
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 4031–4047
December 6-10, 2023 ©2023 Association for Computational Linguistics

DYNOSAUR: A Dynamic Growth Paradigm for
Instruction-Tuning Data Curation

Da Yin∗∗§ Xiao Liu∗♣ Fan Yin∗§ Ming Zhong∗†

Hritik Bansal§ Jiawei Han† Kai-Wei Chang§
§UCLA ♣Peking University †UIUC

{da.yin, fanyin20, hbansal, kwchang}@cs.ucla.edu lxlisa@pku.edu.cn
{mingz5, hanj}@illinois.edu

dynosaur-it.github.io

Abstract

Instruction tuning has emerged to enhance the
capabilities of large language models (LLMs)
to comprehend instructions and generate ap-
propriate responses. Existing methods either
manually annotate or employ LLM (e.g., GPT-
series) to generate data for instruction tuning.
However, they often overlook associating in-
structions with existing annotated datasets. In
this paper, we propose DYNOSAUR, a dynamic
growth paradigm for the automatic curation of
instruction-tuning data. Based on the meta-
data of existing datasets, we use LLMs to auto-
matically construct instruction-tuning data by
identifying relevant data fields and generating
appropriate instructions.

By leveraging the existing annotated datasets,
DYNOSAUR offers several advantages: 1) it re-
duces the API cost for generating instructions
(e.g., it costs less than $12 USD by calling
GPT-3.5-turbo for generating 800K instruc-
tion tuning samples; 2) it provides high-quality
data for instruction tuning (e.g., it performs bet-
ter than ALPACA and FLAN on SUPER-NI and
LONGFORM with comparable data sizes); and
3) it supports the continuous improvement of
models by generating instruction-tuning data
when a new annotated dataset becomes avail-
able. We further investigate a continual learn-
ing scheme for learning with the ever-growing
instruction-tuning dataset, and demonstrate that
replaying tasks with diverse instruction embed-
dings not only helps mitigate forgetting issues
but generalizes to unseen tasks better.

Code and data are available at https://
github.com/WadeYin9712/Dynosaur.

1 Introduction

Instruction tuning (Sanh et al., 2022; Ouyang et al.,
2022; Wei et al., 2022) enables large language
models (LLMs) (Raffel et al., 2020; Brown et al.,
2020; Touvron et al., 2023) to provide appropri-

∗These four authors contributed equally.

ate output according to input instructions. Exist-
ing approaches compile instruction-tuning datasets
mainly by 1) manual annotations or 2) distillate
from a larger size of LLM. For example, SUPER-
NATURALINSTRUCTION (SUPER-NI) (Wang et al.,
2022b) and DOLLY (Databricks, 2023) recruit ex-
perts to manually annotate task instructions and
related task data. Despite their high quality, this
approach is labor-intensive and costly (Honovich
et al., 2022a). Recent efforts (Wang et al., 2022a;
Taori et al., 2023) leverage GPT-series to distill in-
struction tuning data to train smaller models. How-
ever, subsequent studies (Gudibande et al., 2023) ar-
gue that these methods merely help smaller models
learn to mimic the style of teacher LLMs without
inheriting their true capabilities, such as factuality
and problem solving skills. We suspect it is mainly
due to the instructions not ground to actual data.

In this paper, we propose DYNOSAUR, a dy-
namic growth paradigm to convert high quality an-
notations from dataset repositories into instruction-
tuning data. In particular, DYNOSAUR gener-
ates instructions based on the metadata of exist-
ing datasets in the dynamically growing Hugging-
face Datasets Platform (Lhoest et al., 2021). As
shown in Figure 1, metadata covers essential infor-
mation about a dataset, including dataset descrip-
tion (“A collection of ... ebooks ...”),
dataset name (“Gutenburg_English”), data fields
(“title”, “text”, ..., “issued”) and dataset an-
notations. Guided by metadata, our method can
generate multiple tasks applicable for forming
instruction-tuning data with instances in NLP
datasets. We leverage LLMs to harvest task instruc-
tions and their corresponding input/output fields
with a single prompt. Prompted with dataset de-
scription involving ebooks and data fields about
the book published information, LLMs can syn-
thesize instructions such as “Given a Gutenburg
passage, generate its title” and “Predict
the year when the book is published based

4031

https://dynosaur-it.github.io/
https://github.com/WadeYin9712/Dynosaur
https://github.com/WadeYin9712/Dynosaur

idx sentence label

0 I love this movie. Positive

1 I hate this movie. Negative

idx sentence label

0 I love this movie. Positive

1 I hate this movie. Negative

title text author subjects issued

Dataset Name:
- Gutenburg_English

Dataset Description:
- A collection of … ebooks …

Data Fields:
- “title”, “text”, “author”, “subjects”, “issued”

Dataset Annotations:
- {“title”: …, “text”: …, “author”: …, …}
- {“title”: …, “text”: …, “author”: …, …}
- …

Step 1: Metadata Collection
… design up to three different tasks based on this
dataset. Each task should still be a dictionary,
including the task instruction, input fields and
output field. …

[METADATA]

Tasks (ChatGPT Outputs):
{‘task1’: {
 ‘instruction’: ‘Given a Gutenburg passage,
generate its title’,
 ‘input_fields’: [‘text’],
 ‘output_field’: [‘title’]},

 ‘task2’: {
 ‘instruction’: ‘Please tell me the author of
this text’,
 ‘input_fields’: [‘text’],
 ‘output_field’: [‘author’]},

 ‘task3’: {
 ‘instruction’: ‘Predict the year when the book
is published based on book title and authors’,
 ‘input_fields’: [‘title’, ‘author’],
 ‘output_field’: [‘issued’]},
}

Step 2: Instruction, Input/Output Field Generation

Prompt for Generating Instruction

Extract metadata

…

{
 “instruction”: “Given a Gutenburg passage, generate its
title”,
 “input”: “{d[“text”]}”,
 “output”: “{d[“title”]}”
}

Step 4: Organizing Instruction Data

{
 “instruction”: “Predict the year when the book is
published based on book title and authors”,
 “input”: “Text is {d[“text”]}. Author is {d[“author”]}”,
 “output”: “{d[“issued”]}”
}

… …

Fill in Gutenberg data

Instruction
Data

{
 “instruction”: “Predict the year when the book is published
based on book title and authors”,
 “input”: “Text is … . Author is …”,
 “output”: “...”
}

Task 3

… …

{
 “instruction”: “Given a Gutenburg passage, generate its title”,
 “input”: “...”,
 “output”: “...”
}

ChatGPT

Instruction
Data

…

Dynosaur Construction Method

… … …

… …… … …

… …… … …

Fill in Gutenberg data

Step 3: Filtering out Invalid Instruction Data

- Duplicate Instructions
- Created Data Fields not in Given Dataset
- Overlapped Input/Output Fields

Task 1

Figure 1: Overall pipeline of collecting DYNOSAUR data. “d” in Step 4 means each instance in Gutenberg dataset.

on book title and authors”. These instructions
reflect the original data domain and use multiple
dataset components.

