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Abstract

Proprietary and closed APIs are becoming in-
creasingly common to process natural language,
and are impacting the practical applications
of natural language processing, including few-
shot classification. Few-shot classification in-
volves training a model to perform a new clas-
sification task with a handful of labeled data.
This paper presents three contributions. First,
we introduce a scenario where the embedding
of a pre-trained model is served through a gated
API with compute-cost and data-privacy con-
straints. Second, we propose a transductive in-
ference, a learning paradigm that has been over-
looked by the NLP community. Transductive
inference, unlike traditional inductive learning,
leverages the statistics of unlabeled data. We
also introduce a new parameter-free transduc-
tive regularizer based on the Fisher-Rao loss,
which can be used on top of the gated API
embeddings. This method fully utilizes unla-
beled data, does not share any label with the
third-party API provider and could serve as a
baseline for future research. Third, we propose
an improved experimental setting and compile
a benchmark of eight datasets involving multi-
class classification in four different languages,
with up to 151 classes. We evaluate our meth-
ods using eight backbone models, along with an
episodic evaluation over 1,000 episodes, which
demonstrate the superiority of transductive in-
ference over the standard inductive setting.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have been largely driven by the scaling
paradigm (Kaplan et al., 2020; Rosenfeld et al.,
2019), where larger models with increased param-
eters have been shown to achieve state-of-the-art
results in various NLP tasks (Touvron et al., 2023;
Radford et al., 2019). This approach has led to the
development of foundation models such as Chat-
GPT (Lehman et al., 2023; Kocoń et al., 2023;

*These authors contributed equally to this work

Brown et al., 2020), GPT-4 (OpenAI, 2023), GPT-
3 (Brown et al., 2020), T5 (Raffel et al., 2020), and
BERT (Devlin et al., 2018), which have achieved
unprecedented performance in text classification
(Liu et al., 2019b), language modeling, machine
translation (Fan et al., 2021), and coding tasks
(Chen et al., 2021a).

Despite the success of the scaling paradigm, sig-
nificant challenges still exist especially when the
many practical constraints of real-world scenarios
have to be met: labeled data can be severely lim-
ited (i.e., few-shot scenario (Song et al., 2022; Ye
et al., 2021)), data privacy is critical for many in-
dustries and has become the subject of increasingly
many regulatory pieces (Commission, 2020, 2016),
compute costs need to be optimized (Strubell et al.,
2019). Furthermore, these challenges are made
even more complex as stronger foundation models
are now available only through APIs (e.g., Ope-
nAI’s GPT-3, GPT-4 or ChatGPT, Anthropic’s
Claude or Google’s PaLM (Chowdhery et al.,
2022)) which has led to some of their parame-
ters being concealed, presenting new challenges
for model adaptation (Solaiman, 2023). This pa-
per is centered on the fundamental task of few-
shot text classification, specifically focusing on
cloud-based/API access. Specifically, we formulate
three requirements for API-based few-shot learning
(FSL) (see Fig. 1):
(R1) Black-box scenario. We focus on learning
from models that are opaquely deployed in produc-
tion to the end-user, who only has access to the
end-point of the encoder, i.e., the resulting text em-
bedding produced by the final layer of the network.
(R2) Low resources / computation time. AI sys-
tems are often required to make rapid predictions at
high frequencies in various real-world applications.
Therefore, any few-shot classifier used in such sce-
narios should have a low training and inference
time, as well as require minimal computational re-
sources.
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(R3) Limited Data Sharing. When utilizing API
models, data sharing becomes a major concern. In
the current landscape, providers are increasingly of-
fering less transparent procedures for training their
networks. As a result, users prefer sharing as little
information as possible, such as labeling schema
and annotated data, to safeguard their data privacy.
Shortcomings of Existing Works. While numer-
ous previous studies have addressed the popular
few-shot classification setting, to our knowledge no
existing line of work adequately satisfies the three
API requirements described above. In particular,
prompt-based FSL (Schick and Schütze, 2020a)
and parameter-efficient fine-tuning FSL (Houlsby
et al., 2019) both require access to the model’s
gradients, while in-context learning scales poorly
with the task’s size (e.g number of shots, number
of classes) (Chen et al., 2021b; Min et al., 2021,
2022; Brown et al., 2020) and requires full data
sharing. Instead, we focus on methods that can
operate within API-based constraints.

Under R1, R2, and R3 requirements, the stan-
dard inductive learning (Liu et al., 2022) may be
quite limiting. To mitigate the labeled data scarcity
while retaining API compliance, we revisit trans-
duction (Vapnik, 1999) in the context of textual
few-shot classification. Specifically, in the con-
text of FSL, transductive FSL (Liu et al., 2019a)
advocates leveraging unlabeled test samples of a
task as an additional source of information on the
underlying task’s data distribution in order to bet-
ter define decision boundaries. Such additional
source essentially comes for free in many offline
applications, including sentiment analysis for cus-
tomer feedback, legal document classification, or
text-based medical diagnosis.

