
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 343–359
December 6-10, 2023 ©2023 Association for Computational Linguistics

CompoundPiece: Evaluating and Improving Decompounding Performance
of Language Models

Benjamin Minixhofer 1 Jonas Pfeiffer†2 Ivan Vulić†1
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Abstract
While many languages possess processes of
joining two or more words to create compound
words, previous studies have been typically lim-
ited only to languages with excessively produc-
tive compound formation (e.g., German, Dutch)
and there is no public dataset containing com-
pound and non-compound words across a large
number of languages. In this work, we system-
atically study decompounding, the task of split-
ting compound words into their constituents, at
a wide scale. We first address the data gap by in-
troducing a dataset of 255k compound and non-
compound words across 56 diverse languages
obtained from Wiktionary. We then use this
dataset to evaluate an array of Large Language
Models (LLMs) on the decompounding task.
We find that LLMs perform poorly, especially
on words which are tokenized unfavorably by
subword tokenization. We thus introduce a
novel methodology to train dedicated models
for decompounding. The proposed two-stage
procedure relies on a fully self-supervised ob-
jective in the first stage, while the second, super-
vised learning stage optionally fine-tunes the
model on the annotated Wiktionary data. Our
self-supervised models outperform the prior
best unsupervised decompounding models by
13.9% accuracy on average. Our fine-tuned
models outperform all prior (language-specific)
decompounding tools. Furthermore, we use
our models to leverage decompounding during
the creation of a subword tokenizer, which we
refer to as CompoundPiece. CompoundPiece
tokenizes compound words more favorably on
average, leading to improved performance on
decompounding over an otherwise equivalent
model using SentencePiece tokenization.

1 Introduction

Decompounding is the task of separating compound
words into their single word constituents. Decom-
pounding is used in user-facing tools such as dic-
tionaries and morphological analyzers (Altinok,

†Equal senior authorship.
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Figure 1: In-context learning performance of LLMs on
compound segmentation vs. our method (§5).

Constituents Subwords

Hard Compound

Easy Compound

wind surfing

spell binding

winds fur ing

spell ingbind

Figure 2: Examples of easy and hard compounds w.r.t.
the T5 tokenizer (also used by FLAN UL2 20B).

2018). Historically, it has also been widely used as
a preprocessing step for other NLP tasks, e.g. for
information retrieval (Monz and De Rijke, 2002;
Braschler and Ripplinger, 2004), automatic speech
recognition (Adda-Decker and Adda, 2000) and
machine translation (Koehn and Knight, 2003).

Decompounding can come in two similar yet dif-
ferent task formats: (i) compound segmentation and
(ii) compound normalization (Ziering and van der
Plas, 2016). Compound segmentation is the task of
segmenting a word into its compound constituents,
while preserving its surface form (e.g. bridesmaid
→ brides + maid). Compound normalization is the
task of recovering the base form of each compound
constituent (e.g. bridesmaid→ bride + maid).1

Most prior work on decompounding has focused
on the few languages with excessively productive

1In morphological segmentation, segmentation and normal-
ization are also referred to as surface-level segmentation and
canonical segmentation, respectively (Cotterell et al., 2016).
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compound formation such as Finnish, German and
Swedish (Koehn and Knight, 2003; Shapiro, 2016;
Riedl and Biemann, 2016). However, compound
words occur in a large, diverse number of lan-
guages (Vogel and Scalise, 2010). Yet, datasets
which annotate compounds with their segmented or
normalized form sparsely exist, even in languages
with high compound usage. As the first contribu-
tion of this work, we aim to address this issue by
introducing a dataset of 255k compound words and
their normalized form as well as non-compound
words covering 56 languages obtained from Wik-
tionary (www.wiktionary.org).

Using our dataset, we then find that large lan-
guage models (LLMs), which typically rely on
subword-based tokenization (Sennrich et al., 2016;
Kudo and Richardson, 2018), struggle with decom-
pounding, as illustrated in Figure 1. Performance
is especially low for compounds where subword
boundaries do not coincide with compound con-
stituent boundaries; we term compounds with this
property ‘hard’ compounds (Figure 2).

In order to create a more effective decompound-
ing model, we then formulate compound segmenta-
tion and normalization as a sequence-to-sequence
learning task (Sutskever et al., 2014) and train a
byte-level ByT5 model (Xue et al., 2022) using a
two-stage framework. In the first stage, we use a
novel self-supervised hyphen-prediction objective
to learn compound segmentation without any la-
beled data. In the second stage, we turn the model
into a compound normalization model via super-
vised training on our Wiktionary data. In addition,
we introduce a procedure to predict the segmenta-
tion of any compound word based on its normalized
form, effectively making compound segmentation a
subtask of normalization. Finally, we demonstrate
that decompounding has real-world applications
by investigating compound segmentation for lan-
guage model tokenization. We apply compound
segmentation as pretokenization during training
of a SentencePiece tokenizer (Kudo and Richard-
son, 2018), which results in fewer hard compounds
while incurring no extra cost during training and
inference of the language model (i.e. the only extra
cost occurs during creation of the tokenizer).

Our Stage 1 models outperform the best prior
unsupervised models by 13.9% accuracy on aver-
age, while our (supervised) Stage 2 models outper-
form all prior language-specific decompounding
tools. Furthermore, a model trained with a Com-

poundPiece tokenizer achieves a 5.5% improved
performance on compound normalization over an
otherwise equivalent SentencePiece model.

Contributions. 1) We introduce a dataset for de-
compounding of 255k words across 56 languages
obtained from Wiktionary. 2) We show that a
byte-level language model can efficiently decom-
pound words via a two-stage training framework,
whereas current subword-based LLMs fall short.
3) We present a way to improve subword tok-
enization by performing compound segmentation
during creation of the tokenizer. 4) We make our
code, models and dataset publicly available at
github.com/bminixhofer/compoundpiece.

2 Related Work

Decompounding. Early work in decompounding
used word frequency lists along with manually
specified suffixes (e.g., a connective -s-) to seg-
ment and normalize German compounds (Langer,
1998; Koehn and Knight, 2003). Subsequently,
multiple submissions to the Morpho Challenge in
morphological segmentation (Kurimo et al., 2010)
explicitly or implicitly made use of compound seg-
mentation (Lignos, 2010; Virpioja et al., 2011).
Later work replaced the fixed list of suffixes used
in Koehn and Knight (2003) by learned morpho-
logical operations from parallel corpora (Macherey
et al., 2011) or from pre-lemmatized corpora of
non-compound words (Ziering and van der Plas,
2016). Another branch of work added more linguis-
tic knowledge in the form of black- and white-lists
to the paradigm of Koehn and Knight (2003), re-
sulting in JWordSplitter2 (German) and nl-splitter3

(Dutch); this has only been done for a couple of
languages due to its knowledge-intensive nature.
CharSplit (Tuggener, 2016) achieves high perfor-
mance for German by relying on the frequency of
character n-grams appearing within the compound.

While the approaches above use (at most) light
supervision, there exist supervised approaches
which learn directly from an annotated corpus of
compounds and their constituents, along with op-
tional auxiliary signals (Biemann et al., 2008; Al-
fonseca et al., 2008). In contrast, SECOS (Riedl
and Biemann, 2016) is a fully unsupervised and
language-agnostic method achieving competitive
performance by using word embeddings along with
word frequencies for semantic compound segmen-

2github.com/danielnaber/jwordsplitter
3github.com/bminixhofer/ilps-nl-splitter
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Figure 3: Number of positive and negative examples across languages in the Wiktionary dataset.