In the meantime, LLMs also determine which
data fields should be used to construct correspond-
ing task inputs/outputs according to generated in-
structions. As illustrated in Figure 1, LLMs capture
corresponding input fields “title” and “author”
and output field “issued” for the generated task
about predicting issued years given book title and
authors. Subsequently, all the data under “title”
and “author” fields are used as the final inputs of
the generated task, and the data under “issued”
are treated as final outputs. Suppose that we gen-
erate N instructions based on the metadata of a
dataset which contains M instances, our method
can synthesize N ×M instruction-tuning data.

DYNOSAUR offers several advantages:

Low Conversion Cost. As DYNOSAUR lever-
ages existing annotated data, it reduces the number
of queries to larger LLMs for generating instruc-
tions. For example, it costs only $11.5 USD to
query GPT-3.5-turbo (OpenAI, 2023) and gen-
erate 800K instruction-tuning data based on an-
notated datasets. In contrast, both ALPACA and
INSTRUCTION GPT-4 cost around $500 USD to
generate a significantly smaller dataset of 52K in-
stances. Despite the lower cost of querying LLMs,
DYNOSAUR generates high-quality data by effec-
tively leveraging existing annotations.

Effectiveness of Instruction-Tuning Data. We
evaluate the data effectiveness by studying
whether models trained with DYNOSAUR can
achieve competitive performance on SUPER-NI,
LONGFORM (Köksal et al., 2023) and USER-
INSTRUCTION-252 (Wang et al., 2022a). On
SUPER-NI, both T5-3B and LLAMA-7B mod-
els fine-tuned with DYNOSAUR outperform AL-
PACA, INSTRUCTION GPT-4 and DOLLY that are
much more expensive to be collected. In particu-
lar, training T5-3B with DYNOSAUR brings 2.5-22
ROUGE-L improvement than other datasets. On
LONGFORM, training T5-3B with DYNOSAUR is
2.8-12.8 METEOR better than training with other
human-curated instruction data such as PROMPT-
SOURCE (Sanh et al., 2022) and FLAN (Wei et al.,
2022). On USER-INSTRUCTION-252, DYNOSAUR

can be exploited as additional training data to
achieve higher performance than solely training
with either ALPACA or INSTRUCTION GPT-4.

Supporting Continuously Improving Models
with New Instruction Data. Statistics show that
an average of 143.6 datasets are added to Hugging-
face Datasets daily in 2023. Because of the low
conversion cost, DYNOSAUR can grow dynamically
as the platform expands without much effort.

An ever-growing instruction-tuning dataset pro-
vides an opportunity to continuously improve
instruction-following models. Suppose we have
a model trained with K tasks (MK) and newly ob-
tain L training tasks. How can we train MK with

4032

the L new tasks to 1) achieve better generalization
on unseen tasks and the new L tasks and 2) suffer
less from forgetting the previous K training tasks?
We propose several continual learning strategies
specifically for instruction tuning which select re-
play tasks based on the diversity of instruction and
data representations. Experiments with SUPER-NI
and DYNOSAUR show that replaying is effective
to improve generalization and mitigate forgetting.
Besides, once L new tasks are used for training,
replaying previous tasks with the least similar in-
structions to the L tasks performs the best.

2 Collection of DYNOSAUR Data

In this section, we introduce how to construct the
DYNOSAUR dataset. As shown in Figure 1, we
first collect metadata from existing datasets, then
prompt LLM to create tasks based on the metadata,
and filter out invalid ones.

2.1 Metadata Collection

Metadata contains key information about an NLP
dataset that contributes to instruction-tuning data
generation. It covers the following elements:

Dataset Name. Dataset name sometimes pro-
vides useful information to help us identify the
domain and task category of a dataset. For ex-
ample, dataset names with “bio” usually indicate
that the dataset is in the biological domain; names
with “nli” may suggest that the dataset is originally
designed for natural language inference tasks.

Dataset Description. Dataset description offers
more detailed information about the motivation for
building a dataset, the summary of dataset contents,
and its supported tasks. It facilitates LLM to create
instructions by supplying extra information about
the dataset domain and initial dataset design.

Data Fields and Dataset Annotations. Data
fields are the keys included in dataset annotations.
For example, given an instance {“title”: ...,
“text”: ..., “author”: ..., “subjects”:
..., “issued”: ...}, the data fields are
“title”, “text”, “author”, “subjects” and
“issued”. When LLM generates task instructions,
it needs to determine which fields can be used as
task inputs/outputs according to the semantics of
data field names and contents of the data fields.

All the metadata components are collected from
the Huggingface Datasets Platform. We only col-

lect the metadata from datasets whose licenses al-
low adaptation. More details are in Appendix A.

2.2 Instruction and Input/Output Field
Generation

For each dataset accompanied by processed meta-
data, we then deploy LLM to generate multiple
tasks associated with it. For each task, LLM gen-
erates a specific task instruction and designates its
input/output fields simultaneously. As exemplified
in Figure 1, LLM is expected to generate an instruc-
tion “Given a Gutenburg passage, generate
its title”, its input field “text”, and the output
field “title”.

To accomplish this, we harness the power of in-
context learning (Brown et al., 2020). Concretely,
we wrap the information of each dataset into a
dictionary format and construct four demonstra-
tions manually. Due to the length limitation of the
LLM, we use two of them each time as part of the
input. Depending on whether or not the incorpo-
rating dataset descriptions in the input prompt, we
consider the following two configurations:

Description-Aware Generation. To maximize
the utilization of information present in the dataset
description, we incorporate metadata of the two
demonstration datasets as well as the new dataset
where we plan to generate new tasks as input. The
benefit is that LLM can infer the underlying pur-
pose of the dataset creation, thereby generating
the most aligned tasks with the original intent. In
this setup, LLM generates new tasks, with the in-
put prompt being: “Now given a dictionary as
input, please help us to generate new tasks.
You may stop when there is no more plausi
ble task.” and requirements being “Note that
the input and output fields should not be
duplicated and should both appear in [data
fields]. Each task should still be a dictio
nary, containing no text or explanations
outside the dictionary.” The full prompt is
shown in Appendix B. This setting, however, still
has limitations: firstly, comprehensive metadata
may not be available for certain datasets; secondly,
LLM exhibits a proclivity towards dataset descrip-
tions, leading to homogenization of the generated
tasks. To mitigate these issues, we additionally
introduce the following setup.

Description-Unaware Generation. To fully
exploit the annotations and distinct data fields,
we exclude the dataset description from the

4033

input, thereby allowing the LLM to freely gen-
erate diverse task instructions and input/output
fields. In this scenario, the dataset can be
perceived as a description-less database, with
the LLM generating diverse potential tasks
based on the valid fields within it. For instance,
the data fields in the Wikipedia-based QA
dataset may encompass “title”, “context”,
“question”, and “answers”. Possible new
tasks could include Wikipedia article gen-
eration (“title”⇒“context”), Wikipedia
title generation (“context”⇒“title”),
and open-domain QA question generation
(“answer”⇒“question”).

By integrating these two settings, we ensure the
preservation of the original intent of all datasets,
while leveraging the creativity of LLM to delve
deeper into the inherent potential in existing data.