Our findings corroborate recent findings in com-
puter vision (Liu et al., 2019a; Ziko et al., 2020;
Lichtenstein et al., 2020; Boudiaf et al., 2020; Hu
et al., 2021b), that substantial gains can be obtained
from using transduction over induction, opening
new avenue of research for the NLP community.
However, the transductive gain comes at the cost of
introducing additional hyperparameters, and care-
fully tuning them. Motivated by Occam’s razor
principle, we propose a novel hyperparameter-free
transductive regularizer based on Fisher-Rao dis-
tances and demonstrate the strongest predictive per-
formances across various benchmarks and models
while keeping hyperparameter tuning minimal. We
believe that this parameter-free transductive regu-

larizer can serve as a baseline for future research.

Contributions

In this paper, we make several contributions to the
field of textual FSL. Precisely, our contributions
are threefold:
A new textual few-shot scenario: We present a
new scenario for FSL using textual API-based mod-
els that accurately capture real-world constraints.
Our new scenario opens up new research avenues
and opportunities to address the challenges associ-
ated with FSL using API-based models, paving the
way for improved performance in practical applica-
tions.
A novel transductive baseline. Our paper pro-
poses a transductive FSL algorithm that utilizes a
novel parameter-free Fisher-Rao-based loss. By
leveraging only the network’s embedding (R1), our
approach enables fast and efficient predictions (R2)
without the need to share the labeling schema or
the labels of few-shot examples making it compli-
ant with (R3). This innovative method marks a
significant step forward in the field of FSL.
A truly improved experimental setting. Previous
studies on textual few-shot classification (Schick
and Schütze, 2022, 2020b; Mahabadi et al., 2022;
Tam et al., 2021; Gao et al., 2020) have predomi-
nantly assessed their algorithms on classification
tasks with a restricted number of labels (typically
less than five). We take a step forward and create
a benchmark that is more representative of real-
world scenarios. Our benchmark relies on a total
of eight datasets, covering multiclass classification
tasks with up to 151 classes, across four different
languages. Moreover, we further enhanced the eval-
uation process by not only considering 10 classi-
fiers trained with 10 different seeds (Logan IV et al.,
2021; Mahabadi et al., 2022), but also by relying on
episodic evaluation on 1,000 episodes (Hospedales
et al., 2021). Our results clearly demonstrate the
superiority of transductive methods.

2 Related Work

2.1 Few-shot learning in NLP

Numerous studies have tackled the task of FSL
in Natural Language Processing (NLP) by utiliz-
ing pre-trained language models (Devlin et al.,
2018; Liu et al., 2019b; Radford et al., 2019; Yang
et al., 2019). These methods can be classified into
three major categories: prompt-based, parameter-
efficient tuning, and in-context learning.
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Figure 1: API-based FSL scenario. The black-box API provides embeddings from the pretrained encoder fθ. The
black-box scenario discards existing inductive approaches and in-context learning methods due to the inaccessible
of the model’s parameters ((R1)) and privacy concerns ((R3)). This scenario, allows tuning a classification head gϕ
(using induction or transduction) at low computational cost (R2) while retaining all support labels locally.

Prompt-based FSL: Prompt-based FSL involves
the use of natural language prompts or templates
to guide the model to perform a specific task (Ding
et al., 2021; Liu et al., 2023). For example, the sem-
inal work (Schick and Schütze, 2020a) proposed
a model called PET, which uses a pre-defined set
of prompts to perform various NLP tasks as text
classification. They also impose a choice of a ver-
balizer which highly impacts the classification per-
formances (Cui et al., 2022; Hu et al., 2021a). How-
ever, recent studies have questioned the benefits of
prompt-based learning due to the high variability in
performance caused by the choice of prompt (Liu
et al., 2022). To address this issue, researchers have
proposed prompt tuning which involves a few learn-
able parameters in addition to the prompt (Lester
et al., 2021). Nevertheless, these approaches face
limitations when learning from API: (i) encoder
access for gradient computation is infeasible (as in
R1), (ii) prompting requires to send data and label
which raises privacy concerns (as in R3), and (iii)
labeling new points is time-consuming (see in R3)
and expensive due to the need to send all shots for
each input token1.
Parameter-efficient fine-tuning. These methods,
such as adapters (Houlsby et al., 2019; Pfeiffer
et al., 2020), keep most of the model’s parameters
fixed during training and only update small feed-
forward networks that are inserted within the larger
model architecture. A recent example is T-FEW
(Liu et al., 2022), which adds learned vectors that
rescale the network’s internal activations. Addition-
ally, it requires a set of manually created prompts
for each dataset making it hard to use in practice.
Relying on parameter-efficient fine-tuning methods
with an API is not possible due to the need to com-

1The cost of API queries is determined by the number of
input tokens that are transmitted.

