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Abstract

Having the difficulty of solving the semantic
gap between images and texts for the image
captioning task, conventional studies in this
area paid some attention to treating semantic
concepts as a bridge between the two modali-
ties and improved captioning performance ac-
cordingly. Although promising results on con-
cept prediction were obtained, the aforemen-
tioned studies normally ignore the relationship
among concepts, which relies on not only ob-
jects in the image, but also word dependencies
in the text, so that offers a considerable po-
tential for improving the process of generating
good descriptions. In this paper, we propose
a structured concept predictor (SCP) to pre-
dict concepts and their structures, then we in-
tegrate them into captioning, so as to enhance
the contribution of visual signals in this task
via concepts and further use their relations to
distinguish cross-modal semantics for better
description generation. Particularly, we de-
sign weighted graph convolutional networks
(W-GCN) to depict concept relations driven
by word dependencies, and then learns differ-
entiated contributions from these concepts for
following decoding process. Therefore, our
approach captures potential relations among
concepts and discriminatively learns different
concepts, so that effectively facilitates image
captioning with inherited information across
modalities. Extensive experiments and their
results demonstrate the effectiveness of our
approach as well as each proposed module
in this work. Source code is available at:
https://github.com/wangting0/SCP-WGCN.

1 Introduction

The image captioning task aims at generating a
human-like description for a given image, normally
requiring recognition and understanding of the con-
tent in the image, including objects, attributes, and
their relationships, etc. The task is regarded as
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Figure 1: Illustrations of our motivation. Compared
with integrating semantic concepts into the image cap-
tioning framework, we find that the structured concepts
helps reduce over-reliance on linguistic priors in lan-
guage generation.

an interdisciplinary research of computer vision
and natural language processing and has become a
popular topic in recent years.

Current methods (Vinyals et al., 2015; Anderson
et al., 2018; Huang et al., 2019; Cornia et al., 2020;
Pan et al., 2020; Luo et al., 2021; Fang et al., 2022;
Yang et al., 2022; Wu et al., 2022) usually follow an
encoder-decoder framework, using a pre-trained ob-
ject detector/classifier as an encoder to mine visual
information in an image, and then feeding it into
an RNN- (Zaremba et al., 2014) or Transformer-
(Vaswani et al., 2017) based decoder for description
prediction along with partially generated words.
However, in most cases, the extracted visual infor-
mation is insufficient, even with the use of powerful
visual feature extractors. This shortcoming makes
the decoder rely too much on partially generated
words to predict the remaining words to ensure the
fluency of the generated description, that is, the
model relies too much on linguistic priors during
decoding, and sometimes the resulted words does
not related to the image at all. In short, the ma-
jor challenge that the image captioning facing now
is that description generation relies too much on
linguistic priors and has little to do with images.
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Figure 2: The overall framework of our approach, including concept prediction, weighted graph convolutional
networks (W-GCN) and language decoder. The last weight matrix refers to the relations between concepts. Our
model can be trained in an end-to-end manner.

To this end, some studies(Wu et al., 2022) add
additional visual information to obtain strong vi-
sual features and increase the contribution of vi-
sion to generate captions. The other studies (Fang
et al., 2022; Gan et al., 2017; Bin et al., 2017; Gao
et al., 2020) have noticed the importance of seman-
tic concepts based on visual content, which can
provide rich and accurate semantic understanding,
accordingly helping semantic alignment and gen-
erating reliable text descriptions. Thus the conven-
tional pipeline of their studies is to firstly predict
the semantic concepts, and then send the predicted
semantic concepts along with the visual features
into the decoder to predict description. Although
promising results are obtained by these studies,
they still ignore the relations among predicted con-
cepts, which would not alleviate the overfitting
on linguistic priors. For example, in one possible
scenario that a model predicts the semantic words
"baby" and "drink" from an image, the model is
much more likely to predict the sentence as "baby
→ drink → milk" if it understands the relations
between "baby" and "drink" is "baby → drink". On
the contrary, "drink" is more likely to be followed
by "water" based on the linguistic prior if the model
ignores the relations. Another example is shown
in Figure 1, the predicted concept itself makes it
difficult for language generation to escape linguis-

tic priors. Meanwhile, it is seen that concepts have
relations, which are not only shown among objects
in the image, but also in word dependencies in the
text. Structured semantic concepts improve the
performance of the model from the perspective of
language generation.

