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Abstract

Due to its growing impact on public opinion,
hate speech on social media has garnered in-
creased attention. While automated methods
for identifying hate speech have been presented
in the past, they have mostly been limited to
analyzing textual content. The interpretability
of such models has received very little atten-
tion, despite the social and legal consequences
of erroneous predictions. In this work, we
present a novel problem of Distress Identifi-
cation and Cause Extraction (DICE) from mul-
timodal online posts. We develop a multi-task
deep framework for the simultaneous detec-
tion of distress content and identify connected
causal phrases from the text using emotional
information. The emotional information is in-
corporated into the training process using a
zero-shot strategy, and a novel mechanism is de-
vised to fuse the features from the multimodal
inputs. Furthermore, we introduce the first-of-
its-kind Distress and Cause annotated Multi-
modal (DCaM) dataset of 20,764 social media
posts. We thoroughly evaluate our proposed
method by comparing it to several existing
benchmarks. Empirical assessment and com-
prehensive qualitative analysis demonstrate that
our proposed method works well on distress
detection and cause extraction tasks, improv-
ing F1 and ROS scores by 1.95% and 3%, re-
spectively, relative to the best-performing base-
line. The code and the dataset can be accessed
from the following link: https://www.iitp.
ac.in/~ai-nlp-ml/resources.html#DICE.

1 Introduction

The exponential expansion of microblogging sites
and social media not only empowers free expres-
sion and individual voices, but also allows individ-
uals to exhibit anti-social conduct (ElSherief et al.,
2018), such as cyberbullying, online rumours, and

[*] These authors contributed equally to this work and are
the joint first authors.

spreading hate remarks (Ribeiro et al., 2018). Abu-
sive speech based on race, religion, and sexual ori-
entation is becoming more common (Karim et al.,
2020). Automatic identification of hate speech and
raising public awareness are critical tasks (Karim
et al., 2020). Manually evaluating and validating
a large volume of web information, on the other
hand, is time-consuming and labor-intensive.

Figure 1: Sample Distressed posts from our DCaM
dataset. Span annotation is highlighted in red.

Modern language models excel over traditional
machine learning and neural network-based ap-
proaches but lack transparency in output transfor-
mation, posing limitations in domains, such as the
military, medical research, and internet content
monitoring. Robust models for monitoring dis-
tressed content online require multimodal inputs.
In our "DCaM" dataset, Figure 1 highlights the sig-
nificance of multimodality and span annotations in
comprehending distress content. While both posts
are labeled as "distressed," the first post may not of-
fer sufficient information based on textual content
alone. However, the second post, with both picture
and text, provides clarity, and the span annotation
aids in analyzing the manifestation of distress.

This necessitates a shift in viewpoint away
from performance-based models and toward inter-
pretable models. We address model explainabil-
ity by jointly learning the target classification of a
multimodal social media post as Distressed or Non-
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distressed and extracting the reasons for the classi-
fication decision (for the Distressed class) from the
textual input. The prime focus of this study is to
comprehend the causes associated with any form
of offensive content (hate, offensive, abusive, etc.).
We club all the connotations of offensive content
under the category distressed.

The main contributions are summarized below:

1. We propose the novel task of Unified Distress
Identification and Cause Extraction (DICE)
from multimodal online posts.

2. We develop a multi-task deep framework for
the simultaneous detection of distress content
and identify connected causal phrases from
the text using emotional information.

3. We devise a zero-shot strategy to dynamically
incorporate emotional information into train-
ing and propose a novel fusion mechanism to
infuse the features of multimodal inputs.

4. The first Distress and Cause annotated Mul-
timodal (DCaM) corpus is created consisting
over 20,764 social media posts.

5. Resources are open-sourced to aid research.

The rest of the paper is organized as follows.
Section 2 summarises some previous works in this
area. We discuss the dataset preparation in Sec-
tion 3. Section 4 addresses our proposed methodol-
ogy in depth, followed by the results and analysis
in Section 5. Finally, we conclude our discussion
in Section 6 and define the scope of future work.