pute gradients of the encoder (as per R1) and the
requirement to send both the labeling schema and
the labels, which violates R3.
In Context Learning (ICL). In-context learning
models are models that utilize input-to-output train-
ing examples as prompts to make predictions, with-
out any parameter updates (Wei et al., 2022). These
models, such as text-davinci, rely solely on the
provided examples to generate predictions, with-
out any additional training. However, a significant
drawback of this approach is that the user must sup-
ply the input, label examples, and task description,
which becomes prohibitively expensive when the
number of classes or shots increases, is slow (Liu
et al., 2022) (R2) and raises data privacy concerns
(as highlighted in R3). Additionally, the inabil-
ity to reuse text embeddings for new tasks or with
new labels without querying the model’s API limits
practicality and scalability, making reusable encod-
ing unfeasible for in-context learning models2.
Meta-learning. Meta-learning approaches have
for quite long stood as the de-facto paradigm for
FSL ((Snell et al., 2017; Rusu et al., 2019; Sung
et al., 2018b; Lee et al., 2019; Raghu et al., 2019;
Sun et al., 2019a)). In meta-learning, the objective
is to provide the model with the intrinsic ability
to learn in a data-efficient manner. For instance,
MAML ((Finn et al., 2017a; Antoniou et al., 2018)),
arguably the most popular meta-learning method,
tries to train a model such that it can be fine-tuned
end-to-end using only a few supervised samples
while retaining high generalization ability. Un-
like the three previous lines of work, meta-learning
methods operate by modifying the pre-training pro-

2Furthermore, as the number of considered classes in-
creases, the fixed size of the transformer limits the number
of possible shots that can be fed to the model. Previous stud-
ies have often neglected this limitation by focusing on a few
numbers of labels.
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cedure and therefore assume access to both the
training data and the model, which wholly breaks
both R1 and R3.

2.2 Inductive vs transductive learning

Learning an inductive classifier on embeddings
generated by an API-based model, as proposed
by (Snell et al., 2017), is a common baseline for
performing FSL. This approach is prevalent in NLP,
where a parametric model is trained on data to infer
general rules that are applied to label new, unseen
data (known as inductive learning (Vapnik, 1999)).
However, in FSL scenarios with limited labeled
data, this approach can be highly ambiguous and
lead to poor generalization.

Transduction offers an attractive alternative to
inductive learning (Sain, 1996). Unlike inductive
learning, which infers general rules from training
data, transduction involves finding rules that work
specifically for the unlabeled test data. By utilizing
more data, such as unlabeled test instances, and
aiming for a more localized rule rather than a gen-
eral one, transductive learning has shown promise
and practical benefits in computer vision (Boudiaf
et al., 2020, 2021; Ziko et al., 2020). Transduc-
tive methods yield substantially better performance
than their inductive counterparts by leveraging the
statistics of the query set (Dhillon et al., 2019).
However, this approach has not yet been explored
in the context of textual data.

3 API-based Few-shot Learning

3.1 Problem Statement

Let Ω be the considered vocabulary, we denote Ω∗

its Kleene closure. The Kleene closure corresponds
to sequences of arbitrary size written with tokens in

Ω, i.e., Ω∗ =
∞⋃
i=0

Ωi. Given an input space X with

X ⊆ Ω∗ and a latent space Z , we consider a pre-
trained backbone model fθ : X → Z = Rd, where
θ ∈ Θ represents the parameters of the encoder
and d is the embedding dimension size. In the
API-based setting, we assume that we are unable to
access the exact structure of fθ as mentioned in R1.
However, we do have access to the last encoder
embedding which is available for our use (see R1).

The objective of few-shot classification is to
learn a classifier from limited labeled data and gen-
eralize it to new, unseen tasks or classes. To accom-
plish this, randomly sampled few-shot tasks are
created from a test dataset Dtest := {(xi, yi)}Ntest

i=1

that has a set of unseen classes Ytest. Each task
involves a few labeled examples from K differ-
ent classes chosen at random among Ytest. These
labeled examples constitute the support set S =
{xi, yi}i∈IS , with a size of |S| = NS × K. Ad-
ditionally, each task has an unlabeled query set
Q = {xi}i∈IQ composed of |Q| = NQ × K un-
seen examples from each of the K classes. IS and
IQ represent the drawn indices during the sampling
process for support set and query set, respectively.
Pre-trained models use few-shot techniques and the
labeled support sets to adapt to the tasks at hand
and are evaluated based on their performances on
the unlabeled query sets.

Remark Setting the values of N and K in textual
FSL is not standardized, as discussed in Sec. 3.1.
Therefore, in all of our experiments, we have relied
on setting (N,K) ∈ {5, 10}2.

3.2 Proposed Transductive Method

NLP few-shot classifiers rely only on inductive
inference, while computer vision has shown signifi-
cant performance improvements using transductive
inference for FSL. Transductive inference succeeds
in FSL because it jointly classifies all unlabeled
query samples of a single task, leading to more
efficient and accurate classification compared to
inductive methods that classify one sample at a
time. Let us begin by introducing some basic no-
tation and definitions before introducing our new
transductive loss based on the Fisher-Rao distance.

In the API-based few-shot classification set-
ting, our goal is to train a classification head
gϕ : Z → RK that maps the feature representa-
tions to the posterior distribution space for mak-
ing predictions. To simplify the equations for
the rest of the paper, we use the following no-
tations for the posterior predictions of each i ∈
IS ∪ IQ and for the class marginals within Q:
pik = gϕ(fθ(xi))k = P(Y = k|X = xi; θ, ϕ) and
p̂k = 1

|Q|
∑

i∈IQ pik = P(YQ = k; θ, ϕ) where
X and Y are the r.v.s associated with the raw fea-
tures and labels, respectively, and where YQ means
restriction of the r.v. Y to set Q.