In this paper, we propose a structured con-
cept predictor (SCP) to improve image caption-
ing, which not only integrates concept prediction
into the end-to-end image captioning, but also pre-
dicts the structures of obtained concepts based on
the word dependencies. Specifically, we propose
weighted graph convolutional networks (W-GCN),
with its input graph built based on mutual informa-
tion priors of all descriptions in an unsupervised
manner. The mutual information priors are the
probability of co-occurrence of two words within a
certain distance in the same description, making the
language generation no longer limited to local con-
textual information and measuring the relationship
between two concept words well. Meanwhile, ap-
plying attention over the graph makes the concept
features discriminatively learned, thereby reducing
linguistic priors in captioning. Thus, we structural-
ize the semantic concepts and integrate them into
the end-to-end image captioning, which keep the
description generation associated with image at all
generation steps and reduce over-reliance on lin-
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guistic priors. Experiments on the widely used MS
COCO benchmark demonstrate the superiority of
our approach over strong baselines, with qualitative
analyses confirming its ability in better capturing
structural relationship among semantic concepts,
so that offers good interpretability for our method.

2 The Approach

In this section, we describe our proposed SCP,
which extracts concepts from a given image and
utilizes graph convolutional networks to build topo-
logical structures between concepts, so that the
structured concepts can help generate descriptive
text. Figure 2 gives an overview of SCP, which
consists of three main components.

2.1 Visual Feature Processing
Extractor. To generate descriptions, the first step
is to extract the visual features from images. Fol-
lowing (Li et al., 2022b), in order to narrow the
semantic gap between images and text, and help se-
mantic alignment, we extract visual features from
images I by using the encoder of CLIP (Mokady
et al., 2021) with the ResNet-101 (He et al., 2016)
backbone, which has the ability to understand com-
plex scenarios, and having excellent domain gen-
eralization ability after pre-training with a large
dataset. The process can be formulated as:

X = fv(I) (1)

where fv is the visual extractor, and X is the image
features.
Encoder. Since the image feature is in the
form of 2D, we first flatten X into a sequence
{x1, x2, ..., xS}, xs ∈ Rd, where xs are patch fea-
tures and d is the size of the feature vector. Then
we employ Nv Transformer encoder blocks to fur-
ther encode image features as a sequence. Outputs
are the hidden states encoded from the input fea-
tures X extracted from the visual extractor. The
whole process can be formulized as follows:

H(0)
v = X (2)

H
(l)
v = MHA(H(l−1)

v , H(l−1)
v , H(l−1)

v ) (3)

H(l)
v = LN(H

(l)
v +H(l−1)

c ) (4)

where LN is the layer normalization, MHA stands
for multi-head attention, H(l)

v indicates the output
of the l-th middle hidden layer and the superscript
indicates the number of layer. In particular, HNv

v

is the output of the Transformer encoder. For sim-
plicity, let Ṽ denote HNv

v in the rest of paper.

2.2 Concept Prediction
Most existing image captioning works leverage a
pre-trained object detector to capture the seman-
tics in an image, which are then directly fed into
language decoder to generate the descriptive sen-
tence. However, the semantic perception capability
of the pre-trained detector is severely limited by
pre-defined class labels. Based on the grid visual
features, it predicts concepts from ground-truth
captions through a multi-label classification task.
These concepts contain rich, comprehensive, accu-
rate and refined semantic information, which can
be decoded directly by multi-modal decoders, en-
couraging the generation of relevant word at each
decoding step, greatly benefiting the image caption-
ing task.

Specifically, we predict the semantic concepts
under the guidance of visual features through a
set of concept queries Q, by leveraging Nc Trans-
former encoder blocks. The set of learnable queries
learns the essential concepts within the images.
Through the image interaction, each of our learn-
able queries focuses on a specific area of the image
and learns the information (concepts) contained in
the image. These concepts include objects, rela-
tive positions between objects, actions, etc. Each
Transformer block reinforces concept queries by
interacting visual features Ṽ with object queries Q
through a cross-attention mechanism. The whole
process can be formulized as follows:

H(0)
c = Q (5)

H(l)
c = LN(MHA(H(l−1)

c , Ṽ , Ṽ ) +H(l−1)
c ) (6)

where H
(l)
c indicates the output of the l-th middle

hidden layer and the superscript indicates the num-
ber of layer. Thus, the output of the Transformer
encoder HNc

c is the output of the last Transformer
layer.