2 Related Work

Several approaches have been suggested to identify
online hate speech (Burnap and Williams, 2016;
Zhang et al., 2018; Qian et al., 2018). The current
interest in hate speech research has led to the avail-
ability of datasets in several languages (Sanguinetti
et al., 2018; Ousidhoum et al., 2019) and differ-
ent computational ways to counteract online hate
(Mathew et al., 2019; Aluru et al., 2020). Text-,
user-, and network-based traits and characteristics
that identify bullies have been extracted in (Chatza-
kou et al., 2017). Deep learning Lundberg and
Lee (2017); Founta et al. (2019) has been used
extensively to identify hate speech keyword identi-
fication, sexism, bullying, trolling, and racism.

Recent research on identifying hate speech has
made use of deep learning techniques, including
neural networks (Han and Eisenstein, 2019) and

word embedding techniques (McKeown and Mc-
Gregor, 2018). Recent models based on Transform-
ers (Vaswani et al., 2017) have had extraordinary
success. Since this is essentially a classification
problem, BERT (Bidirectional Encoder Represen-
tations from Transformers) (Devlin et al., 2018) has
found widespread use in the field of hate speech
identification. Ranasinghe et al. (2019) showed that
a BERT-based model performed better than mod-
els based on recurrent neural networks (RNNs).
Zaidan et al. (2007) first proposed the use of ra-
tionales, where human annotators highlight text
that supports their classification decision. This
work was enhanced by Yessenalina et al. (2010)
to provide self-generating rationales. An encoder-
generator system for quality rationales without
annotations was presented in Lei et al. (2016).
Mathew et al. (2021) used dataset rationales to
fine-tune BERT to address bias and explainability.

Recent research has shifted towards accommo-
dating multimodal content, with a focus on de-
tecting hate speech and objectionable material in
various media. Gandhi et al. (2019) developed
a computer vision-based technique for identify-
ing offensive and non-offensive images in large
datasets. Kiela et al. (2020) introduced a novel chal-
lenge for multimodal hate speech detection in Face-
book memes. Rana and Jha (2022) employed the
Hate Speech Recognition Video Dataset to identify
emotion-based hate speech in a multimodal context.
Karim et al. (2022) presented a dataset for detect-
ing hate speech in Bengali memes and text. Fersini
et al. (2022) discussed SemEval-2022 Task 5, fo-
cusing on identifying misogynous memes through
text and images, including sub-tasks for recogniz-
ing misogynous content and categorizing types of
misogyny. Hee et al. (2022) investigated multi-
modal hateful meme detection models and their
ability to capture derogatory references in both
images and text. Additionally, Cao et al. (2022)
introduced PromptHate, a model that leverages pre-
trained language models with specific prompts and
examples for hateful meme classification.

Even though multimodal studies on offensive
content have gotten a lot of attention, this study is
the first to look at how to find distressed content
on social media and figure out what caused it. Ad-
ditionally, this work presents the first Distress and
Cause annotated Multimodal (DCaM) corpus of
social media posts to the research community.
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Datasets Labels Total Size Language Multimodal? Rationales?
Waseem and Hovy (2016) Racist, Sexist, Normal 16,914 English x x

Davidson et al. (2017) Hate Speech, Offensive, Normal 24,802 English x x
Founta et al. (2018) Abusive, Hateful, Normal, Spam 80,000 English x x

Ousidhoum et al. (2019) Labels for five different aspects 13,000 English, French, Arabic x x
Mathew et al. (2021) Hate Speech, Offensive, Normal 20,148 English x ✓

DCaM (ours) Distressed (Hate-Offensive-Abusive), 20,764 English ✓ ✓
Non-distressed (causes)

Table 1: Comparisons of different distress datasets.

3 Dataset

We discuss the data collection and annotation de-
tails in the following subsections.

