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Abstract
Subword tokenization has become the de-facto
standard for tokenization, although compara-
tive evaluations of subword vocabulary quality
across languages are scarce. Existing evalua-
tion studies focus on the effect of a tokenization
algorithm on the performance in downstream
tasks, or on engineering criteria such as the
compression rate. We present a new evalu-
ation paradigm that focuses on the cognitive
plausibility of subword tokenization. We an-
alyze the correlation of the tokenizer output
with the response time and accuracy of human
performance on a lexical decision task. We
compare three tokenization algorithms across
several languages and vocabulary sizes. Our
results indicate that the UnigramLM algorithm
yields less cognitively plausible tokenization
behavior and a worse coverage of derivational
morphemes, in contrast with prior work.

1 Introduction

When we develop natural language processing
(NLP) models, we first need to segment a stream of
text into small processable units. This preparatory
step is known as tokenization and it is more chal-
lenging than the segmentation of continuous sensor
signals because human language uses symbolic
representations. Traditionally, the space-delimited
word was considered a meaningful basic unit, but
the concept cannot intuitively be mapped to lan-
guages with a rich morphological structure such as
Turkish or Finnish, or to languages that use a writ-
ing system without white spaces such as Chinese.

More recently, the focus has shifted to smaller
character sequences known as subwords, with
the explicit goal of limiting the necessary vocab-
ulary size (which affects model size and perfor-
mance), and the implicit hope of better approx-
imating semantically-meaningful linguistic units
below the word level, i.e., morphemes. In prac-
tice, today’s dominant subword tokenization algo-
rithms are purely data-driven. They treat frequent

Sequence Tokens CHUNK RT Acc

seafood seafood 0.86 578 0.97
outfoxed out-fo-x-ed 0.50 734 0.62
*brithbloom br-ith-blo-om 0.60 693 0.97
*catchwind catch-wind 0.78 788 0.82

Table 1: Examples of lexical decision stimuli, the aver-
age response time (RT) and accuracy (Acc) of human
responses, and the output of a WordPiece tokenizer with
a vocabulary size of 50,000. Non-words are marked
with an asterisk (*). Chunkability (CHUNK) is calcu-
lated based on the rate of tokens per character (1).

sequences as single tokens (e.g., seafood), and
split less frequent ones into multiple tokens com-
posed of frequently occurring character sequences
(e.g., seabirds → seab-ird-s). Subword splits
might coincide with morpheme boundaries (the
plural marker s), but not necessarily (seab).

Previous comparisons of tokenization algorithms
focused on engineering-oriented desiderata such as
processing speed and encoding efficiency, and on
the performance of models on downstream NLP
tasks (Rust et al., 2021). In this paper, we evalu-
ate subword tokenizers from a cognitive perspec-
tive, utilizing lexical decision task measures as a
proxy for the processing complexity of individual
words. We evaluate the split rates of three tok-
enization algorithms on various languages. We
find significant correlations in line with cognitive
expectations, allowing systematic analyses of the
influence of parameters such as vocabulary size.
We observe that the UnigramLM tokenization al-
gorithm (Kudo, 2018) produces less correlative
splits than BPE (Sennrich et al., 2016) and Word-
Piece (Schuster and Nakajima, 2012), in contrast
with previous evaluations made over corpus statis-
tics and downstream tasks (Bostrom and Durrett,
2020). In further experiments, we find that multilin-
gual token vocabularies inhibit tokenizers’ ability
to predict cognitive performance as well as signs
that current popular vocabulary sizes are insuffi-
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cient for morphologically-rich languages, echoing
recent findings (Liang et al., 2023).1

2 Self-Supervised Tokenization

A tokenizer takes as input a sequence S of charac-
ters [c1, . . . , cn] and splits it into non-overlapping
substrings, the tokens [t1, . . . , tk], where k ≤ n.
Each token ti consists of a variable number of j
consecutive characters (1 ≤ j ≤ n), such that the
concatenation of the tokens ti yields the sequence
S. A tokenizer consists of a vocabulary consisting
of m tokens and an algorithm that determines the
best splits of the input S into vocabulary items ti.
See Mielke et al. (2021) for a detailed survey of
tokenization approaches.