For training the classification head in the trans-
ductive setting, prior research aims at finding ϕ
such that ϕ = argminCE − λ × RQ

3, with
CE:= − 1

|S|
∑

i∈IS
∑K

k=1 yik log(pik) being the
cross-entropy supervision on the support set (in
which yik is the kth coordinate of the one-hot en-

3λ is set to 1 in all the experiments.
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coded label vector associated to sample i) and RQ

being a transductive loss on the query set Q.
Note that this transductive regularization has

been proposed in the literature based on the Info-
Max principle (Cardoso, 1997; Linsker, 1988), and
the inductive loss can be found by setting λ = 0. In
what follows, we review the regularizers introduced
in previous work.

Entropic Minimization (H) An effective regu-
larizer for transductive FSL can be derived from the
field of semi-supervised learning, drawing inspira-
tion from the approach introduced in (Grandvalet
and Bengio, 2004). This regularizer, proposed in
(Dhillon et al., 2019), utilizes the conditional Shan-
non Entropy (Cover, 1999) of forecast results from
query samples during testing to enhance model
generalization. Formally:

RH
Q =

1

|Q|
∑

i∈IQ

K∑

k=1

pik log(pik). (1)

Mutual Information Maximization (I) A promis-
ing alternative to entropic minimization for address-
ing the challenges of transductive FSL is to adopt
the Info-max principle. (Boudiaf et al., 2020) ex-
tended this idea, introduced in (Hu et al., 2017), and
propose as regularizer a surrogate of the mutual-
information RI

Q(α) =:

−
K∑

k=1

p̂k log p̂k +α
1

|Q|
∑

i∈IQ

K∑

k=1

pik log(pik). (2)

Limitation of existing strategies: Despite its
effectiveness, the previous method has a few lim-
itations that should be taken into account. One
of these limitations is the need to fine-tune the
weight of different entropies using the hyperpa-
rameter α. This parameter-tuning process can be
time-consuming and may require extensive experi-
mentation to achieve optimal results. Additionally,
recent studies have shown that relying solely on
the first Entropic term, which corresponds to the
Entropic minimization scenario in Equation 1, can
lead to suboptimal performance in FSL.

3.3 A Fisher-Rao Based Regularizer

In the FSL scenario, minimizing parameter tuning
is crucial. Motivated by this, in this section, we
introduce a new parameter-free transductive regu-
larizer that fits into the InfoMax framework. Addi-
tionally, our loss inherits the attractive properties of

the Fisher-Rao distance between soft-predictions
q := (q1, . . . , qK) and p := (p1, . . . , pK), which
is given by (Picot et al., 2023):

dFR(q,p) := 2 arccos

(
K∑

k=1

√
qk × pk

)
. (3)

The proposed transductive regularizer denoted by
RFR

Q , for each single few-shot task, can be de-
scribed as measuring the Fisher-Rao distance be-
tween pairs of query samples:

RFR
Q :=

1

|Q|
∑

i∈IQ
− log

∑

j∈IQ

K∑

k=1

√
pik × pjk (4)

=
1

|Q|
∑

i∈IQ
− log

∑

j∈IQ
cos

(
dFR(pi,pj)

2

)
, (5)

where dFR(pi,pj) is the Fisher-Rao distance be-
tween pairs of soft-predictions (pi,pj). Further-
more, it is shown that expression (4) yields a sur-
rogate of the Mutual Information as shown by the
following proposition. This result to the best of our
knowledge is new, as far as we can tell.

Theorem 1. (Fisher-Rao as a surrogate to maxi-
mize Mutual Information) Let (qi)i∈IQ be a collec-
tion of soft predictions corresponding to the query
samples. Then, it holds that ∀ 0 ≤ α ≤ 1:

RFR
Q + log |Q| ≤ RI

Q(1) ≤ RI
Q(α), (6)

Proof: Further details are relegated to Ap. A.
Advantage of RFR

Q over RI
Q(α): Similarly to

RI
Q(α), R

FR
Q can be exploited to maximize the Mu-

tual Information. However, RFR
Q is parameter-free

and thus, it does not require tuning α.

3.4 Additional Few-shot Inductive Baseline

In addition to the transductive methods of Sec. 3.2,
we will explore three additional inductive methods
for few-shot classification: prototypical networks,
linear probing, and a semi-supervised classifier.

Prototypical Networks (PT) PT learn a met-
ric space where the distance between two points
corresponds to their degree of similarity. During
inference, the distance between the query example
and each class prototype is computed, and the pre-
dicted label is the class with the closest prototype.
PT has been widely used in NLP and is considered
as a strong baseline (Snell et al., 2017; Sun et al.,
2019b; Gao et al., 2019).
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Table 1: Datasets Statistics.

Dataset Classes (K)
Tweet 20

Emotion 25
Amazon 30

B77 77
Clinc 151

Linear Probing (CE) Fine-tuning a linear head
on top of a pretrained model is a popular approach
to learn a classifier for classification tasks and was
originally proposed in (Devlin et al., 2018).