3.1 Data Collection

We collect our dataset from sources where previ-
ous studies (Davidson et al., 2017; Zannettou et al.,
2018; Mathew et al., 2021) on hate speech have
been conducted: Twitter and Gab1. The data was
scraped from the top 5 trending topics on Twitter
using selenium2 to reduce the effects of sample
bias. As for Twitter, we selected the top 10 per-
cent of all collected tweets between October 2022
and December 2022. Using the textual mode of
scraped tweets, we generated a list of the most fre-
quent words, which we then used as tags to gather
the posts from Gab. Please refer to Appendix Sec-
tion A.1 for details on data collection from Gab,
including keywords used for the DCaM dataset
(see Table 8). To compile this data, we scoured
Gab for posts between November and December
2022. Posts that have been deleted and reposted
are not considered. We also remove links from
posts to ensure that annotators can access all rele-
vant information. A number of distress datasets are
compared in Table 1.

3.2 Data Annotation

To ensure the dataset consists of only English posts,
we used the TextBlob library for language detec-
tion and included only those identified as English.
Additionally, non-English posts were flagged and
excluded during annotation. Annotators were in-
formed about the presence of hate or offensive con-
tent beforehand. Annotation guidelines3 from Poria
et al. (2021); Ghosh et al. (2022c) were provided to
assist annotators in understanding the classification
and span annotation tasks. Each post was annotated

1https://twitter.com/, https://gab.com/
2https://pypi.org/project/selenium/
3The annotation guidelines are discussed in Section A.2 of

the Appendix

by five annotators4 (DI task), and then majority vot-
ing was applied to decide the final label.

There are two kinds of annotations in our dataset.
First, whether the post is Distressed or Non-
distressed post. Second, if the text is considered
as Distressed by majority of the annotators, we ask
the annotators to highlight parts of the text that in-
clude terms that might be a plausible basis for the
provided annotation. These span annotations help
us to delve further into the manifestations of hatred
or offensive speech.

Twitter Gab Total
Distressed 3248 5210 8458

Non-distressed 7066 5240 12306
Total 10314 10450 20764

Table 2: Dataset details

Figure 2: Samples from our dataset

For the Distressed Identification task, the Krip-
pendorff’s α for the inter-annotator agreement is
0.66 which is much higher than other hate speech

42 Ph.D. Linguistics degree holders, 2 Ph.D. students, and
1 Undergraduate student from the Computer Science discipline
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Figure 3: Illustration of the proposed Depression Identification and Cause Extraction (DICE) framework

datasets (Ousidhoum et al., 2019; Mathew et al.,
2021). Following the work in (Poria et al., 2021;
Ghosh et al., 2022c), we marked at most 3 causal
spans for a distressed post in the dataset. The fi-
nal causal span is marked using the span-level ag-
gregation approach detailed in (Gui et al., 2016).
We use the macro-F1 measure to assess inter-rater
agreement based on previous work on span extrac-
tion (Poria et al., 2021; Ghosh et al., 2022c), and
achieve an F1-score of 0.73, suggesting that the
annotations are of high quality. Table 2 contains
further information about the dataset obtained. Fig-
ure 2 shows samples of our dataset. The average
number of tokens highlighted per distressed post is
8.55, and the average token per post is 25.43.

4 Methodology

In this section, we illustrate our proposed DICE
framework, which is a multitask system for Depres-
sion Identification and Cause Extraction from mul-
timodal social media posts. The system employs a
zero-shot strategy to dynamically incorporate emo-
tional information into training and presents a novel
fusion mechanism to infuse the features from the
multimodal inputs. The overall architecture of the
proposed method is shown in Figure 3a.

4.1 Problem Formulation

Given a post P = [s1, · · · si · · · , sp] composed of a
sequence of sentences (s), and each utterance can
be further decomposed into a sequence of words. p
indicates the number of sentences in the post. The
objective is to determine if the post is distressed or
not (0 or 1) and to extract every plausible causal
span that supports the prediction.