2.3 Post-Processing
Filtering Invalid Tasks. Even though we de-
scribe the requirements for a valid task in the
prompt, LLM sometimes neglects the requirements
and generate invalid tasks. We filter out tasks with
three criteria: 1) tasks with non-existent data fields
(for instance, a task with the output field “content”
is invalid given the data in Figure 1); 2) tasks with
more than one output fields; 3) tasks whose in-
put/output fields overlap. Moreover, we remove
duplicate tasks created during both the description-
aware and -unaware generation.

Organizing Instruction Data. We organize the
instruction data in the form of “instruction”,
“input”, and “output”. Given an instance of
a dataset and a generated task containing the in-
struction, input fields, and the output field, the
“instruction” is the generated instruction and
the “output” is the value of the output field. If
there is only one input field, the “input” is the
value of the input field; otherwise, the “input” de-
scribes all the input fields with the format “The
[field name] is [value of the field].”

Adding Label Spaces for Classification Tasks.
As we only showcase several dataset instances to
LLMs, it does not know the entire label space when
generating a classification task. As a result, the gen-
erated instruction may not contain the label space
knowledge adequately. To overcome this issue, we
automatically add the label space information in
the instruction of classification tasks. We simply
treat a task with less than 10 distinct outputs as

a classification task, and add “Answers must be
one of [distinct outputs].” to the end of
the instruction. We also discard classification tasks
with extremely imbalanced distributions (e.g., only
one distinct output value) in this step.

2.4 Statistics and Cases

In total, we collect 2,911 English datasets from the
Huggingface Datasets Platform as of Feb 23, 2023.
We then feed them to GPT-3.5-turbo (OpenAI,
2023) and generate 13,610 tasks, of which 5,740
are valid and distinct. For each task, we sample up
to 200 instances, ending in 801,900 instances that
form the DYNOSAUR dataset. The diversity of the
instructions is shown in Figure 3. Following the
approach of Wang et al. (2022a), we plot the top
20 most prevalent root verbs and their top 4 direct
nouns, each of which appears at least 5 times. The
instructions are quite diverse, especially when con-
sidering we only have a total of 4 demonstrations.

Figure 2 demonstrates examples of datasets and
corresponding tasks. The dataset name, dataset de-
scription, data fields, and annotations are all used
by LLM to design the tasks. LLM infers from the
dataset name that it is about anaphor agreement and
include this information in the instruction. In Ex-
ample 2, LLM creates the task of paraphrase identi-
fication by understanding the relationship between
the fields “sentence1” and “sentence2” implied
in the dataset description. Under the description-
unaware setting like Example 3, tasks can be gen-
erated based on the names of data fields.

3 Experiments

We conduct two sets of experiments to evaluate
the quality of DYNOSAUR. We first evaluate mod-
els trained with DYNOSAUR on SUPER-NI and
LONGFORM to examine its ability to solve NLP
tasks. Then we run a human evaluation to examine
if DYNOSAUR helps in user-oriented situations.

3.1 Automatic Evaluation on SUPER-NI and
LONGFORM

Experimental Settings. We fine-tune T5-3B and
LLAMA-7B with a variety of instruction-tuning
datasets, including DYNOSAUR, SUPER-NI train-
ing set, ALPACA, etc. LLAMA-7B is fine-tuned
with LORA (Hu et al., 2022), an efficient fine-
tuning approach. We also compare with larger
models, including models based on T5-11B, T0
and T0++ (Sanh et al., 2022), Tk-Instruct (Wang

4034

Dataset Name:
- blimp-anaphor_number_agreement

Dataset Description:
- BLiMP … major grammatical … in English.

Data Fields:
- “sentence_bad”, “sentence_good”

Dataset Annotations:
- {“sentence_bad”: …, “sentence_good”: …}

{
 “instruction”: “Given a sentence with an
incorrect anaphor agreement, generate a
sentence with a correct anaphor agreement.”,
 “input”: “{d[“sentence_bad”]}”,
 “output”: “{d[“sentence_good”]}”
}

Dataset Name:
- paws-labeled_final

Dataset Description:
- … PAWS: Paraphrase Adversaries from …

Data Fields:
- “sentence1”, “sentence2”, ”label”

Dataset Annotations:
- {“sentence1”: …, “sentence2”: …, “label”: …}

{
 “instruction”: “Determine whether two
sentences are paraphrases of each other.”,
 “input”: “Sentence1 is {d[“sentence1”]}.
Sentence2 is {d[“sentence2”]}”,
 “output”: “{d[“label”]}”
}

Dataset Name:
- stereoset-intersentence

Dataset Description:
- N/A

Data Fields:
- “context”, “bias_type”, “target”

Dataset Annotations:
- {“context”: …, “bias_type”: …, “target”:

“Ethiopia”}

{
 “instruction”: “Given a context and a bias
type, the task is to identify the target word
that is associated with the bias type.”,
 “input”: “Context is {d[“context”]}.
Bias_type is {d[“bias_type”]}.”,
 “output”: “{d[“target”]}”
}

Example 3Example 2Example 1

Figure 2: Examples of the datasets and generated tasks. We only demonstrate one task based on each dataset for
simplicity. We highlight the parts in metadata that benefit instruction generation.

Models Data Size ROUGE-L

Larger Models than T5-3B
T0† 50K 33.1
T0++‡ 12M 40.3
GPT-3 w/ T0 TRAINING† 50K 37.9
GPT-3 w/ SELF-INSTRUCT† 82K 39.9
InstructGPT† - 40.8

T5-3B with Generated Inst. Data
T5-3B w/ DOLLY 15K 17.6
T5-3B w/ INST. GPT-4 52K 22.7
T5-3B w/ SELF-INSTRUCT 82K 37.1
T5-3B w/ ALPACA 52K 36.6
T5-3B w/ DYNOSAUR 67K 40.4

T5-3B with Human-curated Inst. Data
T5-3B w/ PROMPTSOURCE 67K 38.9
T5-3B w/ FLAN 67K 34.6
T5-3B w/ SUPER-NI 68K 43.4

Dynosaur as Augmentation Data
T5-3B w/ DYNOSAUR + SUPER-NI 135K 44.1

(a) T5-3B trained with various instruction datasets.

Models Data Size ROUGE-L

Larger Models than LLAMA-7B
T0† 50K 33.1
T0++‡ 12M 40.3
GPT-3 w/ T0 TRAINING† 50K 37.9
GPT-3 w/ SELF-INSTRUCT† 82K 39.9
InstructGPT† - 40.8

LLAMA-7B with Generated Inst. Data
LLAMA-7B w/ DOLLY 15K 33.5
LLAMA-7B w/ INST. GPT-4 52K 35.7
LLAMA-7B w/ SELF-INSTRUCT 82K 39.6
LLAMA-7B w/ ALPACA 52K 39.0
LLAMA-7B w/ DYNOSAUR 67K 41.2

LLAMA-7B with Human-curated Inst. Data
LLAMA-7B w/ PROMPTSOURCE 67K 38.2
LLAMA-7B w/ FLAN 67K 40.4
LLAMA-7B w/ SUPER-NI 68K 42.5

Dynosaur as Augmentation Data
LLAMA-7B w/ DYNOSAUR + SUPER-NI 135K 43.2

(b) LLAMA-7B trained with various instruction datasets.

