi, and Partha P. Taluk-
dar. 2020. Improving multi-hop question answering
over knowledge graphs using knowledge base embed-
dings. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 4498–4507.
Association for Computational Linguistics.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. Transfernet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 4149–4158. Association for Computa-
tional Linguistics.

Haitian Sun, Tania Bedrax-Weiss, and William W. Co-
hen. 2019. Pullnet: Open domain question answering
with iterative retrieval on knowledge bases and text.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 2380–2390.
Association for Computational Linguistics.

Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn
Mazaitis, Ruslan Salakhutdinov, and William W. Co-
hen. 2018. Open domain question answering using

early fusion of knowledge bases and text. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 4231–4242.
Association for Computational Linguistics.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2018, New Orleans, Louisiana, USA,
June 1-6, 2018, Volume 1 (Long Papers), pages 641–
651. Association for Computational Linguistics.

Thomas Pellissier Tanon, Denny Vrandecic, Sebastian
Schaffert, Thomas Steiner, and Lydia Pintscher. 2016.
From freebase to wikidata: The great migration. In
Proceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 1419–1428. ACM.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio’, and Yoshua Ben-
gio. 2017. Graph attention networks. ArXiv,
abs/1710.10903.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
KEPLER: A unified model for knowledge embed-
ding and pre-trained language representation. Trans.
Assoc. Comput. Linguistics, 9:176–194.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. Unifiedskg:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11,
2022, pages 602–631. Association for Computational
Linguistics.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
Percy Liang, and Jure Leskovec. 2021. QA-GNN:
reasoning with language models and knowledge
graphs for question answering. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021, pages 535–546. Association
for Computational Linguistics.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query

3731

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31,
2015, Beijing, China, Volume 1: Long Papers, pages
1321–1331. The Association for Computer Linguis-
tics.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages
28877–28888.

Mohamad Zamini, Hassan Reza, and Minou Rabiei.
2022. A review of knowledge graph completion. Inf.,
13(8):396.

Jing Zhang, Xiaokang Zhang, Jifan Yu, Jian Tang, Jie
Tang, Cuiping Li, and Hong Chen. 2022. Subgraph
retrieval enhanced model for multi-hop knowledge
base question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 5773–5784.
Association for Computational Linguistics.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages
6069–6076. AAAI Press.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu,
Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. 2023. A
survey of large language models. CoRR.

3732

https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396
https://doi.org/10.18653/v1/2022.acl-long.396

A Datasets

Following existing work on KGQA (He et al.,
2021), we conduct experiments on three popular
datasets to evaluate our proposed approach, includ-
ing WebQuestionsSP (WebQSP) (Yih et al., 2015),
Complex WebQuestions 1.1 (CWQ) (Talmor and
Berant, 2018), and MetaQA (MQA) (Zhang et al.,
2018).
• MetaQA (Zhang et al., 2018) comprises over

400,000 questions in the movie domain, with an-
swer entities located up to three hops away from
the topic entities. Based on the number of hops, the
dataset is divided into three sub-datasets: MetaQA-
1hop, MetaQA-2hop, and MetaQA-3hop. Existing
work has demonstrated that the training data for
MetaQA is more than sufficient (He et al., 2021),
hence all the comparison methods in our exper-
iments can achieve very high performance. We
randomly sample just one training case for each
question template from the original training set, to
form a one-shot training dataset following existing
work (He et al., 2021; Jiang et al., 2022b). In this
way, the numbers of training samples for MetaQA-
1hop, MetaQA-2hop, and MetaQA-3hop are 161,
210, and 150, respectively.
• WebQuestionsSP (WebQSP) (Yih et al.,

2015) consists of 4,737 questions. The answer
entities are within a maximum of 2 hops from the
topic entity on the Freebase (Bollacker et al., 2008)
KG. We adopt the train/valid/test splits from Graft-
Net (Sun et al., 2018) for consistency.
• Complex WebQuestions 1.1 (CWQ) (Talmor

and Berant, 2018) is constructed based on WebQSP,
which is more challenging. It complicates WebQSP
by extending the question entities or adding con-
straints to restrict the answers. The answer entities
are within a maximum of 4 hops from the topic
entity on the Freebase (Bollacker et al., 2008) KG.