4.2 Proposed DICE Framework

Textual Encoder. Our textual encoder uses
BERT followed by an ontology-based word graph.
BERT extracts local information from a text. On-
tology is the backbone of knowledge graphs (KGs)
(Song et al., 2022), which give meta-data descrip-
tions to guide the creation and completion of knowl-
edge graphs. Additionally, relation descriptions
contain semantic information that can be used to
represent relations. During Graph Neural Net-
work (GNN) message transmission, we embed text
within ontology nodes. First, all the nodes are em-
bedded using node embedding and text embedding
as follows:

ho = hoWE
o and ht =

N∑

n=1

xiWE
t (1)
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where WE
t is word text embedding (BERT), WE

o

is graph embedding, xi depicts a node (represent-
ing a word). ho is a concept in ontology. Fig-
ure 3b illustrates the interaction between the vocab
graph and BERT embedding to establish relation-
ships. Our method enriches the text-embedding
and graph-embedding space, enabling the identifi-
cation of previously unseen relationships between
graph embeddings of the head and tail.

ra =

N∑

n=1

g(h) (2)

where, ra is aggregate relationship, g(*) is aggre-
gate function, and N is neighboring nodes for the
missing node.

Image Encoder. We use ResNet5 to capture fa-
cial expressions and visual surroundings for rich
emotional indicators from the image in the input
post. We separated the embedding dimensions and
image data into groups to simplify the problem and
make better use of the complete embedding space.
Each learner will create a unique distance metric us-
ing just a subspace of the original embedding space
and a portion of the training data. By segmenting
the network’s embedding layer into D consecutive
slices, we are able to isolate D unique learners in-
side the embedding space. After learner solutions
converge, we aggregate them to obtain the whole
embedding space. The merging is accomplished
by recombining the slices of the embedding layer
that correspond to the D learners. To ensure unifor-
mity in the embeddings produced by various learn-
ers, we then perform fine-grained tuning across the
entire dataset. The merged embeddings may be
hampered by the gradients, which resemble white
noise and would hinder training performance. This
is called the "shattered gradients problem". To ad-
dress this, residual weights (Balduzzi et al., 2017)
provide the gradients with some spatial structure,
which aids in training, as shown in Figure 3b.

Inter-modal Fusion (IMF). The IMF module
exchanges information and aligns entities across
modalities (text and image) to learn joint inter-
modality representations. Figure 4 illustrates the
mechanism of inter-modal fusion.

Text infused visual features (and vice-versa).
We use an external word embedding model to build
high-level representations (Ti’) for an image-text

5https://github.com/josharnoldjosh/
ResNet-Extract-Image-Feature-Pytorch-Python

pair consisting of Ii and Ti. Cross attention
is employed to combine the textual and visual
features to create the Text infused visual features
(TV ). Taking into account the spatial properties of
the channel-wise features, the query vectors (Q) are
generated by convolution with N*kernels on each
channel of Ii and then averaging (avg pooling) the
feature maps as illustrated in Figure 4. Similarly,
we construct the Visual infused textual features
(VT ) by exchanging Ii and Ti. In particular, the
key vectors (K) are produced by convolution
with N*kernels on each channel of Ii’ and then
averaging (average pooling) the feature maps.

Cross-Attention. First, we take the query vector
from one modality (say image, I) and the key/value
pair from the other (say text, T). To examine how
text affects the image vector, we feed the query (Iq)
and textual key/value to self-attention (selfAtt(.)).

Iq = Query(I)

Tk, Tv = Key(T ), V alue(T )

STA = selfAtt(Tk, Tv, Iq)

(3)

We filter noise from the output of the self-attention
using the forget gate (σ) and concatenate it with
the linear layer’s residual (c.f. Figure 4).

GTI = Concat(linear(STI), σ(linear(STI)))
(4)

Finally, we pass the representations of all the
modalities (i.e., text, and image) through another
self-attention to know how much the image vector
will be impacted by text [CrossT I = SA(GTI , Iq)]
Please note that bolded I in CrossT I represents the
impacted modality (i.e., I). Similarly, we compute
CrossIT and concatenate all of them to obtain the
cross-attentive multimodal features.