We then feed the output of the last block into
a multi-linear perception network to get concept
features C:

C = MLP(HNc
c ) (7)

where MLP is the multi-linear perception network
with the sigmoid activation.

During training, following (Fang et al., 2022),
we describe it as a multi-label classification prob-
lem. Due to the imbalance of the distribution of
concepts, we use asymmetric loss (Ben-Baruch
et al., 2020), which can handle the sample imbal-
ance problem of multi-label classification tasks
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well. Asymmetric loss is calculated for concept
prediction:

Lc = asym(C, Yc) (8)

where Yc denote the visual concept of the ground-
truth sentence that corresponds to the concept vo-
cabulary (The details of building concept vocabu-
lary are introduced in §3.2).

2.3 Weighted Graph Convolutional Network

After obtaining the enriched semantics derived
from concept predictor, the most typical way to
predict descriptions is to directly feed the semantic
features, which is obtained by concept predictor,
into the RNN/Transformer-based language decoder.
However, in this way, the language decoder overly
relies on the language priors to generate captions,
since those concepts are treated independently, and
their features are learned independently. A straght-
forward example is illustrated in the introduction
section.

To this end, we propose to construct graph for
these concepts, explore the relationship between
them by Weighted Graph Convolutional Networks
(W-GCN), and obtain structured concepts. Struc-
ture concepts learns to estimate the linguistic rela-
tive position of semantic word pairs, thereby allo-
cating all the semantic words in potential linguistic
order as humans. In doing so, the output sequence
of structured semantic concepts serve as additional
visually-grounded language priors, which encour-
age the visual contribution in generation.

Concretely, the nodes of the graph represent con-
cepts G = {g1, g2, ..., gk}, and the edges repre-
sent the relationship between nodes gi and gj for
∀i, j ∈ {1, 2, ..., k}, which can be represented by
an adjacency matrix A. In A, aij = 1, if there
is an edge between gi and gj or i = j, otherwise
aij = 0.

2.3.1 Graph Construction
As the obtained semantic concepts cannot form
a complete sentence, our method cannot leverage
existing dependency parsers to estimate their rela-
tions. Without such a parser, we need an alterna-
tive way to find satisfied word pairs to build initial
graphs in our W-GCN, which equivalent to build
the initial adjacency matrix A. Inspired by the
studies (Tian et al., 2020) which leverage chunks
(n-grams) as additional features to carry contex-
tual information, we propose to construct the graph

based on the word dependencies extracted from a
pre-constructed n-gram lexicon D.

Specifically, we count the frequency of the oc-
currences of each word and the frequency of simul-
taneous occurrence of any two words within NL

word distance (considering the order) in all sen-
tences of the training set. We regard two words
within NL distance as they have word dependency.
Then we calculate the Pointwise Mutual Informa-
tion (PMI) score of any two words w1, w2 by the
following formula and set a threshold to determine
if they are strongly correlated.

PMI(w1, w2) = log
p(w1w2)

p(w1)p(w2)
(9)

where p(w1), p(w2)is the probability of w1, w2 in
the training set, p(w1, w2) is the probability that
both w1 and w2 are within NL word distance.

We store all strongly correlated word pairs in a
word lexicon D and refer to it to build the graph.
If the concept represented by the two nodes in the
graph can be found in the lexicon D, then the cor-
responding element of its adjacency matrix is ini-
tialized as correlated, which is set to 1. Otherwise,
setting the value to 0.