Table 1: Evaluation results on SUPER-NI. “Inst.” denotes “Instruction”. The performance of models with † and ‡

are the reported results in Wang et al. (2022a) and Honovich et al. (2022a).

et al., 2022b) and GPT-3 fine-tuned on PROMPT-
SOURCE (Bach et al., 2022) and SELF-INSTRUCT.

To alleviate the effect of data size dispar-
ity, instead of training models with the entire
DYNOSAUR, we sample a subset that shares a simi-
lar data scale with other instruction-tuning datasets.
Specifically, we select 681 tasks from DYNOSAUR

as training tasks and sample mostly 100 instances
for each selected task, resulting in 66,695 instances
in total. For SUPER-NI training set, we also se-
lect 681 tasks which are 90% out of all SUPER-NI
training tasks and 67,825 instances. The rest 10%
tasks are left as the validation set for SUPER-NI
evaluation experiments. We also sample 67K data
from PROMPTSOURCE and FLAN.

During task selection of SUPER-NI , we ensure
that all the selected tasks have distinct categories
from SUPER-NI test tasks. Concretely, we use

GPT-3.5-turbo as task category classifier1 to cat-
egorize each task into one of 76 task categories in
SUPER-NI and avoid selecting tasks with test task
categories. Details about fine-tuning hyperparam-
eters and training task selection are shown in Ap-
pendix C, E.1 and E.2. Following the original eval-
uation on SUPER-NI and LONGFORM, we leverage
ROUGE-L (Lin, 2004) and METEOR (Banerjee
and Lavie, 2005) as the metrics.

For all the evaluation experiments, we follow
the Self-Instruct paper’s setting and exclude all the
positive and negative examples written in SUPER-
NI instructions. It is for fair comparison with the
datasets that contain instructions without any exam-
ples, such as ALPACA, INST. GPT-4 and DOLLY.

1We evaluate the GPT-3.5-turbo classifier upon the hu-
man evaluation from Amazon MTurk on 200 classification
results. The performance is 96.5%, suggesting the preciseness
of removing tasks belonging to test task categories.

4035

DYNOSAUR
+ ALPACA

Tie ALPACA

Helpfulness 18.7% 59.1% 22.2%
Honesty 17.5% 65.4% 17.1%
Harmlessness 15.5% 70.6% 13.9%

DYNOSAUR
+ INST. GPT-4 Tie INST. GPT-4

Helpfulness 27.8% 42.9% 29.3%
Honesty 21.0% 59.9% 19.1%
Harmlessness 19.8% 62.3% 17.9%

(a) DYNOSAUR as a supplement to automatically generated
instructions ALPACA and INST. GPT-4.

DYNOSAUR Tie SUPER-NI
Helpfulness 19.5% 61.5% 19.0%
Honesty 15.5% 71.8% 12.7%
Harmlessness 13.5% 73.8% 12.7%

DYNOSAUR SUPER-NI
+ ALPACA

Tie + ALPACA
Helpfulness 17.1% 65.5% 17.4%
Honesty 19.5% 59.9% 20.6%
Harmlessness 15.5% 73.4% 11.1%

DYNOSAUR SUPER-NI
+ INST. GPT-4 Tie + INST. GPT-4

Helpfulness 18.2% 63.9% 17.9%
Honesty 17.9% 68.6% 13.5%
Harmlessness 16.7% 70.2% 13.1%

(b) Comparing DYNOSAUR and SUPER-NI.

Table 2: Human evaluation on LLAMA-7B with user instructions. The percentages in columns with dataset name A
indicate how many of the generations produced by models trained with A are better than the ones produced by the
other data B on USER-INSTRUCTION-252. “Tie” means that the generations of the two models have similar quality.

Models METEOR

Existing Baselines
T0++ -11B‡ 5.9
Tk-Instruct-11B‡ 6.0
Flan-T5-11B‡ 12.5
Alpaca-LLaMA-7B‡ 15.2

T5-3B with Human-curated Inst. Data

T5-3B w/ SUPER-NI 3.8
T5-3B w/ PROMPTSOURCE 4.8
T5-3B w/ FLAN 6.7

T5-3B w/ DYNOSAUR 9.5

(a) T5-3B trained with various instruction datasets.

Models METEOR

Existing Baselines
T0++ -11B‡ 5.9
Tk-Instruct-11B‡ 6.0
Flan-T5-11B‡ 12.5
Alpaca-LLaMA-7B‡ 15.2

LLAMA-7B with Human-curated Inst. Data

LLAMA-7B w/ SUPER-NI 6.2
LLAMA-7B w/ PROMPTSOURCE 8.6
LLAMA-7B w/ FLAN 11.5

LLAMA-7B w/ DYNOSAUR 19.0

(b) LLAMA-7B trained with various instruction datasets.

Table 3: Evaluation results on LONGFORM. The performance of models with ‡ are the reported results in Köksal
et al. (2023). Note that the listed existing baselines with suffix “-11B” indicate that their base model size is 11B.

DYNOSAUR vs. Other Instruction-Tuning
Datasets on SUPER-NI. As shown in Table 1,
models trained with DYNOSAUR outperform
the same models trained with ALPACA, SELF-
INSTRUCT, INSTRUCTION GPT-4 and DOLLY.
In particular, training T5-3B with DYNOSAUR

surpasses the variants trained with other datasets
by a significant margin around 2.5-22 ROUGE-
L score. Also, we notice that fine-tuning smaller
models with DYNOSAUR also achieves comparable
performance than fine-tuning GPT-3 with SELF-
INSTRUCT and PROMPTSOURCE data.

DYNOSAUR + SUPER-NI Training Set vs.
SUPER-NI Training Set. The combination of
DYNOSAUR and SUPER-NI training set can lead
to higher performance than training with SUPER-
NI training set. We first find that integrat-
ing DYNOSAUR with SUPER-NI performs better
than solely training with SUPER-NI around 1.2
ROUGE-L score in Table 1. This suggests that
DYNOSAUR can be considered as a useful supple-
ment for existing instruction-tuning data to further

enhance model generalizability.

DYNOSAUR vs. Other Instruction-Tuning
Datasets on LONGFORM. To further compare
DYNOSAUR and other instruction-tuning datasets
that are constructed with existing data, we evalu-
ate them on LONGFORM, a recently released in-
struction tuning benchmark for evaluating mod-
els’ instruction-following ability on long text
generation tasks. LONGFORM is equally un-
seen to all these datasets. As shown in Ta-
ble 3, DYNOSAUR largely outperforms the other
three datasets SUPER-NI, PROMPTSOURCE, and
FLAN. In particular, with LLAMA-7B as the
base model, DYNOSAUR outperforms the other
datasets with 7.5-12.8 METEOR score. LLAMA-
7B trained with DYNOSAUR even surpasses other
11B instruction-tuned models such as T0++ and
Flan-T5 by a large margin.