Final Fusion. Although, the TV and VT can in-
dependently conduct image-text multimodal recog-
nition, to further enhance the model’s performance,
we apply self-attention to fuse the two aforemen-
tioned feature vectors.

Class Penalty. The inter-modal fusion unit re-
ceives a class penalty value to help the model un-
derstand the link between a unified distress label
and the input post. This improves the prediction
of start and end tokens. The equations below origi-
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Figure 4: Inter-modal Fusion

nally represent softmax and sigmoid:

L = − 1

bs

bs∑

i=1

log
expWli+bi

∑N
j=1 exp

Wlj+bj
(5)

L = − 1

bs

bs∑

i=1

1

expWli+bi
(6)

Where, li ∈ Rd is the feature of ith sample;
bs is batch size; bi and bj denote the bias; and
W ∈ Rd∗n denotes the weight matrix. Information
extraction tasks are notoriously difficult to find the
decision boundary for the start and end markers
of a span, and a basic softmax/sigmoid classifier
cannot manage this distinction. Some samples may
be misclassified due to the classification boundary’s
ambiguity. This may require a faster convergence
rate. We use the Insightface loss technique (Deng
et al., 2019) to normalize the feature li and weight
matrices. W to assess feature similarity based on
the angle difference by which it maps the vector
more closely. To converge the feature, it adds a
penalty value x to the angle.

Lu1 = − 1

bs

bs∑

i=1

log
expa(cos(θ+x))

expa(cos(θ+x))+
N∑

j=1

expa(cos(θ))

(7)

Lu2 = − 1

bs

bs∑

i=1

1

expa(cos(θ+x))+expa(cos(θ))

(8)

where Lu1 and Lu2 is updated loss functions
for softmax and sigmoid, respectively, θ denotes
the angle between weight W and feature l and a
denotes the amplifier function.

Emotion Features. We consider Ekman’s (Ek-
man, 1992) emotion classes and initialize them
with the BERT (Devlin et al., 2018) vectors to rep-
resent their semantic features.

Reconstruction Loss. An auto-encoder recon-
structs adjective-noun pair (ANP) features6 and
produces latent features while maintaining emotion
information in the learned latent space to match
label and ANP feature structures. By optimizing
the following loss function, the auto-encoder input
(A) and output (Â) must be sufficiently close to
identify its parameters.

Lre = ||Â(IMF (a, t))−A(IMF (a, t))||22
Also, optimizing this loss results in lower-
dimensional input features and high-accuracy
feature reconstruction.

Adversarial loss. Our objective is to maintain
the discriminative capacity of the combined fea-

6To begin, we employ mid-level semantic representations
of ANP features for the creation of an intermediary latent
space. When provided with a training image, we opt for the
application of the pre-trained ANP detector, DeepSentiBank
(Chen et al., 2014) , to extract the ANP feature . To establish
a proficient latent space conducive to a concise representation
of the original affective features , we embrace the utilization
of an auto-encoder model.
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Modality Distress Identification Cause Extraction
F1 (%) ACC. (%) FM PM HD JF ROS

DICE (T) 86.12 86.54 38.74 40.51 0.66 0.82 0.84
DICE (I) 70.15 72.11 28.41 31.28 0.52 0.71 0.71

ViL-BERT CC 83.75 84.78 - - - - -
Visual BERT COCO 85.27 86.30 - - - - -

DICE (T+I) 87.71 89.53 41.31 45.48 0.69 0.85 0.88

(a) Results across different modalities. Here, T: Text, I: Image

Models KC Inf F
BERT-HateXplain 2.98 2.73 3.12

SpanBERT 3.26 3.47 3.55
CMSEKI 3.41 3.43 3.63

DICE (Proposed) 3.69 4.07 3.98

(b) Results of human evaluation. Here, KC: Knowl-
edge Consistency, Inf: Informativeness, F: Fluency