Semi-supervised Baselines (SSL). We addition-
ally propose two semi-supervised baselines follow-
ing two steps. In the first step, a classifier is trained
using the support set S and used to label Q. In the
second step, the final classifier is trained on both S
and Q with the pseudo label obtained from the first
step.

4 An Enhanced Experimental Setting

4.1 Datasets
Benchmarking the performance of FSL methods
on diverse sets of datasets is critical to evaluate
their generalization capabilities in a robust manner
as well as their potential for real-world applica-
tions. Previous work on FSL (Karimi Mahabadi
et al., 2022; Perez et al., 2021) mainly focuses
on datasets with a reduced number of classes (i.e.,
K < 5). Motivated by practical considerations
we choose to build a new benchmark composed of
datasets with a larger number of classes. Specif-
ically, we choose Go Emotion (Demszky et al.,
2020), Tweet Eval (Barbieri et al., 2020), Clinc
(Larson et al., 2019), Banking (Casanueva et al.,
2020) and the Multilingual Amazon Reviews Cor-
pus (Keung et al., 2020). These datasets cover a
wide range of text classification scenarios and are
of various difficulty4. A summary of the datasets
used can be found in Tab. 1.

4.2 Model Choice
The selection of an appropriate backbone model
is a critical factor in achieving high performance
in few-shot NLP tasks. To ensure the validity and
robustness of our findings, we have included a di-
verse range of transformer-based backbone models
in our study, including

1. Three different sizes of RoBERTa based models
(Liu et al., 2019b). Similar to BERT, RoBERTa is

4Datasets are available in Dataset (Lhoest et al., 2021)

pretrained using the closed task (Taylor, 1953). We
consider two different sizes of the RoBERTa model,
namely RoBERTa (B) with 124M parameters and
RoBERTa (L) with 355M parameters and Distil-
RoBERTa, a lighter version of RoBERTa trained
through a distillation process (Hinton et al., 2015),
for a total of 82M parameters.

2. Three sentence-transformers encoder (Reimers
and Gurevych, 2019). Following (Muennighoff
et al., 2022), we consider MPNET-base (Song et al.,
2020), MiniLM (Wang et al., 2020), and Albert
Small V2 (Lan et al., 2019).

3. Multilingual models. To address realistic multi-
lingual scenarios, we rely on three sizes of XLM-
RoBERTa (Conneau et al., 2020, 2019): base (B),
large (L) and XL (XL).

4. text-davinci model: to mimic the typical set-
ting of API-based models, we also conduct experi-
ments on text-davinci, only accessible through
OpenAI’s API.

4.3 Evaluation Framework
Prior research in textual FSL typically involves
sampling a low number of tasks, typically less
than 10, of each dataset. In contrast, we utilize
an episodic learning framework that generates a
large number of N-shots K-ways tasks. This frame-
work has gained popularity through inductive meta-
learning approaches, such as those proposed by
(Finn et al., 2017b; Snell et al., 2017; Vinyals et al.,
2016; Sung et al., 2018a; Mishra et al., 2017; Rusu
et al., 2019; Oreshkin et al., 2018), as it mimics
the few-shot environment during evaluation and
improves model robustness and generalization. In
this context, episodic training implies that a differ-
ent model is initialized for each generated few-shot
task, and all tasks are compiled independently in
parallel. This approach allows to the computation
of more reliable performance statistics by evaluat-
ing the generalization capabilities of each method
on a more diverse set of tasks. To account for the
model’s generalization ability, we average the re-
sults for each dataset over 1000 episodes, with the
N considered classes varying in every episode. For
each experiment, we consider the F1-Score.

5 Experiments

5.1 Case Study of text-davinci
In this experiment, we investigate the performance
of text-davinci in both its language model and
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Table 2: Aggregated performance over K, N, the dif-
ferent datasets for text-davinci. |x| stands for the
averaged input length.

N-shots 10 5 |x|
K-ways 10 5 10 5
FR 69.83 77.46 66.70 75.03 14.2
H 10.00 20.00 10.01 20.04 14.2
I 68.38 75.82 65.15 73.06 14.2
CE 68.21 75.47 64.92 72.70 14.2
PT 67.95 75.41 64.60 72.50 14.2
SSL 68.27 75.55 64.99 72.75 14.2
ICL 68.9 76.24 65.2 74.3 900

embedding-based model forms. We assess its clas-
sification capabilities using the aforementioned
baseline and explore the language model’s perfor-
mance when applied in an in-context learning (ICL)
setup with prompting.

Takeaways. From Tab. 2, we observe that SSL
performs comparably to CE, which is simpler to
use and will be considered as the baseline in the
next part of our study. Although ICL slightly out-
performs CE, its implementation comes at a sig-
nificant cost. In ICL, each class requires N shots,
forcing the user to send a long input query with
additional instructions. This query length becomes
prohibitive as the number of classes increases, and
on average, it is 58 times longer than using the em-
bedding base API in our benchmark. The lengthy
input and ICL approach make it time-consuming
for generation (violating R1), require the user to
provide labels (violating R2), and prevent the reuse
of embeddings for future use (e.g., retrieval, cluster-
ing). Additionally, ICL is 60 times more expensive
than CE. Thus, we will discard ICL for the subse-
quent part of this study.