Word Constituents Language

  ھم نیا
(sibling) ھم (same) + نیا (ancestor) Persian

akiratis 
(horizon) akis (eye) + ratas (circle) Lithuanian

шекара  
(border) шек (limit) + apa (distance) Kazakh

Abenteuer 
(adventure) None German

રાેકડ&વાહ 
(cashflow)

રાેકડ (cash) + &વાહ (stream) Gujarati

Figure 4: Example words in the Wiktionary dataset.

tation. Our method improves over SECOS in the
unsupervised case and provides a unified alter-
native to prior language-specific decompounding
tools via additional training on labelled data.

Relation to Morphological Segmentation. De-
compounding can be seen as a special case of mor-
phological segmentation (Batsuren et al., 2022a).
However, a large amount of work in morphological
segmentation focuses on derivational and inflec-
tional morphology (Cotterell et al., 2016; Faruqui
et al., 2016; Cotterell et al., 2018; McCarthy et al.,
2019; Goldman et al., 2022), which is reflected by
datasets such as UniMorph (Batsuren et al., 2022b)
and MorphyNet (Batsuren et al., 2021) annotating
inflectional and derivational affixes, but not com-
pound constituents. The SIGMORPHON-2022
Shared Task (Batsuren et al., 2022a, SMST 2022)
breaks this pattern by providing a dataset for seg-
mentation into compound constituents in addition
to inflectional and derivational affixes. We improve
on the SMST 2022 dataset by broadening coverage
from 9 to 56 languages, as well as handling nega-
tives (i.e., non-compounds) more carefully (§3.1).

Decompounding Datasets. Besides the SMST
2022 dataset, datasets for decompounding include
AuCoPro (van Zaanen et al., 2014) for Dutch
and Afrikaans, and the GermaNet dataset for Ger-
man (Henrich and Hinrichs, 2011). Although there
is a significant amount of work studying compound

terms in languages with highly productive com-
pound formation beyond German and Dutch, such
as Finnish and Greek (Pollatsek et al., 2000; Lindén
and Pirinen, 2009; Koliopoulou, 2014; Shapiro,
2016; Virkkunen et al., 2018), to the best of our
knowledge there exist no public datasets for decom-
pounding in these languages (and beyond).

Linguistically Informed Tokenization. Various
studies have tried augmenting or replacing the ‘lin-
guistically uninformed’ subword-tokenizers used
in contemporary LMs (Devlin et al., 2019; Raf-
fel et al., 2020, inter alia) such as SentencePiece
(Kudo and Richardson, 2018) and BPE (Sennrich
et al., 2016) with linguistic knowledge. Using man-
ually constructed morphological analyzers before
applying BPE (Pan et al., 2020) or after generation
(Matthews et al., 2018) has led to improvements,
but is limited by the availability (and quality) of
morphological analyzers across many languages.
Unsupervised morphological segmentation has not
shown consistent improvements (Zhou, 2018; Sal-
eva and Lignos, 2021; Domingo et al., 2023); see
Mielke et al. (2021) for additional discussion.

3 Methodology

3.1 Dataset Construction

We use words categorized as compound terms on
Wiktionary to create a dataset for decompound-
ing. The information on Wiktionary allows asso-
ciating compound terms with their corresponding
normalized constituents. Since Wiktionary only
annotates the top-level split,4 we recursively split
constituents into their smallest parts by checking
if the top-level constituents are themselves com-
pound words. Many prior decompounding tools do
not evaluate performance on negative examples (i.e.
non-compound words; Koehn and Knight, 2003;
Riedl and Biemann, 2016; Tuggener, 2016) since
most prior datasets do not contain any (Henrich

4For instance, highwayman is segmented into highway +
man instead of high + way + man.
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and Hinrichs, 2011; van Zaanen et al., 2014). It is
not trivial to obtain negative examples from Wik-
tionary since a large amount of compound words
are not categorized as such, leading to many false
negatives. We solve this issue by using all normal-
ized compound constituents as negative examples,
since by definition the compound constituents can
also appear on their own as non-compound words.
Note that this way of obtaining negative examples
is biased against words which never occur inside
compounds; however, we found this to be a rather
weak bias (Appendix E). We include every lan-
guage with at least 100 words, leading to a dataset
which covers 56 languages. The number of train-
ing examples is shown in Figure 3, example words
in Figure 4. We select up to 1,000 words (but at
most 50% of total words) in every language as eval-
uation data. See Appendix A for further details
concerning the dataset.

3.2 Two-Stage Training

To overcome the problem of data scarcity in low-
resource languages, we introduce a two-stage train-
ing procedure for creating dedicated decompound-
ing models. In Stage 1, we train on the self-
supervised objective of restoring hyphenation in
words extracted from a large-scale Web corpus,
leading to a self-supervised compound segmenta-
tion model. In Stage 2, we fine-tune the model
on compounds and their normalized constituents
from an annotated corpus in a supervised fashion,
turning it into a compound normalization model.

Stage 1: Self-Supervised Compound Segmenta-
tion. This stage is motivated by the fact that hyphen
characters can be seen as a high-precision, low-
recall indicator of compound constituent bound-
aries, in the same way that newline characters are
a high-precision, low-recall indicator of sentence
boundaries (Minixhofer et al., 2023). We use this
natural segmentation into compound constituents
to create a compound segmentation model with-
out requiring any labeled data. First, we obtain
all words containing a hyphen plus an equivalent
amount of non-hyphenated words from a corpus
of unannotated text. Hyphens primarily have two
uses: (1) as a compound boundary and (2) to indi-
cate the word continues on the next line. We only
want to retain hyphens when they function as com-
pound boundaries, so we filter the instances of (2)
by discarding all words where the hyphenated form
of the word occurs x ≤ e−6 times less frequent

Word : akiratis (horizon)x
Norm. constituents : {akis (eye), ratas (circle)}c

a kiratis 3 3 6

ak iratis 2 2 4

aki ratis 1 1 2

akir atis 1 2 3

akira tis 2 3 5

akirat is 3 4 7

akirati s 4 4 8

ℒ(s1, c1) ℒ(s2, c2) C(s)s2s1

Input

Find optimal segmentation

Output
Segmentation : {aki, ratis}s⋆

Figure 5: Turning compound normalization into seg-
mentation by minimizing edit distance (§3.3).

than the non-hyphenated form.5

We strip all words of hyphens and train a seq2seq
LM to predict the original (hyphenated) form of
each word. We introduce a logit bias b added to the
logit of the token representing a hyphen to skew
generation towards or away from hyphenation at
inference time. Training on this data enables ef-
fective compound segmentation without relying on
human annotations, as demonstrated later in §5.

Stage 2: Supervised Compound Normalization.
In the second stage, we improve upon the Stage 1
model by additional training on labeled data, where
the inputs are individual compounds, and the target
is to predict the normalized constituents of each
compound, separated by a hyphen. Training ex-
clusively on compound normalization allows using
data from the collected Wiktionary dataset, which
contains compound terms along with their normal-
ized constituents across many languages, but does
not contain compound segmentation annotations.

3.3 Turning Normalization into Segmentation

Considering the scarcity of annotated compound
segmentation data, it is infeasible to train a multi-
lingual model directly on segmentation. Thus, we
introduce a method to predict a segmentation given
the normalized constituents. Let x be a word of
length n. In addition, we have k normalized com-

5Consider for example the hyphen-as-compound-boundary
in side-experiments and the hyphen-as-newline-indicator in
experi-ments. #experi-ments

#experiments
will be considerably lower than

#side-experiments
#sideexperiments

. x was chosen from {e−4, e−5, e−6, e−7} by
manual inspection in preliminary experiments.
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pound constituents c = {c1, ..., ck} (e.g. predicted
by the Stage 2 model). Our aim is to find bound-
aries r = {r0, ..., rk}, r0 = 0, rk = n giving rise
to the segmentation s = {x[r0 : r1], ...,x[rk−1 :
rk]}. We approach this problem by minimizing the
edit distance of each segment to its corresponding
normalized constituent. This leads to an optimiza-
tion problem where the cost C(s) indicates the
total edits needed to turn all segments into their
corresponding normalized constituents:

C(s) =
k∑

i=1

L(si, ci).