Table 3: Results of the DICE framework on the DCaM dataset. Values in bold are the maximum scores attained.

ture of the text and visual i.e.A(IMF (a, t)), and
combine it with the rich emotional structural data
contained in feature ϕ(lemo). This is accomplished
by using an adversarial restriction that seeks to
trick a discriminator network D such that the out-
put A(IMF (a, t)) features are as comparable as
the ANP features:

Ladv = Ey(logD(h(y))− Ey(logD(θ(y))

Where θ(y) defines the combined feature of text
and image i.e. MF (a,t); and h(y) defines the la-
tent feature space. The generator network (auto-
encoder) minimizes this loss to learn how to gener-
ate emotionally rich labels that closely match the
ANP features, ensuring accurate label generation.

Zero-shot loss. Suppose θ(x) defines the com-
bined feature of text and image i.e. MF(a,t), and
ϕlemo) defines the semantic feature of the label.
The objective here is to reduce the distance be-
tween these two using the following function:

Lzl = ||θ(MF (x)− ϕlemo)||22
The zero-shot loss enhances the generation of ac-
curate and emotionally rich labels by aligning the
combined feature of text and image with the seman-
tic feature of the emotion classes.

Joint Loss. The model is trained using a unified
loss function defined below:

Ljoint = Ladv + Lzl + Lre

Emotion Label Prediction. For a given post
(text+image), our model will classify the labels
using a simple nearest neighbour (NN) search. Let
us suppose that the post and labels are fed into the
embeddings to obtain θ(MF (a, t)) and ϕ(lemo).

||θ(MF (a, t))− ϕ(lemo)||22
4.2.1 Calculation of Final Loss
As illustrated in equation 9, the model is trained
using a unified loss function. For both the DI and

CE tasks, we employ binary cross-entropy loss.

L =
∑

ω

WωLω (9)

Here, ω represents the two tasks, DI and CE. The
weights (Wω) are updated using back-propagation
for specific losses for each task.

5 Experiments and Results

This section discusses the results and the analysis.
Due to space constraints, we discuss the experimen-
tal setup in Section A.3 and the evaluation metrics
in Section A.5.1 in the Appendix.

5.1 Baselines

Our framework combines distress identification
and cause extraction into a single automated sys-
tem, utilizing classification and span detection.
Due to the lack of suitable multimodal baselines
with similar objectives, existing automated sys-
tems were used for evaluation. We compare
our proposed DICE approach and the presented
DCaM dataset against various baselines, includ-
ing BiRNN-Attn (Liu and Lane, 2016), CNN-GRU
(Zhang et al., 2018), BiRNN-HateXplain (Mathew
et al., 2021), BERT (Liu et al., 2019a), BERT-
HateXplain (Mathew et al., 2021), SpanBERT (Liu
et al., 2019b), and CMSEKI (Ghosh et al., 2022b).
To thoroughly evaluate our approach on multi-
modal inputs, we employed two widely-used mul-
timodal baselines, ViLBERT CC (Lu et al., 2019)
and Visual BERT COCO (Li et al., 2019), to assess
the distress identification task in our dataset. We
discuss the baselines briefly in Section A.4 of the
Appendix.

5.2 Results and Analysis

Table 3 shows the results of the proposed DICE
framework on the introduced DCaM dataset.
Specifically, we show the modality-varying results
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Models Distress Identification (DI) Cause Extraction (CE)
F1 (%) ACC. (%) FM PM HD JF ROS

BiRNN-Attn (Liu and Lane, 2016) 75.47 76.71 26.21 30.41 0.51 0.69 0.74
CNN-GRU (Zhang et al., 2018) 76.13 78.11 27.13 30.92 0.53 0.70 0.75

BERT (Liu et al., 2019a) 81.78 82.41 31.32 36.38 0.58 0.75 0.78
BiRNN-HateXplain (Mathew et al., 2021) 77.71 78.58 28.51 32.16 0.54 0.72 0.76
BERT-HateXplain (Mathew et al., 2021) 82.69 83.19 33.41 37.73 0.60 0.77 0.79