Evaluating Vocabularies Comparative evalua-
tions of tokenization algorithms commonly focus
on downstream performance and on cross-lingual
differences. Maronikolakis et al. (2021) calcu-
late the tokenization compatibility for pairs of lan-
guages and find that the vocabulary size of a tok-
enizer needs to be adapted to the characteristics of
the language. Multilingual language models use
a single shared vocabulary for a large number of
languages to facilitate cross-lingual transfer, how-
ever, Rust et al. (2021) find improvements when
these are replaced with targeted monolingual to-
kenizers. Liang et al. (2023) propose to increase
the vocabulary size for multilingual models and
assign per-language budgets in a dynamic man-
ner, in order to mitigate effects on the splitting
ratio for languages less represented in the vocabu-
laries. They de-emphasize token sharing between
languages with little lexical overlap, in line with
Chung et al. (2020). Yehezkel and Pinter (2023)
propose to incorporate context sensitivity in order
to generate more cohesive tokenization and show
that their approach leads to increased downstream
performance for both English, and the morphologi-
cally more complex language Turkish.

Morphological Evaluation More linguistically
motivated evaluations of subword tokenization fo-
cus on morphological plausibility. Bostrom and
Durrett (2020) compare the BPE and UnigramLM
algorithms for English and Japanese and find that
the segmentation produced by the latter aligns more
closely with morphology and leads to better results
on downstream tasks, especially for Japanese. In

1All analyses are available on github: https://github.
com/clap-lab/cogtok

a similar vein, Park et al. (2021) find that BPE
does not properly reflect morphological complexity
and that enriching the model with explicit mor-
phological information leads to reduced language
modeling surprisal. Hofmann et al. (2022) show
that a vocabulary with better morphological cov-
erage leads to better performance in genre classi-
fication of English titles, and might lead to better
generalization capabilities (Hofmann et al., 2021).
Other studies have shown that these consistent
results in English do not necessarily generalize
to other languages (Mager et al., 2022), particu-
larly morphologically-rich ones (Klein and Tsar-
faty, 2020).

Morphological segmentation is related to to-
kenization, but it is sensitive to phonotactic
variations, e.g., discernible is segmented into
discern and -able (Batsuren et al., 2022). Never-
theless, the winning system at the SIGMORPHON
shared task was based on subword tokenization and
outperformed character-based approaches, indicat-
ing that subwords can approximate morphological
boundaries (Peters and Martins, 2022).

Cognitive Plausibility From a cognitive perspec-
tive, it remains an open question to which extent
lexical processing is driven by morphological units.
One of the most robust effects in lexical decision
tasks (Amenta and Crepaldi, 2012) is that mor-
phologically structured non-words cause longer re-
sponse times and lead to decreased accuracy in
word detection. Beyersmann et al. (2020) find that
this effect is stronger for German than for French,
and suggest that this is due to its larger degree of
morphological productivity. Dawson et al. (2021)
compare lexical decision times for English words
and find that priming with morphological compo-
nents (teach) leads to faster responses (teacher)
even if the prime has no semantic relation (corn
→ corner). (Yang et al., 2022) show that the pre-
diction of eye fixations is facilitated for English
and Dutch readers by operating on subtokens deter-
mined by unsupervised tokenizers instead of word
units. Stevens and Plaut (2022) claim that effects
attributed to morphological decomposition cannot
be easily disentangled from frequency effects, and
urge NLP researchers to integrate response times
into the evaluation of distributional approaches.

3 Experimental Setup

We train three tokenization algorithms on 100,000
sentences from the news domain of the Leipzig
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Language Participants Words Non-Words

English 78 28,730 27,137
Dutch 81 14,089 14,089
French 975 38,335 38,807
Spanish 209,351 45,223 56,861

Table 2: Summary statistics of the lexical decision data.

corpus (Biemann et al., 2007),2 and introduce the
chunkability metric to evaluate tokenizer output
against cognitive data from a lexical decision task.

Tokenization Models We use the Huggingface
implementations of three corpus-based subword
algorithms: byte-pair encoding (BPE), WordPiece
(WPC), and Unigram (UNI).3

BPE originated as a compression algorithm
(Gage, 1994; Sennrich et al., 2016) and has been
used in large pre-trained language models such as
GPT-2 (Radford et al., 2019). BPE vocabularies
are built bottom-up, starting with an initial vocab-
ulary of all characters. The algorithm then itera-
tively merges sequences of characters frequent in
the corpus and adds them as tokens to the vocab-
ulary until reaching the maximum size. During
inference, an input sequence is greedily split into
tokens aiming for a minimum number of splits,
see Gallé (2019) for a more detailed description.
WordPiece (Schuster and Nakajima, 2012) is a
variant of BPE which adds tokens to the vocabu-
lary when they maximally increase the likelihood
of an n-gram-based language model in the corpus,
and is decoded greedily left-to-right to find the
locally longest token available at each step. The
UnigramLM (Kudo, 2018) algorithm, in contrast,
takes a top-down approach starting with an overly
large vocabulary of all possible tokens, followed
by iteratively pruning those that lead to minimal
loss of likelihood over the corpus when they are
removed from a token-unigram language model.