Existing work (He et al., 2021) has demonstrated
that the training data for MetaQA is more than
sufficient. To better reflect the reasoning capability
of baselines and our method, we extract one sample
for each question template and conduct the one-
shot experiment on all three MetaQA sub-datasets
following existing work (He et al., 2021). Table 5
shows the statistics of the three datasets.

B Baselines

We consider the following three types of base-
line methods for performance comparison: (1)
non PLM-based methods: KV-Mem (Miller et al.,

Table 5: Statistics of the experiment datasets.

Type Task KG Train Dev Test

KGQA

WebQSP Freebase 2,848 250 1,639
CWQ Freebase 27,639 3,519 3,531

MQA-1H OMDb 161 9,992 9,947
MQA-2H OMDb 210 14,872 14,872
MQA-3H OMDb 150 14,274 14,274

2016b), GraphtNet (Sun et al., 2018), Pull-
Net (Sun et al., 2019), NSM (He et al., 2021);
(2) PLM-based methods: EmbedKGQA (Sax-
ena et al., 2020), TransferNet (Shi et al.,
2021), SR+NSM+E2E (Zhang et al., 2022),
UniKGQA (Jiang et al., 2022b); (3) LLM-based
methods: Davinci-003 (Ouyang et al., 2022), Chat-
GPT, StructGPT (Jiang et al., 2023). We give a
detailed description of each baseline:
• KV-Mem (Miller et al., 2016b) employs a key-

value memory table to store KG facts and facilitates
multi-hop reasoning through iterative read opera-
tions on the memory.
• GraftNet (Sun et al., 2018) first utilize a

heuristic method to retrieve the question-relevant
subgraph and text sentences from the Knowledge
Graph (KG) and Wikipedia, respectively. Subse-
quently, it employs a graph neural network to con-
duct multi-hop reasoning on a heterogeneous graph
constructed from the subgraph and text sentences.
• PullNet (Sun et al., 2019) trains a graph re-

trieval model instead of the heuristic way in Graft-
Net for the retrieval task, and then conducts multi-
hop reasoning with GraftNet.
• NSM (He et al., 2021) first conducts retrieval

following GraftNet and then adapts the neural state
machine (Hudson and Manning, 2019) used in vi-
sual reasoning for multi-hop reasoning on the KG.
It consists of a question understanding module
based on LSTM and a graph reasoning module
with the adapted neural state machine, which is a
graph neural network in essence.
• EmbedKGQA (Saxena et al., 2020) trans-

forms the multi-hop reasoning process of Graft-
Net into a link prediction task. This is achieved
by comparing pre-trained entity embeddings with
question representations derived from a Pre-trained
Language Model (PLM).
• TransferNet (Shi et al., 2021) first conducts

retrieval following GraftNet and then performs the
multi-hop reasoning on a KG or a text-formed rela-
tion graph in a transparent framework. It consists
of a PLM for question encoding and a graph neural

3733

network for updating the relevance scores between
entities and the question.
• SR+NSM+E2E (Zhang et al., 2022) first

learns a PLM-based relation path retriever to con-
duct effective retrieval and then leverages NSM rea-
soner to perform multi-hop reasoning. The whole
process is optimized in an end-to-end way.
• UniKGQA (Jiang et al., 2022b) is a unified

model architecture based on PLMs for both re-
trieval and reasoning stages. It consists of PLM
for computing the semantic similarity between the
question and relation and a simple graph neural
network for propagating the matching information.
• Davinci-003 (Ouyang et al., 2022) and Chat-

GPT are both large language models developed by
OpenAI. We can use their provided APIs to access
them and solve KGQA tasks.
• StructGPT (Jiang et al., 2023) is a general

framework for improving the zero-shot reason-
ing ability of LLMs over structured data, such as
Knowledge Graph. It use an invoking-linearization-
generation procedure that leverages LLMs to read
and perform reasoning based on the interface of
structured data.