SpanBERT (Joshi et al., 2020) 82.83 83.66 33.98 38.22 0.61 0.77 0.79
CMSEKI (Ghosh et al., 2022a) 84.17 85.31 36.39 38.22 0.64 0.80 0.81

DICE (Proposed) 86.12 86.54 38.74 40.51 0.66 0.82 0.84

Table 4: Results from the DICE model and the various baselines. Here, the bolded values indicate maximum scores.

in Table 3a. The bi-modal (Text+Image) configu-
ration yields the best results, followed by the uni-
modal network. The textual modality outperforms
the others when compared independently, as texts
have less background noise than visual sources.
For the similar tasks, our results are consistent with
prior studies (Hazarika et al., 2018).

Human evaluation. A qualitative human review
was conducted on 300 randomly selected posts
from the test dataset to assess the model’s identified
causes. The assessment used three well-defined
measurements (Singh et al., 2022), with scores
ranging from 0 to 5 based on Fluency, Knowledge
Consistency, and Informativeness7. Scores of 0
were given to the most incorrect responses, while
the best responses received a score of 5. In Table
3b, it can be seen that, compared to the various
baselines, the proposed framework has done well
for all the manual evaluation measures. Our sug-
gested approach results in a higher Knowledge Con-
sistency score, ensuring that the extracted causal
spans are consistent with annotated causal spans.
The Informativeness and Fluency of our proposed
framework is likewise of high quality. These re-
sults demonstrate our model’s strong ability to un-
derstand offensive information and produce results
comparable to human annotators.

Comparison with Existing Works. Table 4
demonstrates that CMSEKI is the best-performing
baseline, which is not unexpected considering that
it grasps the input information using common-
sense knowledge from external knowledge sources.
However, the DICE model beats CMSEKI on all
measures, especially by 1.95% F1 for the DI task
and 3 ROS points for the CE task. SpanBERT is the
highest-performing baseline that does not employ

7We discuss the definition of each metric in Appendix
A.5.2

any external information, outperforming other com-
parable systems. However, it falls short by 2.88%
F1 for the DI task and 5 ROS points for the CE task
when compared to our DICE framework. Further-
more, the DICE method managed to outperform the
sophisticated state-of-the-art multimodal language
models, ViL-BERT CC and Visual BERT COCO.
The results analysis reveals that BERT, SpanBERT,
and BERT-HateXplain exhibit notably lower perfor-
mance in the task of cause extraction for offensive
content. This observation underscores the inherent
difficulty that even powerful language models face
when it comes to discerning crucial aspects, such
as identifying causes, within offensive content.

Setup F1DI (%)
[T+I]-TV 84.68 (-3.03)
[T+I]-VT 83.92 (-3.79)
[T+I]-DS 85.74 (-1.97)
[T+I]-IMF 82.76 (-4.95)

[T+I]-IMF+DS 82.11 (-5.60)
[T+I]-IMF+DS+AE 81.40 (-6.31)

[T+I]-IMF+DS+AE+VG 79.98 (-7.93)
DICE (Proposed) 87.71

Table 5: Results of ablation experiments. The % fall
in scores are shown in brackets. IMF: Inter-Modal Fu-
sion, AE: Autoencoder, DS: DeepSentiBank, VG: Vo-
cab Graph, TV: Text infused visual features, VT: Visual
infused textual features

Ablation Study. To examine the importance of
the different modules in DICE framework, we re-
move the constituent components, one at a time,
and report the results in Table 5. Specifically, we
conduct five ablation experiments: first, we replace
the proposed Inter-modal fusion (IMF) mechanism
by linear concatenation to fuse multimodal fea-
tures ([T+I]-IMF). Next, we independently eval-
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Model Text Label

1. Human Annotator Colorado school bus driver faces criminal charges for slapping a 10-year-old student in the face for not wearing a mask Distressed