5.2 Overall Results

Global results: To evaluate the effectiveness of
various few-shot methods, we conducted a com-
prehensive analysis of their classification perfor-
mance across all datasets, all backbones, and all
considered N-shots/K-ways scenarios. Results are
reported in Tab. 3. An interesting observation is
that transductive approaches I and FR outperform
their inductive counterparts (CE and PT). Notably,
we found that vanilla entropy minimization, which
solely relies on H, consistently underperforms in
all considered scenarios. Our analysis revealed
that FR surpasses traditional fine-tuning based on
cross-entropy by a margin of 3.7%.

Mono-lingual experiment: In order to thor-
oughly analyze the performance of each method,
we conducted a per-dataset study, beginning with a

Table 3: Aggregated performance over K,N, the differ-
ent datasets and considered backbone.

N-shots 10 5
K-ways 10 5 10 5
FR 52.09 61.99 48.71 56.55
I 50.07 59.17 46.42 55.74
H 15.07 27.39 15.33 25.84
CE 48.31 56.87 45.27 53.94
SSL 50.39 58.78 47.33 55.85
PT 47.29 56.05 44.32 53.20
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Figure 2: Performance on the monolingual datasets.

focus on the mono-lingual datasets. Fig. 2 reveals
that the global trends observed in Tab. 3 remain
consistent across datasets of varying difficulty lev-
els. Notably, we observed consistent improvements
achieved by transductive regularizers (such as I or
FR) over CE. However, the relative improvement is
highly dependent on the specific dataset being eval-
uated. Specifically, FR achieves +6.5% F1-score
on Banking, but only a shy +1.5% on Tweet. A
strong baseline generally suggests highly discrimi-
native features for the task, and therefore a strong
upside in leveraging additional unlabeled features,
and vice versa. Therefore, we hypothesize that the
potential gains to be obtained through transduction
correlate with the baseline’s performance.5

5.3 Study Under Different Data-Regime

In this experiment, we investigated the performance
of different loss functions under varying condi-
tions of ’ways’ and ’shots’. As shown in Fig. 3,
we observed that increasing the number of classes
(’ways’) led to a decrease in F1 while increasing
the number of examples per class (’shots’) led to
an improvement in F1. This can be explained by

5Additional multilingual results (i.e., on es, de, fr) can be
found on Sec. B.3. They exhibit the same behavior.
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Figure 3: The effect of ways and shots on test performance on monolingual (left) and multilingual (right) datasets.
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Figure 4: Impact of model size.

the fact that having more data enables the classifier
to better discern the characteristics of each class.

Interestingly, the relationship between the num-
ber of shots and classification F1 may not be the
same for all classes or all loss functions. Fig. 3
shows that different loss functions (e.g. FR on
banking) benefited greatly from adding a few shots,
while others did not show as much improvement.
However, this variability is dependent on the spe-
cific dataset and language being used, as different
classes may have different levels of complexity and
variability, and some may be inherently easier or
harder to classify than others.

5.4 Ablation Study On Backbones

In this experiment, we examined how different loss
functions perform when increasing the number of
parameters in various models. The results, pre-
sented in Fig. 4, show the average performance
across the experiments and are organized by the
loss function. We observed an inverse scaling law
for both the RoBERTa and XLM-RoBERTa fam-
ily of models, where increasing the number of pa-
rameters led to a decrease in performance for the
losses tested. However, within the same family, we
observe that the superiority of FR remains consis-
tent. An interesting finding from Fig. 4 is that the
transductive regularization technique using FR out-
performs other methods on text-davinci. This
highlights the effectiveness of FR in improving
the performance of the model and suggests that
transductive regularization may be a promising ap-
proach for optimizing language models.

Table 4: Training time for 1 episode on a M1-CPU.

Loss CPU Time
CE 0.45s
FR 0.83s
H 0.75s
I 0.83s

PT 0.01s
SSL 0.80s

5.5 Practical Considerations
In this experiment, we adopt a practical standpoint
and aim to evaluate the effectiveness of an API
model, specifically text-davinci. In Tab. 4, we
report the training speed of one episode on a MAC
with CPU. Overall, we observed that the transduc-
tive loss is slower as it necessitates the computation
of the loss on the query set, whereas PT is faster as
it does not involve any optimization. Furthermore,
we note that FR is comparable in speed to I. To
provide a better understanding of these results, we
can compare our method with existing approaches
(in the light of R2). For instance, PET (Schick and
Schütze, 2020a) entails a training time of 20 min-
utes on A100, while ADAPET (Tam et al., 2021)
necessitates 10 minutes on the same hardware.