Ablation Studies. We first evaluate how well
models perform when only using either description-
aware or -unaware instructions as training data. As
shown in Table 4, considering both types of in-

4036

provide

identify

extract

predict

generate

choose create
select

write

determine

answer
suggest

ask
rewrite

return
classify

answer

qu
es
tio
nso

lu
tio

n

tra
ns
la
tio

n

language
name

license

size

language

name

size

path

answer

label

sco
re

we
igh

t

question

se
nte

nc
e

hy
po
th
es
is

se
qu
en
ce

answer

op
tio

n choice
w
ord

question

sentence
statem

ent

answer

choice

option

title

question

sentence

summary

weight

sentiment

answer

question

way
solution

model
sentence

snippet
sentence

Figure 3: The top 20 most prevalent root verbs and their
top 4 direct nouns in the instructions of DYNOSAUR.

Data ROUGE-L

Perf. of Training T5-3B with Following Data
DYNOSAUR 40.4
DYNOSAUR w/o Desp.-Unaware Inst. 40.0
DYNOSAUR w/o Desp.-Aware Inst. 38.2
DYNOSAUR w/o Label Space 37.8

Perf. of Training LLAMA-7B with Following Data
DYNOSAUR 41.2
DYNOSAUR w/o Desp.-Unaware Inst. 37.6
DYNOSAUR w/o Desp.-Aware Inst. 40.3
DYNOSAUR w/o Label Space 37.0

Table 4: Ablation experiment results on SUPER-NI. We
examine whether considering both description-aware
and -unaware instructions can improve model perfor-
mance. We also study if post-processing technique like
adding label spaces is helpful.

structions can produce better results than merely
relying on description-aware/unaware instructions.
We also study if there exists performance drop af-
ter we remove the label space descriptions in the
instructions. From Table 4, the performance drops
2.6 and 4.2 ROUGE-L for T5-3B and LLAMA-7B.

DYNOSAUR vs. Larger Models. From Table 1,
we observe that T5-3B and LLAMA-7B with
DYNOSAUR are comparable with some greater
models. For example, our models are com-
petitive with T0++ trained with orders of mag-
nitude more data and 175B GPT-3 w/ SELF-
INSTRUCT. This further shows the effectiveness
brought from DYNOSAUR and implies decent qual-
ity of DYNOSAUR.

3.2 Human Evaluation on User Instructions
Experimental Settings. We conduct human
evaluation on USER-INSTRUCTION-252, a user-

oriented dataset to test the generation quality in
practical domains such as email writing. As there
is no test category constraint, we resample 67K
data from all the task categories in DYNOSAUR.
We fine-tune LLAMA-7B with the resampled data,
and keep fine-tuning hyperparameters the same
as SUPER-NI evaluation. We recruit annotators
from Amazon Mechanical Turk, and ask them
to compare two models’ outputs from helpful-
ness, honesty, and harmless (three criteria proposed
by Askell et al. (2021)). See details about sampling
tasks for USER-INSTRUCTION-252 evaluation and
human evaluation interface in Appendix E.3 and F.

DYNOSAUR as Augmentation Data to Auto-
matically Generated Instructions. Admittedly,
compared to automatically generated instructions
whose seed tasks are closer to the ones for daily
usage, DYNOSAUR is built upon data from exist-
ing NLP tasks and is less involved in user sce-
narios. However, DYNOSAUR can be used as a
supplement to the automatically generated instruc-
tions. As shown in Table 2a, training together with
DYNOSAUR data outperforms solely trained on AL-
PACA or INSTRUCTION GPT-4 in the majority of
aspects. In particular harmlessness gains a steady
boost after incorporating DYNOSAUR.

DYNOSAUR vs. SUPER-NI. We also compare
DYNOSAUR with SUPER-NI, as both of them are
constructed from existing task data. Table 2b man-
ifests that the model trained with DYNOSAUR ex-
ceeds SUPER-NI on all the three aspects. More-
over, DYNOSAUR is an effective addition to auto-
matically generated instructions like INST. GPT-4
than SUPER-NI.

3.3 Unveiling More Benefits of DYNOSAUR

Beyond the evident advantages in data qual-
ity, which correspondingly enhance model per-
formance, we elucidate the additional merits of
DYNOSAUR from three perspectives: the validity
of data, the cost-efficiency in data construction, and
the potential for dynamic data expansion.

Data Validity. We conduct human evaluation to
scrutinize the validity of DYNOSAUR. We ran-
domly select 200 task instructions and recruit evalu-
ators from Amazon Mechanical Turk to confirm the
data validity. Each evaluator is instructed to choose
from four options for each sample: “completely
reasonable”, “incorrect input”, “incorrect

4037

Dataset Data Size Cost

ALPACA 52K $500
INST. GPT-4∗ 52K $456
UNNATURAL INST. 68K $1,370

DYNASAUR-sub 67K $1.36
DYNASAUR-full 800K $11.48

Table 5: The generation cost of different instruction
tuning datasets. ∗ indicates that the cost estimation for
INSTR. GPT-4 only involves output data generation, as
it uses the same instruction and input data as ALPACA.

output”, or “incorrect instruction”. In situa-
tions where a sample contains multiple errors, the
evaluators are directed to highlight the most critical
one. Remarkably, 84% of generated instances is
completely correct. It is a substantial improvement
over the 54% reported in SELF-INSTRUCT.

Data Construction Cost. On average, the cost
to formulate a valid task encompassing the gen-
eration of the instruction and input/output fields
is approximate $0.002. Regarding the subset of
our data, DYNOSAUR-sub, utilized in SUPER-NI
experiments, we sample 681 tasks and randomly
select around 100 instances per task, resulting in
a total cost of $1.36. Notably, the full version
of DYNOSAUR achieves a data size of 800K in-
stances via generating 5,740 tasks at a total cost
of $11.5. This further reveals that our method is
cost-efficient, thereby enabling the production of
large-scale instruction-tuning datasets.

Dynamic Growth of Data. The inherent design
of DYNOSAUR fosters a capacity for dynamic
growth, aligning seamlessly with the ongoing ex-
pansion of the Huggingface Datasets Platform. As
confirmed by statistics, as of May 20, an average of
143.6 datasets were incorporated into Huggingface
daily in 2023, serving continuously as a rich data
resource for DYNOSAUR.

4 Continual Learning with Dynamically
Growing Datasets

As DYNOSAUR can expand over time as new tasks
come in, an important question is how to adapt an
instruction-tuned model to new tasks without suf-
fering from catastrophic forgetting. In this section,
we examine continual learning as an approach for
learning instruction-following models with dynam-
ically growing datasets. We focus on one of the
common continual learning techniques (Biesialska
et al., 2020), replay methods, which select previ-
ously trained tasks for further training stage. We

aim to provide an analysis of how to most effec-
tively select the tasks to replay. We want to answer
the following questions: 1) Do we need to replay
history tasks? 2) Shall we replay tasks based on
instructions or data? 3) Which tasks to replay?.2

Replay Methods. We compare the following re-
play strategies: 1) No Replay: Train models with-
out any replay tasks; 2) Instr. Diverse: Replay
last stage’s tasks that diverge most from ones in the
current stage based on instruction representations;
3) Instr. Similar: Replay last stage’s tasks that are
most similar to tasks in the current stage; 4) Instr.
Support: Replay the most representative tasks in
the last stage; 5) Data Diverse: Replay diverse
tasks based on similarity of example data.