Here, L is an edit distance metric such as Lev-
enshtein distance (Levenshtein et al., 1966). The
optimal segmentation s⋆ is the segmentation with
the minimal cost: s⋆ = argminsC(s).

In case of ties, we prefer segmentations with
higher edit cost for segments with lower indices
due to the preference for languages in our training
set for suffixation over prefixation (Hammarström,
2021).6 There is a total of

(
n

k−1

)
possible segmen-

tations, so solving the optimization problem via
enumeration of all solutions is only feasible for
short words (Figure 5). We introduce a more effi-
cient search algorithm which is capable of quickly
finding the optimal segmentation of long words by
enumerating candidates in order of a lower bound
on the edit distance in Appendix B. This method
can be used to turn the normalization predictions
of a model into segmentation. We also use it on the
ground-truth normalization from Wiktionary, mak-
ing it possible to approximate compound segmen-
tation performance by comparing the segmentation
corresponding to the ground-truth normalization to
the segmentation produced by the model normal-
ization predictions.

3.4 Reducing Hard Compounds

We define hard compounds relative to a particu-
lar tokenizer as compound words where the con-
stituent boundaries do not coincide with token
boundaries set by the tokenizer. More formally,
a compound word made up of k constituents and
l subwords is hard if the constituent boundaries
r = {r0, ..., rk} are not a subset of the token
boundaries t = {t0, ..., tl} i.e. r ̸⊂ t.

6E.g., given x = bridesmaid, c = {bride, maid}, we
prefer the segmentation {brides, maid} over {bride, smaid}
although their cost is equal.

(c)

(b)

(a) among the bright flowerbeds.

among the bright flowerbeds.

among the bright flowerbeds.

Figure 6: (a) no pretokenization, (b) pretokenization by
splitting on whitespace, (c) our pretokenization.

We hypothesize that hard compounds may im-
pair language model performance due to the non-
trivial relation of subwords to the compound word.
In contrast, in easy compounds the word is nat-
urally decomposed into its constituents. The in-
creased difficulty of hard compounds is apparent
on the sequence-to-sequence compound segmen-
tation task: for an easy compound, all tokens can
be copied to the output (only the special separa-
tor tokens must be inserted). On the other hand,
for hard compounds, the tokens change, requiring
knowledge of the characters within each token.

Tokenizers where every possible constituent
boundary is a token boundary trivially do not
give rise to any hard compounds. This includes
character-level (Clark et al., 2022; Tay et al., 2022b)
as well as byte-level tokenizers (Xue et al., 2022).
However, many contemporary language models
use subword-based tokenizers to increase efficiency
(Devlin et al., 2019; Raffel et al., 2020; Brown et al.,
2020). We propose a modification to subword tok-
enization to reduce the number of hard compounds
while keeping the efficiency advantages.

Subword tokenizers typically segment text into
pre-tokens (e.g. by splitting on whitespace) be-
fore applying their subword tokenization algo-
rithm (Mielke et al., 2021). We propose modifying
pretokenization by applying compound segmenta-
tion in addition to splitting on whitespace. This
modification is only done during creation of the to-
kenizer, thus incurring no additional cost once the
tokenizer has been created. We refer to tokenizers
created in this way as CompoundPiece tokeniz-
ers. The modified pretokenization tries to create
more subwords which do not span compound con-
stituent boundaries, thus decreasing the fraction
of hard compounds (Figure 6). It aims to turn the
dual-route model for computing the meaning of
complex (compound) words proposed by Hofmann
et al. (2021) into a single-route model which al-
ways computes the meaning of compounds from
their constitutent subwords, and never stores a com-
pound word as a single subword.
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4 Experimental Setup

4.1 Data

We obtain Stage 1 data by selecting all words con-
taining a hyphen from a subset of the mC4 corpus
(Xue et al., 2021) which results in ~25M hyphen-
ated words. As negative examples, we choose the
n most common words from mC4 such that there
is an equivalent amount of non-hyphenated and hy-
phenated words in every language. Regarding the
Stage 2 data, see Section §3.1 before.

4.2 Training

We train a decompounding model using a two-stage
framework (§3) covering 56 languages. We use
ByT5 (Xue et al., 2022) as our main pretrained
model and the main starting point since it directly
ingests Unicode bytes instead of using subword
tokenization, leading to zero hard compounds. We
compare our approach against the subword-based
T5 (Raffel et al., 2020), Flan-T5 (Chung et al.,
2022) and mT5 (Xue et al., 2021) trained with the
same two-stage framework. We use t5x (Roberts
et al., 2022) for training with a batch size of 512
and a maximum sequence length of 64 tokens, oth-
erwise matching T5 pretraining (Raffel et al., 2020).
The setup is the same for Stage 1 and Stage 2.

4.3 Evaluation

Metric. We measure performance via averaged ac-
curacy, i.e., the ratio of examples which are entirely
correctly segmented or normalized.

Datasets. Besides our new Wiktionary evalua-
tion subset, we use the established datasets for
particular languages: GermaNet (Henrich and Hin-
richs, 2011), AuCoPro for Dutch (van Zaanen et al.,
2014) as well the subset containing compound-only
words across 6 languages from the SIGMORPHON
2022 Shared Task (Batsuren et al., 2022a).7

Baselines. We use SECOS as the main unsuper-
vised baseline, as well as CharSplit, JWS and nl-
splitter as baselines using different amounts of su-
pervision. For the SIGMORPHON 2022 Shared
Task dataset, we compare against the task winner,
DeepSPIN-3 (Peters and Martins, 2022).

7We do not include words containing derivational or inflec-
tional affixes since the type of morpheme is not specified, so it
is not possible to distinguish between derivational/inflectional
affixes and compound constituents. We also do not include
root words since we found from manual inspection that >10%
of root words are mislabeled, likely due to the difficulty of
obtaining negative examples from Wiktionary (§3.1).

Languages. For clarity of presentation, we present
results on Danish, German, English, Spanish, Esto-
nian, Greek, Persian, Finnish, Hungarian, Kazakh,
Latvian, Dutch, Polish and Swedish as a linguisti-
cally diverse subset of languages with productive
compound formation in the main paper. For the full
evaluation across all languages, see Appendix C.

5 Results and Discussion

Main compound segmentation results are shown in
Table 1. For the self-supervised models, we choose
the logit bias b = 3 to bias generation towards
hyphenated words.8 ByT5 outperforms subword-
based models by a large margin with an absolute
8.9% improvement over the best subword-based
model after Stage 1 training, and a 3.7% improve-
ment after Stage 2 training. Comparing models not
trained on any annotated data, the self-supervised
ByT5 outperforms SECOS on 13 out of 14 lan-
guages, and by 13.9% on average.

We further compare against language-specific
and supervised methods in Table 2. Our ByT5-
based model outperforms all prior methods on ev-
ery dataset. Since GermaNet tests compound head
segmentation (i.e., even if a word contains multiple
constituents, it is only split into a head and a modi-
fier) we count an example as correctly segmented
if either the first constituent matches the modifier
or the last constituent matches the head.