6 Conclusions

This paper presents a novel FSL framework that
utilizes API models while meeting critical con-
straints of real-world applications (i.e., R1, R2,
R3). This approach is particularly appealing as it
shifts the computational requirements (R2), elimi-
nating the need for heavy computations for the user
and reducing the cost of embedding. To provide
a better understanding, embedding over 400k se-
quences cost as low as 7 dollars. In this scenario,
our research highlights the potential of transductive
losses, which have previously been disregarded by
the NLP community. A candidate loss is the Fisher-
Rao distance which is parameter-free and could
serve as a simple baseline in the future.
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7 Limitations

We are optimistic that our research will have a pos-
itive impact on society. Nonetheless, it is essential
to acknowledge the limitations of API-based few-
shot classification models despite their promising
results in various tasks. Firstly, the performance of
the introduced methods is heavily dependent on the
quality of available API models. If the API mod-
els do not provide sufficient information or lack
diversity, the introduced methods may struggle to
accurately classify input texts. Secondly, the black-
box nature of the backbone limits the interpretabil-
ity of API-based few-shot classification methods,
which may hinder their adoption. Ultimately, the
aim of this work is to establish a baseline for future
research on transductive inference. As a result, not
all existing transductive methods are compared in
this study.
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A Proof of Proposition 1

In this Appendix, we prove the inequality (Eq. 6) provided in Proposition 1. The right-hand side of (Eq. 6)
follows straightforwardly from the definition of RI

Q(α) and the non-negativity of the Shannon entropy. In
order to prove the first inequality, we need to introduce the following intermediate result.

For any arbitrary random variable (r.v) X and countable r.v Y , and any real number β, let

Iβ(X;Y ) := −EX⋆Y logEX

[
P (Y |X)

P (Y |X⋆)

]β
,

where the r.v X⋆ follows the same distribution than X . Notice that it is obvious that I1(X;Y ) = I(X;Y ),
where I(X;Y ) is Shannon Mutual Information.
Lemma 1. For any arbitrary r.v. X and countable r.v. Y , we have

I(X;Y ) ≥ Iβ(X;Y ), for 0 ≤ β ≤ 1.

Proof of the lemma: We must show that the different of I(X;Y )− Iβ(X;Y ) is nonnegative. To this
end, we write this difference as:

I(X;Y )− Iβ(X;Y ) (7)

= −EX⋆Y log
P 1−β(Y |X⋆)EXP (Y |X)

EXP β(Y |X)
(8)

≥ − logEX⋆Y
P 1−β(Y |X⋆)EXP (Y |X)

EXP β(Y |X)
(9)

= − log
∑

y∈Y
EX⋆P (y|X⋆)

P 1−β(y|X⋆)EXP (y|X)

EXP β(y|X)
(10)

= − log
∑

y∈Y

EX⋆P β(y|X⋆)EXP (y|X)

EXP β(y|X)
(11)

= − log
∑

y∈Y
EXP (y|X) (12)

= 0, (13)

where the first inequality follows by applying Jensen’s inequality to the function t 7→ − log(t).
Proof of Proposition 1: From Lemma 1, using Jensen’s inequality, we have

I(X;Y ) = −EX⋆Y logEX

[
P (Y |X)

P (Y |X⋆)

]
, (14)

≥ −EX⋆Y logEX

[
P (Y |X)

P (Y |X⋆)

]β
(15)

≥ −EX⋆ logEXEY |X⋆

[
P (Y |X)

P (Y |X⋆)

]β
(16)

= −EX⋆ logEX (17)
∑

y∈Y
P β(Y |X)P 1−β(Y |X⋆), (18)

where inequality (15) follows by applying Lemma 1 and inequality (16) follows by exploiting the convexity
of the function t 7→ − log(t) for any 0 ≤ β ≤ 1. Finally, it is not difficult to check from the definition of
the Fisher-Rao distance given by expression (3) that

cos

(
dFR(P (y|X = x), P (y|X = x⋆))

2

)
= (19)

∑

y∈Y

√
P (y|X = x)P (y|X = x⋆). (20)
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Table 5: Preliminary experiment results. Accuracy of the different backbone.

Model Params Emotion Twitter Clinic Banking Amazon
en en en en en fr es de

Albert Small V2 (XS) 11M 25.2 18.3 67.0 88.1 33.5 X X X
MiniLM (S) 33M 30.2 19.3 67.1 92.3 39.5 X X X

MPNET-base (B) 109M 30.2 22.5 67.4 94.3 41.3 X X X
DistilRoBERTa (S) 82M 23.3 26.0 68.5 90.9 40.0 X X X

RoBERTa (B) 124M 21.0 25.5 66.7 91.4 39.2 X X X
RoBERTa (L) 355M 15.0 23.0 64.5 90.0 38.1 X X X

XLM-RoBERTa (B) 278M 21.0 22.1 66.5 87.0 40.1 19.2 17.5 18.3
XLM-RoBERTa (L) 559M 14.0 18.0 64.5 86.2 38.2 17.5 15.6 18.1

XLM-RoBERTa (XL) 3.48B 25.4 19.0 68.9 95.0 41.0 18.9 17.9 22.0
text-davinci 175B 38.9 35.3 70.4 98.7 48.4 30.4 34.0 33.5

Using the identity given by (19) in expression (18), and setting β = 1/2, we obtain the following lower
bound on I(X;Y ):

−EX⋆ logEX cos

(
dFR(P (y|X), P (y|X⋆))

2

)

The inequality (6) immediately follows by replacing the distribution of the r.v. X with the empirical
distribution on the query and P (y|x) with the soft-prediction corresponding to the feature x, which
concludes the proof of the proposition.