Cognitive Data We use data from lexical deci-
sion tasks in British English (Keuleers et al., 2012),
Dutch (Keuleers et al., 2010), French (Ferrand
et al., 2010), and Spanish (Aguasvivas et al., 2018).
In these tasks, participants are presented with a
sequence of characters, e.g., thornier, and de-
cide whether the sequence forms a valid word in

2In pilot experiments, we explored larger training sizes but
did not observe relevant differences.

3https://github.com/huggingface/tokenizers. We
focus on character-segment models, while other approaches
operate on the single character, byte, or pixel level (Clark et al.,
2022; Xue et al., 2022; Rust et al., 2023).

their first language. The datasets contain infor-
mation about the average response time (i.e., the
number of milliseconds it took the participants to
make a decision)4 and accuracy for each stimu-
lus. Table 2 provides an overview of the number
of participants and stimuli for each dataset. Each
participant only saw a subset of the stimuli; further
details about the data collection are available in
the original references. Since the Spanish study
was a crowd-sourcing project, we removed outliers
with a reported response time in the first and last
percentiles (<484 and >7,753 ms, respectively).

Metric A sequence of characters [c1, . . . , cn] is
split into tokens [t1, . . . , tk]. We base our metric on
the intuition that fewer splits generally indicate a
better fit and that longer sequences are more likely
to be split. Our metric therefore takes both n and
k into account to measure how well the tokenizer
handles the sequence. We define the chunkability
of a sequence as a value that decreases as the ratio
of tokens over characters increases:

chunkability = 1− #tokens
#chars

= 1− k

n
. (1)

If a token is split into individual characters, chunk-
ability is zero. For tokens that are not split, chunk-
ability approaches one as the number of characters
increases, reflecting the increasing challenge of
fitting long words into the vocabulary.5

4 Results

We test the hypothesis that sequences with higher
chunkability are easier to process for humans and
are more likely to be considered words. Figure 1
visualizes Pearson’s correlation between the chunk-
ability of a sequence and the response time and ac-
curacy observed from humans rating the sequence,
and Table 1 illustrates some typical examples. We
can see that for a sequence that qualifies as a word,
like seafood, a higher chunkability score (i.e., eas-
ier processing by the tokenizer) is likely to co-occur
with higher accuracy and a lower response time.
For non-words, we observe the reverse tendencies:
non-word sequences with a high chunkability such
as catchwind require longer response times and

4While this duration is usually characterized as reading
time in the resources, we agree with the observation of a re-
viewer that it remains unclear how much time the participants
spend reading and use the term response time instead.

5For comparison, we also ran our experiments by using
the number of splits (without normalization) as our metric, see
Appendix B.
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Figure 1: Pearson correlation between the chunka-
bility of a sequence and the observed accuracy and
response time of human participants in a lexical de-
cision task. All tokenizers are trained on the same
data (per language) with a vocabulary size of 50,000.
In all cases, model results are significantly differ-
ent from the length baseline (p<0.01) according to
the Fisher z-transformation (using an implementation
by Philipp Singer: https://github.com/psinger/
CorrelationStats). The comparisons between UNI
and BPE/WPC are significant in 22 out of 32 condi-
tions. The differences between BPE and WPC are not
significant in most comparisons.

are less accurately identified as non-words than
an unusual sequence such as brithbloom. These
patterns are consistent across algorithms and lan-
guages, whereas a baseline that only considers char-
acter length cannot capture the effect (longer se-
quences generally lead to longer response times).
The correlation for the UnigramLM algorithm is
systematically lower than for the other two algo-
rithms, suggesting a contrast with morphology- and
corpus-based measures considered by Bostrom and
Durrett (2020). For French, chunkability seems
to be less correlated with human responses, echo-
ing findings related to cognitive performance in
a morphologically-primed environment (Beyers-
mann et al., 2020).