Evaluating LLMs on Decompounding. We also
evaluate in-context learning performance of multi-
ple LLMs on compound segmentation. We use T5
models with 770M, 3B and 11B parameters (Raffel
et al., 2020) as well as the UL2 model with 20B
parameters (Tay et al., 2022a) since all of them use
the same tokenizer, enabling performance compar-
isons on hard compounds across LLMs. We use the
model versions fine-tuned on the Flan dataset col-
lection (Chung et al., 2022), matching our prompt
to the style of instructions in the Flan collection
(Appendix D). Zero- to 16-shot results are shown in
Figure 7. Although the LLMs perform non-trivially
well on easy compounds, performance is close to
zero (<3%) on hard compounds. Intriguingly, UL2
20B performs worse than Flan T5 XXL (11B), re-
versing the trend seen on other tasks (Tay et al.,
2022a). All the LLMs perform considerably worse
than our ByT5-based model; see Figure 1.

8Chosen among the set {0, 1, 2, 3, 4} to maximize perfor-
mance on the English validation data.
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da de en es et el fa fi hu kk lv nl pl sv Macro
Avg.

P

SECOS 30.0 66.5 41.2 29.0 23.4 5.3 1.4 53.1 38.8 5.0 13.9 46.8 22.2 32.2 29.2

S1

T5 55.3 56.1 85.9 69.8 29.0 0.0 0.0 31.6 48.6 16.9 29.6 44.9 36.1 53.1 39.8
Flan-T5 58.4 58.5 89.1 71.0 37.0 0.0 0.0 33.0 53.4 17.6 41.7 44.8 40.3 56.5 42.9
mT5 25.8 38.8 79.7 58.3 18.6 21.6 3.9 24.1 18.8 45.0 20.2 23.0 32.9 21.9 30.9
ByT5 75.6 76.0 91.3 77.2 51.6 40.9 20.9 52.7 70.0 75.9 41.7 57.2 51.8 64.8 60.5

S1+S2

T5 86.3 96.0 95.4 82.5 77.7 0.0 0.0 98.2 89.1 18.3 69.1 94.0 78.0 89.6 69.6
Flan-T5 86.6 95.3 95.5 83.2 80.9 0.0 0.0 98.3 87.3 16.5 68.2 93.6 77.4 89.4 69.5
mT5 87.1 94.1 95.4 82.3 83.2 73.1 62.1 97.1 90.4 86.7 76.7 93.4 84.1 90.0 85.4
ByT5 92.2 96.6 97.8 87.1 92.6 86.1 76.6 98.8 97.2 91.7 84.8 97.5 91.2 94.3 91.7

N

SECOS 96.1 86.6 93.8 97.4 98.6 99.7 100 88.2 95.5 100 100 94.1 96.9 97.3 96.0

S1

T5 88.5 91.8 91.7 88.7 82.3 100 100 82.2 93.8 74.0 87.4 83.7 90.6 91.8 89.0
Flan-T5 88.5 92.1 91.3 89.9 82.3 100 100 82.9 91.6 72.9 87.0 87.0 90.4 92.4 89.2
mT5 92.7 92.8 90.9 92.3 89.9 95.3 99.3 88.2 98.0 88.0 95.9 89.1 94.5 94.8 93.0
ByT5 89.0 89.7 88.4 81.5 76.0 95.7 97.3 77.6 87.1 72.1 87.7 80.3 91.4 87.8 85.8

S1+S2

T5 93.3 94.5 98.3 97.8 95.1 100 100 95.4 99.2 91.1 97.4 97.5 98.1 96.7 96.7
Flan-T5 94.1 95.5 97.9 95.9 95.8 100 100 96.7 98.6 92.6 96.7 97.5 97.1 96.7 96.8
mT5 93.8 96.2 99.2 97.4 97.9 96.3 98.7 94.1 98.6 96.9 98.1 96.7 97.9 97.3 97.1
ByT5 95.2 96.2 98.3 98.8 97.9 97.3 97.3 95.4 99.7 99.2 98.9 97.9 99.0 97.6 97.8

All

SECOS 53.5 72.4 53.9 63.2 56.0 60.9 52.2 58.4 59.0 50.7 61.0 58.1 57.8 53.6 57.9

S1

T5 67.1 66.5 87.3 79.3 52.1 59.0 51.5 39.3 64.7 44.4 61.2 54.2 62.1 65.8 61.0
Flan-T5 69.1 68.3 89.6 80.5 56.6 59.0 51.5 40.6 67.0 44.2 66.5 54.9 64.2 68.3 62.9
mT5 49.6 54.6 82.4 75.3 49.5 65.1 53.1 33.8 47.0 65.7 61.6 38.8 62.3 45.9 56.0
ByT5 80.4 80.0 90.6 79.4 62.2 73.2 60.3 56.5 76.1 74.1 66.9 62.7 70.7 72.4 71.8

S1+S2

T5 88.8 95.6 96.1 90.2 85.2 59.0 51.5 97.8 92.7 53.4 84.6 94.8 87.6 91.9 83.5
Flan-T5 89.3 95.4 96.1 89.6 87.3 59.0 51.5 98.1 91.3 53.2 83.7 94.5 86.8 91.8 83.4
mT5 89.5 94.7 96.3 89.8 89.6 86.8 80.9 96.6 93.3 91.6 88.4 94.2 90.7 92.4 91.1
ByT5 93.3 96.5 97.9 92.9 94.9 92.7 87.3 98.3 98.1 95.3 92.5 97.6 94.9 95.4 94.8

Table 1: Accuracy on compounds (Positives=P), non-compound words (Negatives=N) and across all examples. We
report scores of SECOS as baseline, as well as Stage 1 training only (S1) and Stage 1 plus Stage 2 training (S1+S2).
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Figure 7: Few-shot in-context learning performance of LLMs on easy positives, hard positives, negatives and across
all examples. Hard negatives are the same across all LLMs since they use the same tokenizer.

Reducing Hard Compounds via Compound-
Piece. To evaluate our method of reducing the
number of hard compounds in subword-based lan-
guage models (§3.4), we train CompoundPiece
models in two configurations: (i) multilingual to-
kenizers across all 56 languages and (ii) separate
monolingual tokenizers for every language. For
the multilingual tokenizers, we sample languages
with p(L) ∝ |L|α where p(L) is the probability
of sampling text from a language L with |L| texts
as in prior work (Conneau et al., 2020). We use a
subsample of 10M texts from the mC4 corpus (Xue
et al., 2021) with α = 0.2. The vocabulary size is
250k for the multilingual and 32k for the monolin-

gual tokenizers, following prior work (Rust et al.,
2021; Conneau et al., 2020).

We use our fine-tuned ByT5 model for train-
time pretokenization into compound constituents
and SentencePiece (Kudo and Richardson, 2018)
with Unigram LM (Kudo, 2018) as the subword
tokenization applied after pretokenization. As a
baseline, we train SentencePiece tokenizers with
pretokenization into words (split by whitespace)
on the same data. Table 3 shows the percentage of
hard compounds for every tokenizer. Compound-
Piece reduces the number of hard compounds from
27.1%→ 9.7% on average in the monolingual case.
In the multilingual case, there is a less marked
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Segmentation Normalization

P N All P N All

GermaNet

JWS 83.7 - 83.7 53.4 - 53.4
CharSplit 95.1 - 95.1 - - -
SECOS 83.6 - 83.6 - - -
ByT5 (S1+S2) 97.9 - 97.9 79.6 - 79.6

Ours (de)

JWS 59.7 97.6 70.8 43.2 97.6 59.1
CharSplit 84.7 29.5 68.6 - - -
SECOS 66.5 86.6 72.4 - - -
ByT5 (S1+S2) 96.6 96.2 96.5 89.8 96.2 91.7

AuCoPro-nl
nl-splitter 74.5 - 74.5 67.1 - 67.1
SECOS 59.7 - 59.7 - - -
ByT5 (S1+S2) 91.7 - 91.7 76.2 - 76.2

Ours (nl)
nl-splitter 61.2 96.7 69.7 47.0 91.2 57.6
SECOS 46.8 94.1 58.1 - - -
ByT5 (S1+S2) 97.5 97.9 97.6 87.8 97.9 90.2

SMST 2022 DeepSpin-3 88.6 - 88.6 87.3 - 87.3
ByT5 (S1+S2) 92.5 - 92.5 88.6 - 88.6

Table 2: Comparison against supervised and rule-based
baseline models. We use the subset of compound-only
words from the Sigmorphon Shared Task (SMST) 2022
data which covers 7 languages (Batsuren et al., 2022a).