Suppose there are L tasks in the current stage,
and K tasks in the previous stage, we use Sentence
Transformer (Reimers and Gurevych, 2019) based
on RoBERTa-large (Liu et al., 2019) to obtain the
instruction representation matrix Ic ∈ RL×d for
the current stage and Ip ∈ RK×d for the previ-
ous stage, where d is the representation dimension.
Then, we compute the cosine similarity between Ic
and Ip, and Ip itself: Scp = cos (Ic, Ip) ∈ RL×K ,
Spp= cos (Ip, Ip) ∈ RK×K . Then, Instr. Diverse
replays the tasks with the least column sum in Scp.
Instr. Similar replays the tasks with the largest col-
umn sum in Scp. Instr. Support replays the tasks
with the largest row sum in Spp.

Metrics. Inspired by CL literature (Biesialska
et al., 2020; Lin et al., 2022), we design three met-
rics to quantify to what extent models generalize to
new tasks, how well models perform on the training
tasks in current stage, and how much models forget
the previously trained tasks - Test: ROUGE-L on
the test set of SUPER-NI, which represents unseen
tasks; Holdout: ROUGE-L on the holdout data of
training tasks in current stage; Previous: ROUGE-
L on the holdout data of training tasks in previous
stages. As mentioned in §3.3, 16% of DYNOSAUR

data are invalid. To avoid evaluating models on
invalid holdout data, we do not report Holdout and
Previous results for DYNOSAUR experiments.

Experimental Settings. We evaluate replay
strategies by training T5-3B with SUPER-NI and

2A concurrent work (Kung et al., 2023) discusses the role
of task active learning in effectively improving the general-
ization ability on unseen tasks. We highlight here that the
difference between the two settings is that we consider not
only the generalization performance but the performance on
history data as well.

4038

Stage 1. Stage 2. Stage 3.

Methods Test Holdout Test Holdout Previous Test Holdout Previous
Full 43.4

No Replay 40.6 53.3 40.5 56.3 50.9 43.3 60.1 58.2 / 49.3

Data Diverse

40.6 53.3

43.0 58.9 53.3 42.8 60.3 60.7 / 52.7
Instr. Diverse 43.6 59.8 54.2 44.8 63.5 59.5 / 53.3
Instr. Similar 42.9 59.2 53.6 41.0 60.0 60.9 / 53.0
Instr. Support 43.4 59.6 54.6 44.6 61.3 59.3 / 53.0

(a) Continual learning results of T5-3B trained with SUPER-NI. We divide the training
set into three stages. For each stage, we report ROUGE-L on the test set, holdout data
in current stage, and holdout data in previous stages.

Methods Stage
1 2 3

Full 40.4

No Replay 36.5 37.5 38.2
Instr. Diverse 37.9 39.9

(b) Continual learning results of
T5-3B trained with DYNOSAUR on
SUPER-NI test set. For simplicity,
we only compare no replay with In-
str. Diverse, the best replay strategy
based on SUPER-NI.

Table 6: Continual learning results of T5-3B trained with SUPER-NI and DYNOSAUR. “Full” denotes training with
entire SUPER-NI and DYNOSAUR at once.

DYNOSAUR. To simulate continual learning scenar-
ios, we first randomly split both datasets into three
groups. Then we train T5-3B for three stages, each
stage on one of the groups and 50 replayed tasks
from the last stage. For each task, we sample 100
instances for training and another 100 instances for
holdout evaluation.

Results. Displayed in Table 6a, we find that re-
playing previous tasks not only mitigates forgetting
issues, but also helps better generalize to unseen
tasks. For example, in Stage 3, No Replay gets
43.3 on test set and 60.1 on the holdout set of
Stage 1, while Instr. Diverse achieves 44.8 and
63.5. Further, comparing Instr. Diverse and Data
Diverse, we notice that selecting replay tasks based
on the diversity of instruction representations bet-
ter improves unseen task performance (+0.6/+2.0
at Stage 2/3). Besides, Instr. Diverse can even
perform better on test set than training with full
SUPER-NI data at once.

We see similar trends on DYNOSAUR. We select
the best replay strategy, Instr. Diverse, based on re-
sults on SUPER-NI and compare it with No Replay.
As shown in Table 6b, Instr. Diverse outperforms
No Replay by 1.7 at Stage 3. Overall, a proper
replay strategy can bridge performance gap or even
help surpass training with full dataset.

5 Related Works

LLMs can be empowered to follow instructions via
instruction tuning (Sanh et al., 2022; Ouyang et al.,
2022; Wei et al., 2022; Mishra et al., 2022; Wang
et al., 2022b; Chung et al., 2022; OpenAI, 2023;
Wang et al., 2022a; Longpre et al., 2023; Taori
et al., 2023; Peng et al., 2023; Wu et al., 2023).
They fine-tune LLMs with the training data and
instructions of diverse upstream training tasks and
enable them to do inference on unseen tasks.

One branch of instruction-tuning data are con-
structed with existing human annotations. The
instructions in PROMPTSOURCE (Bach et al.,
2022) and FLAN (Wei et al., 2022) are cre-
ated with human-designed templates for limited
task categories. NI (Mishra et al., 2022) and
SUPER-NI (Wang et al., 2022b) are annotated by
NLP practitioners from GitHub and NLP courses.
Most recent attempts distill instruction-tuning data
from LLMs. The methods proposed in Self-
Instruct (Wang et al., 2022a) and Unnatural In-
struction (Honovich et al., 2022a) generate novel
tasks by prompting LLMs with seed instruction-
tuning tasks. Other works (Honovich et al., 2022b;
Zhou et al., 2022) study instruction generation
upon input/output data. There are another type
of works simply using structured metadata as in-
structions (Yin et al., 2023). Different from those
works, when we generate DYNOSAUR instructions,
the inputs/outputs for the generated tasks are un-
known to LLMs. LLMs need to generate instruc-
tions from metadata and determine which part of
the dataset annotations are task inputs/outputs si-
multaneously.

6 Conclusions

We propose DYNOSAUR, an automatic paradigm
for instruction data construction. We utilize meta-
data from existing NLP datasets and generate vari-
ous tasks upon them. DYNOSAUR generation costs
significantly lower than other methods, while mod-
els trained on DYNOSAUR data outperform models
trained on existing human-curated and machine-
generated instruction datasets on SUPER-NI and
LONGFORM. Taking advantage of the dynamic
growth nature of DYNOSAUR, we further explore
specific replay methods for instruction tuning that
are effective in mitigating forgetting.

4039

Limitations

Limited Language Scope. DYNOSAUR is only
built upon English datasets in Huggingface
Datasets. Whereas, multilingual NLP datasets take
up a large proportion in the platform. We plan to
further curate a multilingual version of DYNOSAUR

and conduct comprehensive experiments for evalu-
ating generalization in multilingual settings.

Errors in Generated Instruction Data. Al-
though the data validity of DYNOSAUR is high,
there are still 16% invalid data present in
DYNOSAUR. We conduct error analysis (Appendix
D) on the 200 instances used for human evaluation
in §3.3 and notice that there are still multiple types
of errors that have not been resolved yet. We ex-
pect to seek better methods to improve the quality
of generated instruction data in future works.

Limited Sampled Dataset Instances. Due to the
limits of data storage, we only sample at most 200
instances from each dataset for instruction-tuning
data generation. We plan to consider more available
instances from selected datasets and further scale
up DYNOSAUR.