While the absolute correlation scores might be
of limited explanatory value, we find the relative
differences between conditions a relevant point of
information for further development.6

6For a complementary perspective, we ran a linear regres-
sion analysis on the words to compare to a frequency measure
which can be found in Appendix C. We are also considering
alternative correlation metrics such as Spearman’s, Kendall’s,
and Goodman-Kruskal. Initial analyses indicate that they cap-
ture similar tendencies.

Figure 2: Differences between pre-trained monolingual
and multilingual tokenizers measured as Pearson cor-
relation between the chunkability of words and the ob-
served accuracy and response time of human partici-
pants in a lexical decision task. All differences between
the tokenizers’ performance are statistically significant
(p<0.01), except for two comparisons of the multilin-
gual tokenizers (correlation with accuracy for French
and correlation with reading time for Spanish).

Figure 3: Pearson correlation between the WordPiece
chunkability of a word and the observed accuracy in hu-
man responses to a lexical decision task, as vocabulary
size grows.

Cross-lingual Vocabulary It has been shown
that the “curse of multilinguality” reduces the per-
formance of multilingual models compared to their
monolingual counterparts (Conneau et al., 2020).
Rust et al. (2021) show that this difference in per-
formance is strongly related to the tokenizer. We
compare cognitive plausibility of monolingual and
cross-lingual tokenizers of pretrained models in
Figure 2, and affirm that the monolingual tokenizer
aligns much better with human responses than the
cross-lingual ones.7 See also Appendix D.

Vocabulary Size and Morphology The chunk-
ability values vary with the size of the vocabulary
of the tokenizers. Figure 3 shows how the cor-
relation with human responses increases with the
vocabulary size of the WordPiece tokenizer until

7We use the following huggingface models: GroNLP/bert-
base-dutch-cased (Dutch), bert-base-uncased (English),
camembert-base (French), dccuchile/bert-base-spanish-wwm-
uncased (Spanish), bert-base-multilingual-uncased and xlm-
roberta-base (crosslingual). BERT-based models use Word-
Piece tokenization, XLM-RoBERTa uses BPE.
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Figure 4: Coverage of derivational morphemes in the
vocabulary of WordPiece (△) and UnigramLM (⋆) for
13 languages.

it plateaus for most languages at 50,000.8 To test
whether this effect may be related to morpholog-
ical coverage, we use morphological annotations
for 13 languages from the SIGMORPHON shared
task (Batsuren et al., 2022) and extract an inventory
of derivational morphemes for each language. We
only used derivational morphemes which occur in
at least 0.1% of the annotations (to avoid rare mor-
phemes such as oculo), yielding between 80 and
140 derivational morphemes per language. From
the coverage curves in Figure 4, we see that deriva-
tional coverage increases with vocabulary size, but
morphologically-rich languages such as Russian,
Polish, and Mongolian remain unsaturated even
with a vocabulary size of 50,000. This suggests
that previous work on morphological segmenta-
tion which used significantly smaller vocabulary
sizes (e.g., Peters and Martins, 2022) did not un-
cover the full potential of the approach. We also see
that WordPiece tokens overall provide better cover-
age of morphemes than UnigramLM, reinforcing
our findings from the previous experiments.

5 Conclusion

We propose a new evaluation paradigm for compar-
ing subword tokenization algorithms using cogni-
tive data. We introduce a novel metric to capture
the chunkability of a sequence that correlates with
cognitive phenomena of lexical recognition. The
overall trends suggest that the connection between
plausibility tasks and segmentation is meaningful
enough to be used as a benchmark. We find a lower
cognitive correlation for the UnigramLM algorithm
than for WordPiece and BPE, which does not nec-

8The tendencies for BPE and UNI are comparable.

essarily align with previous work evaluating tok-
enizers on morphological segmentation and down-
stream performance, suggesting that our framework
provides a complementary perspective to tokenizer
vocabulary evaluation. Our analyses on vocabulary
size and morphological coverage provide initial in-
sights towards the development of cognitively and
linguistically more plausible tokenizers.

Limitations

Our cognitive analyses are limited to two Romance
and two Germanic languages. The response times
were collected as separate experiments with slight
variations in the data collection procedure (i.e.,
number of stimuli per participant, background
of participants) and might not be directly com-
parable. We average over the responses, which
may conceal individual differences between respon-
dents (Plank et al., 2014; Kidd et al., 2018; Pavlick
and Kwiatkowski, 2019). Pearson’s ρ has a ten-
dency to pick up spurious correlations (Aldrich,
1995), which is why we abstract from absolute val-
ues and focus on relative differences between con-
ditions. The quality of the selection of derivational
morphemes is determined by the characteristics of
the SIGMORPHON datatset.