Language Multilingual Monolingual
SPM (mT5) SPM CPM SPM CPM

Danish 15.5 16.5 12.4 24.7 5.9
German 9.9 10.3 8.2 14.6 1.8
English 7.5 8.2 4.6 6.8 3.7
Spanish 29.0 24.9 18.7 14.2 10.3
Estonian 25.5 29.5 15.2 35.4 7.2
Greek 39.9 33.6 23.1 28.9 14.9
Persian 38.6 46.1 37.2 70.9 41.8
Finnish 25.1 25.1 20.3 10.3 5.1
Hungarian 13.8 17.1 10.1 26.1 3.7
Kazakh 14.4 13.7 9.0 28.4 4.0
Latvian 20.2 23.8 16.1 47.5 11.7
Dutch 12.8 15.4 10.2 17.2 3.3
Polish 45.7 42.5 33.1 33.6 17.0
Swedish 13.9 17.7 12.5 21.3 5.4

Macro Avg. 22.3 23.2 16.5 27.1 9.7

Table 3: Percentage of hard compounds after segmenta-
tion with different tokenizers. SPM (mT5) is the Sen-
tencePiece tokenizer used by mT5 (Xue et al., 2021).
SentencePiece (SPM) and CompoundPiece (CPM) tok-
enizers are trained on text in all 56 languages (Multilin-
gual) and for every language separately (Monolingual).

improvement of 23.2% → 16.5%. This may be
because tokens from different languages interfere
with the segmentation of any given word. We test
this hypothesis by computing plausible token ori-
gins for tokens in the multilingual tokenizer. This
is done by checking which monolingual tokeniz-
ers also contain the token in their vocabulary, and
ordering the result by unigram token probability.
Examples are shown in Table 4. Interference from

Monolingual Multilingual
Word Segmentation Segmentation Token Origin

tugboat _tug, boat _tu, gbo, at
_tu: es, sk, it
gbo: yo, mg, fr
at: id, hu, la

mindstate _mind, state _mindst, ate
_mindst: da
ate: it, et, en

coatrack _coat, rack _coa, track
_coa: gl, ro
track: hu, th, da

Table 4: Example compound words which are easy
for the monolingual but hard for the multilingual Com-
poundPiece tokenizer. "_" indicates whitespace.

Language Segmentation Normalization
SPM-T5 CPM-T5 SPM-T5 CPM-T5

Danish 77.8 77.7 65.5 69.1
German 81.0 80.7 61.5 63.8
English 84.9 85.8 82.9 84.0
Spanish 75.2 74.7 50.1 55.2
Estonian 78.6 84.5 55.1 61.3
Greek 70.6 70.0 47.1 57.8
Persian 58.2 61.2 46.6 58.1
Finnish 72.8 74.1 59.0 59.6
Hungarian 76.2 76.9 73.3 76.2
Kazakh 72.9 75.7 59.0 74.4
Latvian 75.2 69.1 53.5 57.3
Dutch 78.2 80.7 60.9 64.9
Polish 65.8 65.6 42.6 46.7
Swedish 76.2 77.3 61.0 65.6

Macro Avg. 74.6 75.3 58.4 63.9

Table 5: Accuracy of our multilingual T5 models trained
with SentencePiece (SPM-T5) and CompoundPiece
(CPM-T5) on segmentation and normalization.

Segmentation Normalization

P N All P N All

ByT5 (S1) 50.8 82.5 66.6 28.5 82.5 55.2
- hyphen filtering 53.8 62.3 58.9 30.3 62.3 47.0

ByT5 (S1+S2) 80.9 98.0 89.8 58.2 97.8 78.5
- S1 79.3 97.3 88.6 56.8 97.1 77.4

Table 6: Ablation studies on not filtering hyphens-as-
newline-indicator and on skipping Stage 1 training.

common tokens in other languages is likely the lead
cause for the increased number of hard compounds
in the multilingual tokenizers. It could potentially
be solved by adjusting token probability based on
the input language; we leave this to future work.

To more thoroughly evaluate our tokenization,
we train multilingual T5 models using Sentence-
Piece and CompoundPiece. We use the same sam-
pling ratio (α = 0.2) of mC4 as for creating the
tokenizer, but instead use a subset of 500M texts.
We match the architecture and the pretraining setup
of the mT5-base model, but train for a total of
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~65.5B tokens.9 We evaluate the model on the de-
compounding task. Results are shown in Table 5.

Ablation Studies. We quantify the impact of the
most significant design choices of our model in
Table 6. Although filtering hyphens-as-newline-
indicator (§4.1) removes only 300k words (<1%)
from the pretraining data, it increases performance
on negatives by a large margin. Removing Stage 1
training (i.e., fine-tuning directly on the Wiktionary
data instead) consistently decreases performance.

6 Conclusion

We systematically investigated word decompound-
ing tasks of compound segmentation and normal-
ization on a wide scale and in multilingual contexts.
To this end, we introduced a dataset of 255k words
including compounds and non-compounds across
56 languages from Wiktionary, which allowed us
to evaluate performance of LLMs on decompound-
ing. We found that current LLMs’ performance is
limited due to hard compounds which arise when
subword token boundaries do not coincide with
compound constituent boundaries. We then intro-
duced dedicated models for decompounding which
use byte-level tokenization to entirely avoid hard
compounds. Finally, we used our decompounding
models to create novel CompoundPiece tokenizers,
keeping the efficiency advantages of subword tok-
enization while strongly decreasing the amount of
hard compounds; this increases the performance of
CompoundPiece models over comparable Senten-
cePiece models on the decompounding tasks.

Limitations

Although self-supervised training in Stage 1 allows
for decompounding without any annotated training
data, Stage 2 training is limited to languages with
sufficient entries in Wiktionary: this excludes ex-
tremely low-resource languages. Furthermore, due
to computational constraints we have not trained
larger models using CompoundPiece tokenization;
hence we are unable to report on its benefits at
larger scales and on tasks besides decompounding.
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A Dataset Statistics

Statistics for the training and validation splits of
the Wiktionary dataset are shown in Table 7.

B Efficient Segmentation Algorithm

Pseudocode of the brute-force algorithm to turn
normalization into segmentation is shown in Al-
gorithm 1. Since enumerating all possible seg-
mentations is only feasible for short words (§3.3)
we introduce a more efficient algorithm (Algo-
rithm 2) where candidate segmentations are or-
dered such that segmentations with constituents
closest in length to the corresponding normalized
constituents appear first. Assuming insertions and
deletions both have a cost of one (as is the case
in standard Levenshtein distance), constituents are
thus sorted in increasing order of a lower bound
on edit distance. The procedure can stop once the
lower bound on edit distance reaches the cost of
the best solution found so far since by that point it
is impossible for a better solution to be found.

Note that the normalization-to-segmentation
problem is related to sequence partitioning (Manne
and Sorevik, 1995; Han et al., 1992) where the
aim is to find a partition of a sequence such that
the maximum cost across partitions of some cost
function is minimized. However, since our goal is
to find the partitioning with the minimum aggre-
gated cost, algorithms for conventional sequence
partitioning are not applicable.