2.3.2 The Weighted GCN
Based on the adjacency matrix, the W-GCN mod-
ule of the L layers can learn from all the input
concepts. Considering that the contribution of dif-
ferent gj to gi may be different, we further apply
the attention mechanism to the adjacency matrix,
replacing aij with the weights αij . For each gi and
all its related gj , we calculate weight αij for the
concept pair. In particular, at the l-th layer, for each
gi, all the gj associated with it can be calculated:

α
(l)
ij =

aij · exp(h(l−1)
i ·W (l)

pos · h(l−1)
j )

∑n
j=1 aij · exp(h

(l−1)
i ·W (l)

pos · h(l−1)
j )

(10)

h
(l)
i = σ(LN(

n∑

j=1

αij(W
(l) ·h(l−1)

j + b(l)))) (11)

where W
(l)
pos is a trainable parameter, it can model

the position relationship between gi and gj (three
choices: W

(l)
left,W

(l)
right,W

(l)
self ). h

(l−1)
i is the hid-

den vector from layer l − 1, W (l) and b(l) are the
trainable matrices and biases of the W-GCN at layer
l, LN is layer normalization, and σ is the ReLU
activation function.
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Finally, we take the output h(L) of the L-th layer
as the structured concept feature C̃ and feed it
into the language decoder, which helps to establish
syntactic relationships and dependencies of texts,
thereby generating more accurate text descriptions.

2.4 Language Decoder
With the enriched visual tokens Ṽ and the position-
aware semantic tokens C̃ from W-GCN, we
integrate them into the Transformer-based de-
coder for sentence generation. Formally, let
Ygt = {w0, w1, ..., wT−1} denote the description
(T: word number) of the input image I . The sen-
tence decoder takes each word as input and learns
to predict the next word auto-regressively condi-
tioned on Ṽ and C̃. The formulations are

Hi = MHA(wi, Ṽ , Ṽ ) +MHA(wi, C̃, C̃) (12)

yi+1 = LN(Hi + wi) (13)

where yi+1 is the (i + 1)th word of the pre-
dicted sentence, and Hi is the hidden state. Y =
[y1, y2, ..., yT ] is the predicted sentence. The loss
function of captioning can be defined as:

Lcap =
T∑

t=1

CE(Y, Ygt) (14)

where CE is the cross-entropy loss. Thus, the total
loss is the combination of visual concept prediction
loss and the language prediction loss:

L = Lcap + β · Lc. (15)

where β is the hyper-parameter which aims to con-
trol the balance of two losses. To this end, our
method can be trained in an end-to-end manner,
which is kind to training and faster inference speed.

3 Experiment Settings

3.1 Datasets and Metrics
Our experiments are conducted on the MS COCO
(Lin et al., 2014), which is the most popular image
captioning benchmark dataset. It consists of more
than 120,000 images, and each image is equipped
with five human-annotated descriptions. We fol-
low Karpathy’s split, which divides 5,000 images
for validation, 5,000 images for testing, and the
rest for training (Karpathy and Fei-Fei, 2015). For
fair comparison with other techniques, we lever-
age pycocoevalcap package to calculate five eval-
uation metrics: BLEU-N (Papineni et al., 2002),

METEOR (Denkowski and Lavie, 2014), ROUGE
(Lin, 2004), CIDEr (Vedantam et al., 2015), and
SPICE (Anderson et al., 2016).

3.2 Implementation Details

Our feature extractor is CLIP (Mokady et al., 2021)
with the ResNet-101 (He et al., 2016) backbone
and the dimension of the grid visual feature is 2048.
Following previous work (Li et al., 2022b), to build
concept vocabulary, we filter out low-frequency
words and convert all uppercase letters to lower-
case letters to all caption descriptions. Thus, a con-
cept vocabulary that containing 906 words is con-
structed. The word distance in the pre-constructed
lexicon D is 3. The number of layers in Weighted
GCN is set to 2. The Transformer block in the
Feature Encoder Module, the Concept Prediction
Module and the Language Prediction Module are
3 layers, 6 layers, and 6 layers, respectively. The
size of the hidden state features is set to 512. The
query size is set to 17. β is set to 1 in this work.
Our code is developed based on the COS-Net1.

The model is trained using a typical two-stage
training method. In the first stage, we utilize
Adam optimizer and cross-entropy loss with a learn-
ing rate of 0.0005 and take about one hour per
epoch. In the second stage, the self-critical se-
quence training strategy is used to further optimize
the CIDEr scoring model, and the learning rate
is set to 0.00005, which takes about 4 hours per
epoch. In inference, the beam size is set to 3. The
number of parameters our model used is 20M. All
experiments are conducted on a single RTX 3090.