Ethics Statement

We use datasets that have been fully anonymized
and adhere to ethical guidelines for data collection.
Our analyses do not reveal metadata of the par-
ticipants that would enable identification. Claims
about cognitive plausibility need to be made with
caution because the procedural patterns underlying
human language processing still remain an open
research question. We have therefore paid spe-
cial attention to a realistic interpretation of our re-
sults and avoid overpromising messages (Lipton
and Steinhardt, 2019).
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A Language Codes

The abbreviations used in Figure 4 correspond
to ISO 639-3 codes and are mapped as fol-
lows: swe = Swedish, deu= German, eng= En-
glish, cat= Catalan, spa= Spanish, fra= French,
ita= Italian, por= Portuguese, hbs= Serbo-Croatian,
ces= Czech, rus= Russian, pol= Polish, hun= Hun-
garian, fin= Finnish, mon= Mongolian.

B Number of Splits

In the chunkability metric, we normalize by the
length of the sequence. For comparison, we also
ran our experiments by simply using the number of
splits as a metric. The tendencies in the results in
Figure 5 are comparable for the two metrics except
for the correlations with the response time for non-
words which are substantially less consistent with
cognitive phenomena for the number-of-splits mea-
sure. We assume that this can be explained through
the finer range of values afforded by chunkability.

Figure 5: Pearson correlation between the number of
splits a tokenizer assigns to a sequence and the observed
accuracy (top) and response times (bottom) in human
responses to a lexical decision task. All tokenizers are
trained on the same data (per language) with a vocabu-
lary size of 50,000. Note that the correlation directions
are reversed compared to Figure 1, as we did not take
the inverse.

C Regression Analysis

In this paper, we focus on the evaluation of sub-
word tokenizers and not on predicting cognitive
phenomena. However, one of the reviewers in-
spired us to run a demonstrative linear regression
analysis for the words in the dataset. For all four
languages, we found that both chunkability and

frequency obtained similar low mean squared er-
ror (0.00–0.06) on the test data for both response
time and accuracy. However, all explained vari-
ance scores are negative (with systematically higher
scores when predicting with frequency and partic-
ularly low scores for French and Dutch response
times). We assume that the low explained variance
is related to the finegrained cognitive signal and to
individual differences in the responses. Prediction
would probably be easier when predicting classes
(e.g., high/low) instead of absolute values. We are
interested in diving deeper into these pilot analyses
in cooperation with cognitive scientists. Finally, we
note that while frequency is only available for true
words, chunkability can be a proxy for frequency
effects in non-words as well.

MSE EV
Lang Signal CHUNK FREQ CHUNK FREQ

eng RT .01 .01 -14.73 -0.54
Acc .06 .05 -3.73 -0.91

nld RT .03 .03 -38.28 -2.51
Acc .04 .04 -5.01 -2.33

fra RT .02 .01 -124.78 -2.28
Acc .02 .02 -6.96 -4.24

spa RT .01 .00 -18.18 -0.03
Acc .06 .05 -2.88 -0.56

Table 3: Linear regression results as mean squared error
(MSE) and explained variance (EV) for the words in our
dataset with a random 80/20 train-test split. We com-
pare the two features chunkability (CHUNK) and word
frequency (FREQ). Frequency is determined using Zipf
frequency scores obtained from the wordfreq package
v3.03 (https://pypi.org/project/wordfreq), and
chunkability is determined using the WordPiece tok-
enizer. We predict the two signals response time (RT)
and accuracy (Acc) separately using the standard lin-
ear regression model from the sklearn package v1.3
(https://scikit-learn.org/stable). Both signals
are normalized using min-max scaling.

D Four-lingual Vocabulary

In order to better control the effect of vocabulary
sharing, we also trained tokenizers on all the En-
glish, Dutch, French, and Spanish training data
jointly. Figure 6 illustrates the results for the Word-
Piece tokenizer and shows that the correlation is
lower for multilingual models but improves when
increasing the vocabulary.
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Figure 6: Pearson correlation between the chunkability of a sequence and the observed response times and accuracy
in human responses to a lexical decision task. To determine the chunkability, we trained the WordPiece (WPC)
tokenizer on monolingual and four-lingual training data with vocabulary sizes of 50k and 70k.
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