Difficulty in Evaluation. It is hard to comprehen-
sively assess the capabilities of instruction-tuned
models (Zheng et al., 2023). We make our best ef-
forts to evaluate models on a large-scale benchmark
SUPER-NI with diverse tasks, along with human
evaluation of user instructions.

Ethics Statement

Our work is based on annotations of existing
datasets. As these data may contain selection bias
or annotation bias, the bias may be inherited in our
paradigm. We recruit annotators for human evalua-
tion of data validity and task category classification
from Amazon Mechanical Turk. All annotators are
fairly paid approximately $12 per hour.

Acknowledgments

We thank UCLA-NLP lab members and anony-
mous reviewers for their valuable feedback. The
research is supported in part by ONR grant N00014-
23-1-2780, DARPA MCS program under contract
number N660011924032, and an Amazon AWS
credit award. Da Yin was supported by an Ama-
zon Fellowship, Hritik was supported in part by
AFOSR MURI grant FA9550-22-1-0380, Fan was

supported in part by CISCO, and Kai-Wei was sup-
ported as a Sloan Fellow.

References
Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,

Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Stephen Bach, Victor Sanh, Zheng Xin Yong, Albert
Webson, Colin Raffel, Nihal V. Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-david, Canwen Xu, Gun-
jan Chhablani, Han Wang, Jason Fries, Maged Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike
Tian-jian Jiang, and Alexander Rush. 2022. Prompt-
Source: An integrated development environment and
repository for natural language prompts. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 93–104, Dublin, Ireland. Association for
Computational Linguistics.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Magdalena Biesialska, Katarzyna Biesialska, and
Marta R. Costa-jussà. 2020. Continual lifelong learn-
ing in natural language processing: A survey. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 6523–6541,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.

4040

https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://doi.org/10.18653/v1/2022.acl-demo.9
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://doi.org/10.18653/v1/2020.coling-main.574
https://doi.org/10.18653/v1/2020.coling-main.574
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Databricks. 2023. Databricks’ dolly, a large
language model trained on the databricks ma-
chine learning platform. https://github.com/
databrickslabs/dolly.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv preprint arXiv:2305.15717.

Or Honovich, Thomas Scialom, Omer Levy, and Timo
Schick. 2022a. Unnatural instructions: Tuning lan-
guage models with (almost) no human labor. arXiv
preprint arXiv:2212.09689.

Or Honovich, Uri Shaham, Samuel R Bowman, and
Omer Levy. 2022b. Instruction induction: From few
examples to natural language task descriptions. arXiv
preprint arXiv:2205.10782.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2022. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Po-Nien Kung, Fan Yin, Di Wu, Kai-Wei Chang, and
Nanyun Peng. 2023. Active instruction tuning:
Improving cross-task generalization by training on
prompt sensitive tasks. In The 2023 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Abdullatif Köksal, Timo Schick, Anna Korhonen, and
Hinrich Schütze. 2023. Longform: Optimizing in-
struction tuning for long text generation with corpus
extraction.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin
Jia, Lin Xiao, Xiang Ren, and Wen-tau Yih. 2022.
On continual model refinement in out-of-distribution
data streams. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2022).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

OpenAI. 2023. Chatgpt. https://openai.com/blog/
chatgpt/. Accessed on May 3, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
et al. 2022. Multitask prompted training enables
zero-shot task generalization. In International Con-
ference on Learning Representations.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

4041

https://github.com/databrickslabs/dolly
https://github.com/databrickslabs/dolly
http://arxiv.org/abs/2304.08460
http://arxiv.org/abs/2304.08460
http://arxiv.org/abs/2304.08460
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022b. Super-NaturalInstructions: General-
ization via declarative instructions on 1600+ NLP
tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 5085–5109, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023.
Lamini-lm: A diverse herd of distilled mod-
els from large-scale instructions. arXiv preprint
arXiv:2304.14402.

Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caim-
ing Xiong, and Chien-Sheng Jason Wu. 2023. Did
you read the instructions? rethinking the effective-
ness of task definitions in instruction learning. arXiv
preprint arXiv:2306.01150.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

4042

https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340

Appendix

A Details of Metadata Collection

A.1 Extracting Dataset Name and Description
There are many datasets assumed as a subtask un-
der a parent dataset. For example, SST-2 is in-
cluded as part of GLUE dataset. Then we concate-
nate the parent dataset name and the dataset’s own
name as final dataset name in collected metadata.

Dataset description is extracted from dataset
card. To shorten the input prompt for generating
instructions, we only capture the contents in the
“Dataset Summary”.

A.2 Selecting Licensed Datasets
To properly leverage datasets at Huggingface
Datasets, our metadata collection process does not
apply on the datasets without any licenses, and
the ones with cc-by-nc-nd-4.0, cc-by-nd-4.0,
cc-by-nc-nd-3.0, ofl, other, or unknown li-
censes. The instances of the tasks eventually in-
cluded in DYNOSAUR are subject to the licenses
under which the original dataset was released.

A.3 Removing Index and Nested Fields
Index field frequently exists in datasets, but it
should not be considered as a part of task anno-
tations. We remove this field to reduce the effect of
irrelevant information. Also, for simplicity, we also
remove nested fields whose corresponding values
are in a hierarchical dictionary structure.

B Example Prompt of Instruction
Generation

We provide an example of the description-aware
instruction generation in Table 7. For description-
unaware generation, the “summary” field is re-
moved from the prompt.

C Details of Fine-Tuning
Hyperparameters

We fine-tune T5-3B with every studied instruction
dataset for 2 epoches, with batch size 16 and learn-
ing rate 1e − 5. We truncate all the input texts to
1024 tokens and limit the maximum output length
as 128 tokens. The number of linear warmup steps
is set to 600. We follow the hyperparameters of AL-
PACA in finetuning LLAMA. Models are trained for
3 epoches with batch size 128 and the max length is
512 tokens. Due to memory limit, we apply LORA
(low-rank adaptation) in finetuning with learning

rate 3e − 4, lorar = 8, and loraalpha = 16. All
the instruction datasets are finetuned with the same
hyperparameters. All the fine-tuning experiments
are performed with 48GB NVIDIA A6000 GPUs
and 40GB NVIDIA A100 GPUs.

D Error Analysis for DYNOSAUR Data

We conduct error analysis to investigate the error
types of generated DYNOSAUR data. Among all
200 instances we evaluate in human evaluation,
we find that 4% of the human evaluated instances
have incorrect instructions, 5% of the evaluated
instances have incorrect inputs, and rest 7% have
incorrect outputs. Representative wrong cases are
shown in Table 9. The cases with incorrect out-
puts usually do not follow the format requirements
mentioned in instructions. The cases with incorrect
inputs are unclear and do not meet the requirements
noted in instructions. The incorrect instructions are
typically irrelevant with the input/output contents.

E Details of Sampling Strategies

E.1 Sampling Tasks for Evaluation on
SUPER-NI

Classification tasks take up a great proportion of
SUPER-NI test tasks. Meanwhile, most tasks of
DYNOSAUR belong to generation tasks. Therefore,
we sample classification tasks with a higher proba-
bility to enforce models to learn more classification
tasks. There are 300 classification tasks among the
681 selected tasks.