4 Results and Analysis

4.1 Main Results

Our main results are shown in Table 1 and Table 2.
All compared methods can be briefly grouped into
two kinds. Firstly, the conventional methods, e.g.,
Up-Down, M2 Transformer, X-Transformer, which
utilize the pre-trained Faster R-CNN (backbone:
ResNet-101) to extract visual inputs. The second
kind approaches, e.g. CTX+M2, which take the
strong CLIP (backbone: ResNet-101) grid features
as visual inputs. Compared with these previous
studies, the results of our method have improved
in each evaluation metrics, especially in CIDEr.
Specifically, our method is 11.4 higher than the
classic GCN-LSTM method (GCN-based model),

1https://github.com/YehLi/xmodaler/tree/
master/configs/image_caption/cosnet
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Method
Cross Entropy

BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

Up-Down(Anderson et al., 2018) 77.2 36.2 27.0 56.4 113.5 20.3
GCN-LSTM(Yao et al., 2018) 77.3 36.8 27.9 57.0 116.3 20.9
AoANet(Huang et al., 2019) 77.4 37.2 28.4 57.5 119.8 21.3
X-Transformer(Pan et al., 2020) 77.3 37.0 28.7 57.5 120.0 21.8
ViTCAP (Fang et al., 2022) - 35.7 28.8 57.6 121.8 22.1
(Ours) 78.3 38.6 29.3 58.5 125.3 22.4

Table 1: Comparison with the state-of-the-art methods on COCO Karpathy test split in the first stage, namely Cross
Entropy.

Method
CIDEr Optimization

BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

Up-Down(Anderson et al., 2018) 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM(Yao et al., 2018) 80.5 38.2 28.5 58.3 127.6 22.0
AoANet(Huang et al., 2019) 80.2 38.9 29.2 58.8 129.8 22.4
M2 Transformer(Cornia et al., 2020) 80.8 39.1 29.2 58.6 131.2 22.6
X-Transformer(Pan et al., 2020) 80.9 39.7 29.5 59.1 132.8 23.4
RSTNet (Zhang et al., 2021b) 81.1 39.3 29.4 58.8 133.3 23.0
DLCT (Luo et al., 2021) 81.4 39.8 29.5 59.1 133.8 23.0
ReFormer (Yang et al., 2022) 82.3 39.8 29.7 59.8 131.9 23.0
ViTCAP (Fang et al., 2022) - 40.1 29.4 59.4 133.1 23.0
CTX+M2 (Kuo and Kira, 2022) 81.5 39.7 30.0 59.5 135.9 23.7
DIFNet (Wu et al., 2022) 81.7 40.0 29.7 59.4 136.2 23.2
Ours 82.6 41.5 30.2 60.2 139.0 24.2

Table 2: Comparison with the state-of-the-art methods on COCO Karpathy test split in the second stage, namely
Cider Optimization.

and 7.1 higher than the recent ReFormer method.
This is due to our approach considering both visual
and textual semantics and finding ways to close the
semantic gap between them. In the CP module, the
extraction concept distills the textual information.
And we use attention map convolutional networks
in the W-GCN module to explore the structural re-
lationships between concepts, which has been com-
pletely ignored in previous studies. It is important
that when initializing the graph, we fully consider
the context information and firmly glue the strongly
related word pairs together, so that the generated
sentences are more human-like. We further test
the running speed with other state-of-the-art meth-
ods. (Nguyen et al., 2022) runs at 138 ms/image,
(Cornia et al., 2020) runs at 178 ms/image, and
the pre-trained based method (Zhang et al., 2021a)
runs at 542 ms/image. Our method achieves 214
ms/image running speed, which illustrates the ef-
fectiveness of our method. Meanwhile, the results
show that the proposed W-GCN module and CP

module have little effect on the running speed.

4.2 Qualitative Results

To qualitatively illustrate the effectiveness of our
proposed approach and make the results more con-
vincing, we present and analysis some qualitative
results here. Firstly, some examples are shown in
Figure 3, where GT is the ground-truth sentence la-
beled by human and Ours is the predicted result of
our model. It can be seen that our model accurately
describes the content of the image, and the words
are appropriate, logical, and elegant, reaching the
human level. It captures the key semantic words,
and generated sentence follow the same patterns as
the GT.