C Results for All Languages

Segmentation accuracy for all languages is shown
in Tables 8-11.

D LLM Prompts

The prompt used for LLM evaluations (§5) is
shown in Figure 8. The prompt was chosen among
10 prompts to maximize performance on Flan
T5 Large. For 2- to 16-shot results, we provide
50% positive (compound) and 50% negative (non-
compound) examples in a random order.

E Quantifying Negative Collection Bias

We conduct an experiment to measure the extent
of the bias against words which do not occur in-
side compounds in our data collection methodol-
ogy (§3.1). In particular, we quantify the bias
against long non-compound words, which usually
would not occur inside compounds. We took a
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Zero-shot:
{word}

Hyphenate the above word.
Ans :

n-shot:
{example_0}

Hyphenate the above word.
Ans : {example_0_hyphenated}

...

{example_n}

Hyphenate the above word.
Ans : {example_n_hyphenated}

{word}

Hyphenate the above word.
Ans :

Figure 8: Prompts used to evaluate LLM in-context
learning compound segmentation performance.

random sample of 500 words each from word fre-
quency lists in English and German (Speer, 2022),
manually removed compound words, and com-
pared the length statistics of this (unbiased) sample
of non-compounds to our non-compound dataset.

While words in our non-compound dataset are
indeed shorter on average (6.0 vs. 6.7 chars for
English, 6.7 vs. 7.1 chars for German), with less
than one character length difference on average,
there is only a weak length bias in data collection.

We also found qualitatively that our non-
compound dataset contains a wide variety of words
since compounding is typically a process that can
occur for many different root words.

Data: Compound x, norm. constituents c.
Result: Optimal segmentation s⋆.
k ← ∥c∥, n← ∥x∥
r0 ← 0, rn ← n
best_cost←∞

for r1, ..., rn−1 ∈
( [n]
k−1

)
do

Compute s, C(s) /* see §3.3 */
if C(s) < best_cost then

sbest ← s
best_cost← C(s)

end
end

s⋆ ← sbest

Algorithm 1: Naïve brute-force segmentation.

Data: Compound x, norm. constituents c.
Result: Optimal segmentation s⋆.
k ← |c|, n← |x|
r0 ← 0, rk ← n
best_cost←∞

/* ∆ is the total difference in
length of the normalized
constituents to the word. */

∆ = n−∑
i |ci|

lower_bound← |∆|

while lower_bound < best_cost do
offsets = {x | |x| = k,∑

i |xi| = lower_bound,∑
i xi = ∆}

lower_bound← lower_bound + 1
for o1, ..., ok ∈ offsets do

r1, ..., rk−1 =
|c1|+ o1, ...,

∑n−1
i=1 |ci|+ oi

Compute s, C(s) /* see §3.3 */
if C(s) < best_cost then

sbest ← s
best_cost← C(s)

end
end

end

s⋆ ← sbest

Algorithm 2: Segmentation by enumerating
candidates in order of increased lower bound
on edit distance.
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Training Validation
Language iso #Positive #Negative Total #Positive #Negative Total

Afrikaans af 326 193 519 322 197 519
Azerbaijani az 78 97 175 85 89 174
Belarusian be 32 47 79 40 38 78
Bulgarian bg 71 89 160 68 92 160
Bengali bn 301 334 635 304 331 635
Catalan ca 220 218 438 219 218 437
Czech cs 388 358 746 392 354 746
Welsh cy 308 273 581 299 281 580
Danish da 2145 1298 3443 644 356 1000
German de 20743 7846 28589 708 292 1000
Greek el 216 292 508 208 299 507
English en 22896 6480 29376 759 241 1000
Esperanto eo 1097 849 1946 559 441 1000
Spanish es 433 401 834 417 417 834
Estonian et 349 315 664 376 288 664
Basque eu 102 98 200 98 101 199
Persian fa 268 314 582 282 300 582
Finnish fi 69948 13314 83262 848 152 1000
French fr 149 135 284 135 148 283
Western Frisian fy 92 85 177 90 86 176
Irish ga 332 322 654 328 325 653
Galician gl 70 79 149 80 69 149
Gujarati gu 227 279 506 221 285 506
Hebrew he 29 34 63 18 44 62
Hindi hi 472 569 1041 478 522 1000
Hungarian hu 5238 3162 8400 644 356 1000
Armenian hy 872 745 1617 509 491 1000
Indonesian id 26 45 71 32 38 70
Icelandic is 2333 1603 3936 592 408 1000
Italian it 452 352 804 437 366 803
Georgian ka 137 156 293 149 143 292
Kazakh kk 244 292 536 278 258 536
Kirghiz ky 39 45 84 39 44 83
Latin la 450 410 860 452 407 859
Lithuanian lt 65 94 159 76 83 159
Latvian lv 244 249 493 223 269 492
Malagasy mg 35 42 77 32 45 77
Macedonian mk 75 94 169 79 90 169
Malayalam ml 318 435 753 331 421 752
Maltese mt 35 36 71 36 35 71
Dutch nl 15184 5258 20442 761 239 1000
Panjabi pa 24 34 58 19 39 58
Polish pl 628 556 1184 523 477 1000
Portuguese pt 40 57 97 53 44 97
Romanian ro 272 261 533 268 265 533
Russian ru 753 718 1471 507 493 1000
Slovak sk 26 28 54 25 29 54
Albanian sq 124 113 237 109 127 236
Swedish sv 8883 4172 13055 671 329 1000
Tamil ta 656 710 1366 484 516 1000
Telugu te 894 909 1803 507 493 1000
Thai th 4287 2754 7041 614 386 1000
Turkish tr 295 287 582 310 271 581
Ukrainian uk 281 291 572 277 295 572
Yiddish yi 162 218 380 176 203 379
Yoruba yo 349 312 661 348 312 660

Total 164713 58757 223470 17539 13938 31477

Table 7: Statistics of the Wiktionary dataset.
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af az be bg bn ca cs cy da de el en eo es Macro
Avg.

N

SECOS - - - 7.4 - 4.1 20.2 - 30.0 66.5 5.3 41.2 - 29.0 -

S1

T5 47.5 64.7 20.0 14.7 0.0 61.2 30.6 41.1 55.3 56.1 0.0 85.9 65.3 69.8 43.7
FLAN T5 52.8 69.4 17.5 16.2 0.0 59.8 36.0 43.8 58.4 58.5 0.0 89.1 67.6 71.0 45.7
mT5 22.7 34.1 20.0 10.3 14.5 50.7 28.8 36.5 25.8 38.8 21.6 79.7 44.0 58.3 34.7
ByT5 64.9 70.6 45.0 29.4 34.5 68.5 48.2 49.8 75.6 76.0 40.9 91.3 82.3 77.2 61.0

S1+S2

T5 83.9 75.3 22.5 35.3 0.0 70.8 68.9 60.2 86.3 96.0 0.0 95.4 78.7 82.5 61.1
FLAN T5 84.8 74.1 22.5 33.8 0.0 75.3 67.3 59.5 86.6 95.3 0.0 95.5 77.6 83.2 61.1
mT5 83.5 85.9 70.0 76.5 79.6 71.7 76.8 57.9 87.1 94.1 73.1 95.4 78.2 82.3 79.4
ByT5 90.4 89.4 80.0 79.4 91.1 81.7 85.5 72.9 92.2 96.6 86.1 97.8 89.8 87.1 87.1