B Additional Experimental Results

B.1 Preliminary Classification Results

Preliminary Experiment. In our experiments, the backbone models are of utmost importance. Our
objective in this preliminary experiment is to assess the efficacy of these models when fine-tuning only
the model head across a variety of datasets. Through this evaluation, we aim to gain insight into their
generalization abilities and any dataset-specific factors that may influence their performance. This
information can be utilized to analyze the performance of different models in the few-shot scenario, as
described in Sec. 5. We present the results of this experiment in Tab. 5, noting that all classes were
considered, which differs from the episodic training approach detailed in Sec. 5.

B.2 A Dive Into text-davinci results

text-davinci appears to be the backbone providing the most informative a priori embeddings in Tab. 5
and could be considered as the prime model for API-based FSL, showcasing the current requirements in
this area. It is thus a typical candidate for application uses that must meet the following criteria (R1) -
(R3). Therefore, we put a special emphasis on its related results.

Fig. 6 (top) details the text-davinci results of the experiments conducted on the mono-lingual
datasets. These plots highlight the consistency of the tendencies that emerged in Tab. 5, Tab. 3 and Fig. 2,
namely: the superiority of transductive approaches (FR and I) over inductive ones (CE and PT ), the
underperformance of the entropic-minimization-based strategy (H), and the higher amount of information
conveyed by text-davinci learned embeddings over other backbones, resulting in higher F1 scores on
all datasets.

These phenomena still occur in the multi-lingual setting, as illustrated in Fig. 6 (bottom), stressing
the superiority of transductive (and especially FR) over other approaches for presumably universal tasks,
beyond English-centered ones, and without the need for using language-specific engineering as for
prompting-based strategies.

Note that for both of these settings, the entropic-minimization-based strategy (H) seems to be capped at
a 15% F1 score, thus with no improvement over other backbones embeddings, and independently of the
dataset difficulty.
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Figure 6: The different losses when training a on text-davinci embeddings.

13 18 23 28 33 38 43 48 53 58

en

CEIPT H FR

50.953.9

13 18 23 28 33

es

CEIPT H FR

26.2 28.5

13 18 23 28 33

FR

CEIPT H FR

27.1 29.4

13 18 23 28 33 38

de

CEIPT H FR

30.2 34.0

Figure 8: Losses Performance on multilingual datasets.

B.3 Multilingual Experiment

To provide an exhaustive analysis, we report the same experiment that is made in Sec. 5.2, for multi-lingual
models on the Amazon dataset. While both Latin languages (French and Spanish) share close results,
with an F1 gain of 2.8% for FR over CE, the results in the German and English language exhibit an F1
increased by almost 4%.

B.4 Importance of Model Backbones on Monolingual Experiment

In this section, we report the results of our experiment aggregated per backbone. The goal is to understand
how the different losses behave on the different backbones. The results are presented in Fig. 10. While the
trends observed in the previous charts are retrieved for the majority of backbones, some of these models
are exceptions. For example, while transductive methods perform generally better than inductive methods,
the CE-based method seems to perform slightly better than I for XLM-RoBERTa-xl. Additionally,
while FR is the most effective method for the majority of backbones, it is surpassed by I for the all-
distilroberta-v1 model. Furthermore, the inverse-scaling-law details are found for the RoBERTa(B/L)
and XLM-RoBERTa (B/L) models per dataset. In general, it is interesting to note that although model
performance is constrained by dataset difficulty, the performance order of each method is consistent across
all 4 datasets for each considered backbone.
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Figure 10: Performance on monolingual datasets.

B.4.1 Results Per Language
In this experiment, we report the performance of different losses on the Amazon dataset by averaging
the results over the number of shots, ways, and model backbones. The results are presented in Tab. 6.
Our observations indicate that the transductive regularization improves the results for all languages over
the inductive baseline (i.e., CE), with a substantially higher gain for the German language. Additionally,
we note that the observed improvements for FR are more consistent. This further demonstrates that the
transductive loss can be useful in few-shot NLP. In the future, we would like to explore the application
of transductive inference to other NLP tasks such as sequence generation (Pichler et al., 2022; Colombo
et al., 2019, 2021d,b) and classification tasks (Chapuis et al., 2020; Colombo et al., 2022d,b; Himmi et al.,
2023) as well as NLG evaluation (Colombo et al., 2021e, 2022c, 2021c,a,b) and Safe AI (Colombo et al.,
2022a; Picot et al., 2022a,b; Darrin et al., 2022, 2023).

fr de en es
FR 29.36 33.98 53.89 28.47
I 27.74 31.41 51.75 26.79
H 15.04 15.13 15.04 15.04
CE 27.15 30.24 50.89 26.21
PT 26.37 29.16 50.34 25.44
SSL 27.20 30.29 50.94 26.26

Table 6: Global Results for multilingual Amazon
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