We also notice that the tasks produced from Big-
Science and Flax Stack Exchange datasets are more
frequently selected. To promote the diversity of
training tasks, our sampling method is constrained
to select at most 70 tasks with regard to the two
datasets. Besides, we discard programming lan-
guage tasks to mitigate their negative effect on nat-
ural language tasks.

To make a fair comparison, we also sample
67K training data for PROMPTSOURCE and FLAN,
and exclude the task categories of SUPER-NI test
tasks. Specifically, we exclude the tasks that belong
to Structure-to-text, Natural Language Inference,
Coreference Resolution, and the task COPA from
both datasets.

E.2 Sampling Tasks for Evaluation on
LONGFORM

Similar to the sampling strategy described in Ap-
pendix E.1, we also sample 681 tasks from the

4043

full version of DYNOSAUR, each with at most
100 instances. As the evaluation tasks in LONG-
FORM usually have long outputs, we only sample
the DYNOSAUR tasks that have the average output
length above 50 words.

E.3 Sampling and Processing DYNOSAUR
Tasks Tasks for Evaluation on
USER-INSTRUCTION-252

Similar to sampling tasks for SUPER-NI evalua-
tion, we also limit the maximum number of se-
lected tasks regarding BigScience and Flax Stack
Exchange datasets to 70.

We observe that the instructions of many user-
oriented instruction data are not paired with any
input data. For example, the instruction “What is
the sum of 3 and 5?” does not need any addi-
tional input. Thus, after task sampling, we choose
part of the instruction data in the sampled tasks
and integrate their instructions and corresponding
input data to emulate the style of user-oriented in-
structions. For example, assume that there is an
instruction “Please tell me a book written
by the given author” and its corresponding
input data “Victor Hugo”. Through prompting
GPT-3.5-turbo, we can harvest a new instruc-
tion, e.g., “Please tell me a book written
by Victor Hugo”, by combining its input data.
We only perform integration on the instruction
data whose corresponding input text is shorter than
50 characters. It aims at preventing task instruc-
tions from carrying overwhelmed information. The
prompt for integration is shown in Table 8.

F Human Evaluation Interface for
USER-INSTRUCTION-252

We show the screenshot of human evaluation inter-
face for USER-INSTRUCTION-252 in Figure 4.

4044

Given a dictionary containing a dataset description and a few examples, our goal is to design up to
three different tasks based on this dataset. Each task should still be a dictionary, including the
instruction, input fields and one output field. The following are two examples.

Example 1:
Input:
{‘task_name’: ‘squad’,
‘selected_data’:
[{‘title’: ‘University_of_Notre_Dame’, ‘context’: ’Architecturally, the school has a Catholic

character. Atop the Main Building’s gold dome is a golden statue of the Virgin Mary. ...’,
‘question’: ‘To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France?’},

{‘title’: ‘University_of_Notre_Dame’, ‘context’: ‘Architecturally, the school has a Catholic
character. Atop the Main Building’s gold dome is a golden statue of the Virgin Mary. ...’,
‘question’: ‘What is in front of the Notre Dame Main Building?’}],
‘summary’: ‘Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset,

consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer
to every question is a segment of text, or span, from the corresponding reading passage, or the
question might be unanswerable.’}

Tasks:
{‘task1’: {‘instruction’: ‘Please answer the question based on the Wikipedia article. The answer
to every question is a segment of text, or span, from the corresponding reading passage, or the
question might be unanswerable.’, ‘input_fields’: [‘title’, ‘context’, ‘question’], ‘output_field’:
[‘answers’]},
‘task2’: {‘instruction’: ‘Create a question provided the article.’, ‘input_fields’: [‘context’],

‘output_field’: [‘question’]},
‘task3’: {‘instruction’: ‘Can you write a title for the passage?’, ‘input_fields’: [‘context’],

‘output_field’: [‘title’]}}

Example 2:
...

Now given a dictionary as input, please help us to generate new tasks. You may stop when there is
no more plausible task.

Input:
{‘task_name’: ‘app_reviews’,
‘selected_data’:
[{’package_name’: ‘com.mantz_it.rfanalyzer’, ‘review’: “Great app! The new version now works on my
Bravia Android TV which is great as it’s right by my rooftop aerial cable. The scan feature would
be useful...any ETA on when this will be available? Also the option to import a list of bookmarks
e.g. from a simple properties file would be useful.”, ‘date’: ‘October 12 2016’, ‘star’: ‘4’},

{‘package_name’: ‘com.mantz_it.rfanalyzer’, ‘review’: “Great It’s not fully optimised and has some
issues with crashing but still a nice app especially considering the price and it’s open source.”,
‘date’: ‘August 23 2016’, ‘star’: ‘4’}]
‘summary’: ‘It is a large dataset of Android applications belonging to 23 different apps categories,
which provides an overview of the types of feedback users report on the apps and documents the
evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid
repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining
approaches)’}

Note that the input and output fields should not be duplicated and should both appear in

[‘package_name’, ‘review’, ‘date’, ‘star’] . Each task should still be a dictionary, containing

no text or explanations outside the dictionary.

Tasks:

Table 7: An example of the prompt for description-aware instruction generation. Text in gray background varies
across datasets.

4045

We plan to infuse the text inputs into the user instructions. Here’re two examples:

Instruction: Given a sentiment label, generate a movie review.
Input: positive
New Instruction: Generate a positive movie review.

Instruction: Give some examples of what people usually say in the given social situation.
Input: when someone arrives safely
New Instruction: Give some examples of what people usually say when someone arrives safely.

Now please do the same thing for new instruction data:

Instruction: Please tell me a book written by the given author

Input: Victor Hugo

New Instruction:

Table 8: An example of the prompt for integrating instructions and their corresponding input data to emulate the
style of user-oriented instruction data. Text in gray background varies across instances.

Instructions Inputs Outputs Errors

Given a question, please gen-
erate an answer.

When did Beyonce start be-
coming popular?

What is a question that
would give the following an-
swer?
Answer: in the
late 1990s;
Question:

Incorrect output - irrelevant
questions

Please generate a question
and corresponding answers
provided the context.

FINAL
EXAM

Question 1.
Which magazine was started
first Arthur’s Magazine or
First for Women?

Arthur’s Magazine Incorrect output - not follow-
ing the format that the in-
struction mentions

Please generate a review
based on the app name.

com.mantz_it.rfanalyzer Great app! The new version
now works on my Bravia
Android TV which is great
as it’s right by my rooftop
aerial cable. The scan fea-
ture would be useful...any
ETA on when this will be
available? Also the option to
import a list of bookmarks
e.g. from a simple properties
file would be useful.

Incorrect input - unclear in-
put contents

Can you pick up the correct
answer according to the in-
put from COSMOS QA?

In the future , will this per-
son go to see other bands
play?

This person likes music and
likes to see the show , they
will see other bands

Incorrect instruction - no in-
put from COSMOS QA is
given

Table 9: Error analysis for generated DYNOSAUR data. We provide the errors of each invalid instruction data in the
last column.

4046

Figure 4: Human Evaluation Interface for USER-INSTRUCTION-252.

4047