In addition, we present a structured graph of the
concept to illustrate the value of the W-GCN mod-
ule in Figure 4. Nodes represent concepts, and
the edges indicate the strength of the relationship
between the two concepts. It can be seen that,
first, our method can predict semantic concepts
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Figure 3: The qualitative results of our approach. Our
approach is good at capturing the relations between
semantic concepts, improving the preformance.

well, including key nouns, verbs and adjectives in
the sentence. Meanwhile, in the absence of su-
pervision information, our W-GCN can capture
the relations between semantic concepts, includ-
ing adjectives pointing to the correct nouns, and
nouns pointing to the correct verbs. For example,
in the second case, our model can understand the
"little→girl", "girl→eatting" and "eatting→food".
The predicted structured concepts further strength-
ens our sentence generation.

4.3 Ablation Studies
In order to explore the effect of each proposed mod-
ule, we perform a series of ablation experiments.
For the Weighted GCN Module, we also conduct
several experiments to verify the effect of different
graph construction on the results. All the results
are recorded in Table 3.

4.3.1 Effect of the Proposed Modules
"Baseline" is the simple Transformer encoder-
decoder structure. "Baseline+CP" represents the
"Baseline" combine with the concept prediction
module. "Baseline+CP+WGCN(Ours)" is our
best model, which integrate W-GCN on the basis
of "Baseline+CP"2.

From the results, it can be seen that, first, the
two proposed modules "concept prediction" and
"Weighted GCN" are both effective and greatly im-
prove the captioning performance. When compar-
ing BLEU-1 metric, we have an interesting obser-
vation that "Baseline+CP" is slightly worse than

2Since our W-GCN is built upon concept prediction, we
cannot conduct "Baseline+W-GCN" experiment.

Figure 4: Visualization results of the procedure of our
method, including the structured concepts prediction. It
is not difficult to find that the structured concepts we
predict are of good quality.

"Baseline+CP+WGCN(Ours)", which means,
no matter whether we learn the relations between
concepts or not, our concept predictions are accu-
rate to capture the semantic words of the sentence.
The accuracy of this keyword prediction will lead
to a good result in BLEU-1 metric. Thus, there is
not much difference in BLEU-1 metric between the
two methods. But the results of other metrics can
show the superiority of our W-GCN.

4.3.2 Discussion on Graph Construction
As aforementioned, graph construction is equiv-
alent to the initial the adjacency matrix, and we
conduct a variety of experiments to verify the ef-
fect of the initial graph constructed by our word
dependencies.

"Random" indicates that when initializing the
graph, the interrelationships among concepts are
ignored, and the corresponding adjacency matrix is
a randomly generated 0-1 matrix. "1-for-all" indi-
cates that when the graph is initialized, all concepts
are considered to be related, and the elements in
the adjacency matrix are all set to 1. "MLP" learns
the relationship between concepts. Each concept
is affected by other concepts to different degrees,
which is learned by MLP. "Threshold-N" means
that the initial graph is built by the PMI scores of
word dependencies, where N is the threshold. For
all concepts of an image, we calculate the PMI
score between pairs. If the PMI score is greater
than the threshold, the corresponding element of
the adjacency matrix is set to 1, otherwise to 0.
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Discussion Method B-1 B-4 M R C S

Proposed
Modules

Baseline 77.7 37.7 28.8 57.8 121.7 21.8
Baseline+CP 78.2 38.0 29.0 58.0 123.4 22.1
Baseline+CP+WGCN(Ours) 78.3 38.6 29.3 58.5 125.3 22.4

Graph
Construction
aa
aa

Random 78.1 38.0 29.2 58.1 123.6 22.2
1-for-all 78.6 38.4 29.2 58.2 124.4 22.4
MLP 77.7 38.1 29.1 58.0 123.7 22.1
Threshold-0.1 78.5 38.6 29.2 58.3 124.4 22.2
Threshold-0.3 78.5 38.4 29.1 58.4 124.1 22.1
Threshold-0.5(Ours) 78.3 38.6 29.3 58.5 125.3 22.4
Threshold-0.7 78.6 39.0 29.2 58.2 124.6 22.3

Table 3: The results of ablation studies (Cross Entropy). Here, B-N, M, R, C, and S represent BLEU-N, METEOR,
ROUGE, CIDER, SPICE, respectively.