P

SECOS - - - 100 - 99.1 100 - 96.1 86.6 99.7 93.8 - 97.4 -

S1

T5 87.8 84.3 63.2 73.9 100 88.1 80.5 74.4 88.5 91.8 100 91.7 83.9 88.7 85.5
FLAN T5 90.4 85.4 71.1 73.9 100 92.2 79.9 74.4 88.5 92.1 100 91.3 86.2 89.9 86.8
mT5 95.4 91.0 81.6 93.5 95.8 93.6 96.3 82.9 92.7 92.8 95.3 90.9 90.2 92.3 91.7
ByT5 87.8 86.5 57.9 72.8 93.1 84.9 87.9 70.5 89.0 89.7 95.7 88.4 76.6 81.5 83.0

S1+S2

T5 91.9 97.8 94.7 96.7 100 97.2 94.6 93.6 93.3 94.5 100 98.3 97.7 97.8 96.3
FLAN T5 90.9 96.6 94.7 95.7 100 95.4 93.5 96.1 94.1 95.5 100 97.9 97.3 95.9 96.0
mT5 92.4 100 100 100 97.0 95.9 97.7 95.7 93.8 96.2 96.3 99.2 98.0 97.4 97.1
ByT5 93.4 98.9 100 100 97.3 97.2 98.0 95.7 95.2 96.2 97.3 98.3 98.0 98.8 97.5

All

SECOS - - - 60.6 - 51.5 58.0 - 53.5 72.4 60.9 53.9 - 63.2 -

S1

T5 62.8 74.7 41.0 48.8 52.1 74.6 54.3 57.2 67.1 66.5 59.0 87.3 73.5 79.3 64.2
FLAN T5 67.1 77.6 43.6 49.4 52.1 76.0 56.8 58.6 69.1 68.3 59.0 89.6 75.8 80.5 66.0
mT5 50.3 63.2 50.0 58.1 56.9 72.1 60.9 59.0 49.6 54.6 65.1 82.4 64.4 75.3 61.6
ByT5 73.6 78.7 51.3 54.4 65.0 76.7 67.0 59.8 80.4 80.0 73.2 90.6 79.8 79.4 72.1

S1+S2

T5 86.9 86.8 57.7 70.6 52.1 84.0 81.1 76.4 88.8 95.6 59.0 96.1 87.1 90.2 79.5
FLAN T5 87.1 85.6 57.7 69.4 52.1 85.4 79.8 77.2 89.3 95.4 59.0 96.1 86.3 89.6 79.3
mT5 86.9 93.1 84.6 90.0 88.7 83.8 86.7 76.2 89.5 94.7 86.8 96.3 86.9 89.8 88.1
ByT5 91.5 94.3 89.7 91.2 94.3 89.5 91.4 84.0 93.3 96.5 92.7 97.9 93.4 92.9 92.3

Table 8: Accuracy on languages af-es.

et eu fa fi fr fy ga gl gu he hi hu hy id Macro
Avg.

N

SECOS 23.4 4.1 1.4 53.1 11.9 - - 2.5 - - - 38.8 - - -

S1

T5 29.0 28.6 0.0 31.6 31.9 53.3 69.8 50.0 0.0 0.0 0.0 48.6 0.0 34.4 26.9
FLAN T5 37.0 31.6 0.0 33.0 31.9 58.9 70.1 51.2 0.0 0.0 0.0 53.4 0.0 40.6 29.1
mT5 18.6 18.4 3.9 24.1 21.5 24.4 59.8 38.8 59.3 22.2 39.7 18.8 4.3 12.5 26.2
ByT5 51.6 42.9 20.9 52.7 44.4 52.2 76.8 52.5 79.6 38.9 66.5 70.0 10.2 50.0 50.7

S1+S2

T5 77.7 38.8 0.0 98.2 48.1 84.4 83.2 65.0 0.0 0.0 0.0 89.1 0.0 46.9 45.1
FLAN T5 80.9 41.8 0.0 98.3 49.6 86.7 81.4 60.0 0.0 0.0 0.0 87.3 0.0 46.9 45.2
mT5 83.2 50.0 62.1 97.1 48.9 81.1 82.6 62.5 85.1 44.4 81.8 90.4 77.2 40.6 70.5
ByT5 92.6 58.2 76.6 98.8 62.2 91.1 88.7 67.5 90.0 33.3 88.9 97.2 85.1 53.1 77.4

P

SECOS 98.6 100 100 88.2 97.3 - - 95.7 - - - 95.5 - - -

S1

T5 82.3 85.1 100 82.2 94.6 87.2 82.2 82.6 100 100 100 93.8 100 81.6 90.8
FLAN T5 82.3 87.1 100 82.9 98.0 87.2 76.0 94.2 100 100 100 91.6 100 76.3 91.1
mT5 89.9 89.1 99.3 88.2 95.3 90.7 88.3 95.7 97.9 97.7 99.4 98.0 97.6 78.9 93.3
ByT5 76.0 71.3 97.3 77.6 91.9 88.4 77.8 71.0 94.7 95.5 98.3 87.1 92.5 57.9 84.1

S1+S2

T5 95.1 98.0 100 95.4 97.3 100 98.8 95.7 100 100 100 99.2 100 100 98.5
FLAN T5 95.8 96.0 100 96.7 97.3 100 97.5 95.7 100 100 100 98.6 100 100 98.4
mT5 97.9 97.0 98.7 94.1 98.6 97.7 98.2 100 97.2 97.7 99.0 98.6 97.4 100 98.0
ByT5 97.9 97.0 97.3 95.4 98.6 100 98.8 100 97.9 100 99.2 99.7 98.2 100 98.6

All

SECOS 56.0 52.8 52.2 58.4 56.5 - - 45.6 - - - 59.0 - - -

S1

T5 52.1 57.3 51.5 39.3 64.7 69.9 76.0 65.1 56.3 71.0 52.2 64.7 49.1 60.0 59.2
FLAN T5 56.6 59.8 51.5 40.6 66.4 72.7 73.0 71.1 56.3 71.0 52.2 67.0 49.1 60.0 60.5
mT5 49.5 54.3 53.1 33.8 60.1 56.8 74.0 65.1 81.0 75.8 70.9 47.0 50.1 48.6 58.6
ByT5 62.2 57.3 60.3 56.5 69.3 69.9 77.3 61.1 88.1 79.0 83.1 76.1 50.6 54.3 67.5

S1+S2

T5 85.2 68.8 51.5 97.8 73.9 92.0 91.0 79.2 56.3 71.0 52.2 92.7 49.1 75.7 74.0
FLAN T5 87.3 69.3 51.5 98.1 74.6 93.2 89.4 76.5 56.3 71.0 52.2 91.3 49.1 75.7 74.0
mT5 89.6 73.9 80.9 96.6 74.9 89.2 90.4 79.9 91.9 82.3 90.8 93.3 87.1 72.9 85.3
ByT5 94.9 77.9 87.3 98.3 81.3 95.5 93.7 82.6 94.5 80.6 94.3 98.1 91.5 78.6 89.2

Table 9: Accuracy on languages et-id.
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is it ka kk ky la lt lv mg mk ml mt nl pa Macro
Avg.