C Ablation Study of Retrieval Subgraphs

We conduct experiments on two strong base-
lines (NSM and UniKGQA) with our retrieval sub-
graphs to explore the effect of the retrieval stage.
We show the results in Table 6. We can see that
the two baselines achieve consistent performance
improvement with our retrieved subgraphs (63.43%
Hits@1 of UniKGQA w Ours v.s. 50.7% Hits@1
of UniKGQA and 61.9% Hits@1 of NSM w Ours
v.s. 47.6% Hits@1 of NSM). It indicates that our
model can achieve a better retrieval compared to ex-
isting retrieval methods. Although enhanced with
our retrieval methods, the performance of the two
baselines still have a great gap with our Reason-
ingLM. This demonstrates the effectiveness of our
ReasoningLM to perform multi-hop reasoning over
the subgraph.

D Prompt for ChatGPT

Inspired by existing work (Taori et al., 2023), we
show the prompt of generating questions used by
ChatGPT in Table 7.

3734

Table 6: Performance of ReasoningLM and two strong baselines (i.e., NSM and UniKGQA) on CWQ based on our
retrieval subgraphs represented by “w Ours”.

CWQ ReasoningLM NSM NSM w Ours UniKGQA UniKGQA w Ours

Hits@1 69.0 47.6 61.9 50.7 63.43
F1 64.0 42.4 50.1 48.0 57.65

Here are the guidelines for formulating a question based on the given factual triples, object of the question,
and the answer:
1. A factual triple consists of a head entity, a tail entity, and their relationship, representing a real-world fact.
For example, (Gino Finizio, sex or gender, male) indicates that Gino Finizio is male.
2. Your question should pertain to the provided entity based on the factual background, and the answer
provided should align with the provided answer.
3. The question should include all of the given information as constraints, except for the provided answer, to
ensure that all provided information is fully considered in deriving the answer.
4. Utilize as many different entities and relations as possible in the question to promote variety.
5. Questions should generally be one to two sentences and require no added content aside from the question
itself.
6. Use subordinate clauses to link multiple triples in the question, excluding intervening entities when pos-
sible. For example, the knowledge “(Elevator Action, platform, Commodore 64), (Commodore 64, Giphy
username, commodore)” can be conveyed as “What is the Giphy username for the platform of Elevator Ac-
tion?”

We provide a set of 4 examples that you can reference:
Example 1:
Given the factual background: (Euler-Lagrange equation, discoverer or inventor, Leonhard Euler), (Leonhard
Euler, student, Mikhail Golovin). Please generate a question about the “Euler-Lagrange equation” and the
answer to the question should be “Mikhail Golovin”.
The question is: Who is the student that coined the Euler-Lagrange equation?
Example 2:
Given the factual background: (Spokane, population, 208,916), (Spokane, point in time, 2007). Please generate
a question about “Spokane” and the answer to the question should be “208,916”.
The question is: In 2007, what is the population of Spokane?
Example 3:
Given the factual background: (Kristen Stewart, place of birth, Los Angeles), (Los Angeles, capital of, Los
Angeles County). Please generate a question about “Kristen Stewart” and the answer to the question should
be “Los Angeles”.
The question is: What is the birth city of Kristen Stewart, which has the county seat of Los Angeles County?
Example 4:
Given the factual background: (Lampedusa Airport, country, Italy), (Italy, capital, Rome), (Italy, start time, 2
June 1946). Please generate a question about “Lampedusa Airport” and the answer to the question should be
“Rome”.
The question is: Starting in 1946, what was the capital of the country to which Lampedusa Airport belonged?

Table 7: Instruction of generating questions in our adaptation-tuning strategy.

3735