The results are in Table 3, and from the results,
we have several observations. First of all, the re-
sults of "Random" and "MLP" are the worst. It
can be seen that the relations between concepts is
not random and should be established based on
some word dependencies. Secondly, the effect of
"1-for-all" is not good enough. It considers all
concepts to be related. Obviously, this way of han-
dling doesn’t make sense, and there is no relations
between some semantic words, such as "red" and
"grass". Last, for word dependencies, it can be seen
that the effect reaches best when the threshold is
set to 0.5.

5 Related Work

Image Captioning is a practical task that has been
widely concerned and studied. There have been
many studies before (Liu et al., 2019; Guo et al.,
2020; Chen et al., 2021; Song et al., 2023b,a; Liu
et al., 2021; Nie et al., 2021; Tu et al., 2021). In-
spired by the Transformer structure in NLP, the
Transformer-based encoder-decoder structure has
recently become mainstream, where the interaction
between multi-modal information can be enhanced.
(Herdade et al., 2019; Li et al., 2022a) integrates the
spatial relationships between objects through geo-
metric attention based on the Transformer structure.
(Nguyen et al., 2022) use a set of learnable object
queries to extract semantics from multi-scale fea-
tures, and feed them into a Transformer to generate
captions.

The previous researches have shown that explor-
ing semantic concepts and their relations make con-

tributions to high-quality descriptions. (Chen et al.,
2020) encode image into Abstract Scene Graphs,
which represent semantics and structure at a fine-
grained level, thus generating detailed descriptions.
(Zhang et al., 2022) not only construct a multi-
modal relational graph for images, but also encodes
relational graphs for all sentences in the dataset to
fully capture language features. Then a cascaded
GAN is developed to achieve cross-domain align-
ment of image and text pairs, which are fed into
the decoder. (Shi et al., 2020) explore the seman-
tics available in captions and construct a caption-
guided visual relationship graph, and leverage it to
enhance image representation and caption genera-
tion. The Concept Token Network is introduced to
predict concept words based on visual information.
These concepts contain rich semantic information,
which benefits the image captioning task (Fang
et al., 2022; Li et al., 2022b). (Zeng et al., 2022)
try to capture the hierarchical semantic structure in
the text space, helps visual features carry semantics
and generates finer-grained and more reasonable
phrases and collocations. To effectively extract
contextual information, constructing a graph is pro-
posed to model the relations between words (Tian
et al., 2020).

6 Conclusion

In this paper, we explore the significance of con-
cepts and their structures for accurately describing
images in the image captioning task. To predict
concepts and their structures, we propose a struc-
tured concept predictor (SCP), so that enhance the
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contribution of visual signals and further use their
relations to distinguish cross-modal semantics for
better description generation. Particularly, we de-
sign weighted graph convolutional networks (W-
GCN) to depict concept relations driven by word
dependencies, and then learns differentiated con-
tributions from these concepts for following de-
coding process. Therefore, our approach captures
potential relations among concepts and discrimina-
tively learns different concepts, so that effectively
facilitates image captioning with inherited infor-
mation across modalities. Extensive experiments
indicate that our approach achieves competing per-
formances on MS COCO benchmark. Qualitative
analyses confirm its ability in better capturing struc-
tural relationship among semantic concepts, so that
offers good interpretability for the proposed model.

Limitations

When predicting structured concepts in this paper,
there is a premise, that is, predict concepts at first.
However, when constructing the semantic concept
vocabulary in this paper, we follow the existing
work (Li et al., 2022b). The semantic concept vo-
cabulary is obtained only by analyzing the corpus
and the frequency of words. In future work, we can
consider semantic concepts based on n-grams in the
corpus. Secondly, we find that in our experiment,
for some samples, our model can only predict cou-
ple concepts, which make the structured concept
prediction meaningless. In future work, we aim to
establish a better cross-modal correspondence, so
that more concepts can be predicted.
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