N

SECOS - 32.5 - 5.0 - 5.3 - 13.9 - - - - 46.8 - -

S1

T5 41.4 42.6 0.0 16.9 15.4 29.0 21.1 29.6 31.2 15.2 0.0 19.4 44.9 0.0 21.9
FLAN T5 45.4 48.5 0.0 17.6 12.8 33.0 28.9 41.7 34.4 17.7 0.0 25.0 44.8 0.0 25.0
mT5 26.4 26.8 21.5 45.0 30.8 21.9 11.8 20.2 25.0 24.1 18.4 25.0 23.0 42.1 25.8
ByT5 65.9 56.1 61.7 75.9 64.1 33.6 25.0 41.7 37.5 36.7 33.5 27.8 57.2 68.4 48.9

S1+S2

T5 78.7 68.6 0.0 18.3 23.1 59.3 65.8 69.1 53.1 49.4 0.0 41.7 94.0 0.0 44.4
FLAN T5 78.7 68.9 0.0 16.5 17.9 61.7 63.2 68.2 40.6 49.4 0.0 41.7 93.6 0.0 42.9
mT5 82.9 68.9 82.6 86.7 79.5 61.9 60.5 76.7 53.1 72.2 68.0 52.8 93.4 63.2 71.6
ByT5 90.5 81.2 83.9 91.7 84.6 73.5 80.3 84.8 65.6 88.6 83.7 58.3 97.5 78.9 81.7

P

SECOS - 97.0 - 100 - 99.8 - 100 - - - - 94.1 - -

S1

T5 83.1 88.8 99.3 74.0 77.3 80.3 81.9 87.4 68.9 68.9 100 91.4 83.7 100 84.6
FLAN T5 80.1 91.3 99.3 72.9 86.4 82.8 86.7 87.0 75.6 66.7 100 85.7 87.0 100 85.8
mT5 90.0 92.1 97.2 88.0 95.5 84.5 85.5 95.9 84.4 90.0 96.9 97.1 89.1 100 91.9
ByT5 82.1 83.6 88.8 72.1 86.4 56.0 71.1 87.7 57.8 85.6 72.7 94.3 80.3 100 79.9

S1+S2

T5 96.1 96.4 100 91.1 97.7 94.8 92.8 97.4 88.9 93.3 100 94.3 97.5 100 95.7
FLAN T5 95.6 96.2 99.3 92.6 97.7 95.6 95.2 96.7 91.1 93.3 100 97.1 97.5 100 96.3
mT5 95.6 97.3 98.6 96.9 100 96.1 96.4 98.1 82.2 96.7 98.3 88.6 96.7 100 95.8
ByT5 97.1 97.8 99.3 99.2 100 98.5 94.0 98.9 91.1 98.9 98.8 100 97.9 100 98.0

All

SECOS - 61.9 - 50.7 - 50.1 - 61.0 - - - - 58.1 - -

S1

T5 58.4 63.6 48.6 44.4 48.2 53.3 52.8 61.2 53.2 43.8 56.0 54.9 54.2 67.2 54.3
FLAN T5 59.6 68.0 48.6 44.2 51.8 56.6 59.1 66.5 58.4 43.8 56.0 54.9 54.9 67.2 56.4
mT5 52.3 56.5 58.6 65.7 65.1 51.6 50.3 61.6 59.7 59.2 62.4 60.6 38.8 81.0 58.8
ByT5 72.5 68.6 75.0 74.1 75.9 44.2 49.1 66.9 49.4 62.7 55.5 60.6 62.7 89.7 64.8

S1+S2

T5 85.8 81.3 49.0 53.4 62.7 76.1 79.9 84.6 74.0 72.8 56.0 67.6 94.8 67.2 71.8
FLAN T5 85.6 81.3 48.6 53.2 60.2 77.8 79.9 83.7 70.1 72.8 56.0 69.0 94.5 67.2 71.4
mT5 88.1 81.8 90.4 91.6 90.4 78.1 79.2 88.4 70.1 85.2 85.0 70.4 94.2 87.9 84.4
ByT5 93.2 88.8 91.4 95.3 92.8 85.3 87.4 92.5 80.5 94.1 92.2 78.9 97.6 93.1 90.2

Table 10: Accuracy on languages is-pa.

pl pt ro ru sk sq sv ta te th tr uk yi yo Macro
Avg.

N

SECOS 22.2 9.4 7.8 35.9 - - 32.2 - - - 7.7 - - - -

S1

T5 36.1 30.2 51.9 22.3 12.0 29.4 53.1 0.0 0.0 0.0 28.1 17.7 0.0 12.9 21.0
FLAN T5 40.3 47.2 55.6 25.6 16.0 31.2 56.5 0.0 0.0 0.0 34.8 22.0 0.0 16.1 24.7
mT5 32.9 20.8 47.8 15.8 16.0 22.9 21.9 19.6 40.2 9.3 15.2 13.0 36.4 10.9 23.0
ByT5 51.8 45.3 61.2 31.0 36.0 34.9 64.8 46.1 61.7 27.0 32.6 35.7 50.6 18.7 42.7

S1+S2

T5 78.0 49.1 63.8 50.3 48.0 52.3 89.6 0.0 0.0 0.0 67.4 37.5 0.0 19.0 39.6
FLAN T5 77.4 49.1 64.9 50.1 60.0 45.9 89.4 0.0 0.0 0.0 66.1 36.1 0.0 19.0 39.9
mT5 84.1 39.6 65.7 77.9 60.0 45.0 90.0 61.0 81.9 83.7 71.6 76.9 76.1 31.3 67.5
ByT5 91.2 56.6 73.5 91.3 72.0 56.0 94.3 73.6 84.4 90.6 82.3 86.6 83.0 48.0 77.4

P

SECOS 96.9 97.7 95.8 92.1 - - 97.3 - - - 100 - - - -

S1

T5 90.6 86.4 90.9 66.1 89.7 80.3 91.8 100 100 99.5 87.5 68.5 100 86.2 88.4
FLAN T5 90.4 88.6 91.3 67.1 86.2 81.1 92.4 100 100 99.7 89.3 72.2 100 85.3 88.8
mT5 94.5 81.8 94.7 83.6 96.6 96.1 94.8 94.4 98.4 97.9 94.8 87.1 99.5 92.9 93.4
ByT5 91.4 79.5 86.8 67.3 86.2 83.5 87.8 63.2 95.7 89.6 81.2 72.2 92.1 85.6 83.0

S1+S2

T5 98.1 97.7 95.8 95.9 96.6 93.7 96.7 99.8 100 100 95.6 97.3 100 93.9 97.2
FLAN T5 97.1 97.7 97.7 95.9 96.6 95.3 96.7 100 100 100 96.3 98.6 100 97.1 97.8
mT5 97.9 97.7 95.8 98.6 100 99.2 97.3 94.6 97.8 97.2 98.5 99.7 97.0 97.8 97.8
ByT5 99.0 97.7 96.6 99.0 96.6 97.6 97.6 96.9 98.8 99.0 98.2 99.3 98.0 98.1 98.0

All

SECOS 57.8 49.5 51.6 63.6 - - 53.6 - - - 50.8 - - - -

S1

T5 62.1 55.7 71.3 43.9 53.7 56.8 65.8 51.6 49.3 38.4 55.8 43.9 53.6 47.6 53.5
FLAN T5 64.2 66.0 73.4 46.1 53.7 58.1 68.3 51.6 49.3 38.5 60.2 47.9 53.6 48.8 55.7
mT5 62.3 48.5 71.1 49.2 59.3 62.3 45.9 58.2 68.9 43.5 52.3 51.2 70.2 49.7 56.6
ByT5 70.7 60.8 73.9 48.9 63.0 61.0 72.4 54.9 78.5 51.2 55.2 54.5 72.8 50.3 62.0

S1+S2

T5 87.6 71.1 79.7 72.8 74.1 74.6 91.9 51.5 49.3 38.6 80.6 68.4 53.6 54.4 67.7
FLAN T5 86.8 71.1 81.2 72.7 79.6 72.5 91.8 51.6 49.3 38.6 80.2 68.4 53.6 55.9 68.1
mT5 90.7 66.0 80.7 88.1 81.5 74.2 92.4 78.3 89.7 88.9 84.2 88.6 87.3 62.7 82.4
ByT5 94.9 75.3 85.0 95.1 85.2 78.4 95.4 85.6 91.5 93.8 89.7 93.2 91.0 71.7 87.5

Table 11: Accuracy on languages pl-yo.
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