BERT-HateXplain Colorado school bus driver faces criminal charges for slapping a 10-year-old student in the face for not wearing a mask Distressed

SpanBERT Colorado school bus driver faces criminal charges for slapping a 10-year-old student in the face for not wearing a mask Distressed

CMSEKI Colorado school bus driver faces criminal charges for slapping a 10-year-old student in the face for not wearing a mask Distressed

Proposed Colorado school bus driver faces criminal charges for slapping a 10-year-old student in the face for not wearing a mask Distressed

2. Human Annotator If you need #violence to defend against #Jewish ideas, your ideas aren’t #terrorism they are #SelfDefence . Food For Thought. Distressed

BERT-HateXplain If you need #violence to defend against #Jewish ideas, your ideas aren’t #terrorism they are #SelfDefence. Food For Thought. Distressed

SpanBERT If you need #violence to defend against #Jewish ideas, your ideas aren’t #terrorism they are #SelfDefence. Food For Thought. Non-Distressed

CMSEKI If you need #violence to defend against #Jewish ideas, your ideas aren’t #terrorism they are #SelfDefence. Food For Thought. Distressed

Proposed If you need #violence to defend against #Jewish ideas, your ideas aren’t #terrorism they are #SelfDefence. Food For Thought. Distressed

Table 6: Sample predictions from the various systems

uate the impact of one modality on the other by
removing TV and VT one by one. We observe
from Table 5 that removing the text-infused vi-
sual features (TV) has a more detrimental effect
on the system’s performance compared to remov-
ing the visual infused text features (VT). Next,
we remove DeepSentiBank sahi kya h(DS) along-
side IMF ([T+I]-IMF+DS), and, finally, we substi-
tute the proposed IMF, DS and AE mechanism by
linear concatenation to fuse multimodal features
([T+I]-IMF+DS+AE). We observe a notable fall in
scores when either of these modules is removed
from the DICE approach, especially when we re-
move the IMF+DS+AE module. This establishes
that all components of the DICE model developed
for multimodal data contribute to the success of the
defined tasks in a zero-shot environment.

Basic Model Ladv Lre Lal F1DI(%)

✓ 82.98 (-4.73)
✓ ✓ ✓ 86.01 (-1.72)
✓ ✓ ✓ 85.51 (-2.20)
✓ ✓ 83.70 (-4.01)
✓ ✓ ✓ ✓ 87.71

Table 7: Affect of different loss functions. Basic model
combines semantic features via zero-shot loss function

To investigate the significance of the loss func-
tions in DICE, we remove them one by one and re-
port the results in Table 7. In the first ablated model,
we remove all three loss functions (i.e., Ladv, Lre,
and Lal). We remove the Lre loss function in the
second model and the Ladv adversarial function in
the third. In the fourth model, we remove Ladv and
Lre. When any of these losses is eliminated from
DICE, we see a performance decline when com-
pared to the proposed method. The performance
drop is the largest (4.73%) when all three losses are
eliminated. Clearly, loss functions play a crucial
role in training the entire model end-to-end.

Qualitative Analysis. We thoroughly examined
the predictions made by the different systems. Con-
sider the examples in Table 6. The top row dis-
plays the tokens (or ‘causes’) that human anno-
tators noted and that they consider representing
the causes. for the post being Distressed. The
next four rows show the extracted tokens from
the various models. We observe that the proposed
DICE model correctly categorizes the examples
as distressed and also extracts good-quality causal
spans. In the second example, we observe that
although the SpanBERT model extracts a partial
causal span correctly, it assigns the wrong label
(Non-distressed). We also analyze the cases where
the proposed model performs poorly. In the interest
of space, we present the discussion in the Appendix
(section A.6).

6 Conclusion

In this work, we present a novel problem of Dis-
tress Identification and Cause Extraction (DICE)
from multimodal online posts. We develop a multi-
task, deep framework for detecting distress content
and identifying associated causal phrases from text
using emotional information. We devise a zero-shot
strategy to dynamically incorporate emotional in-
formation into training and propose a novel fusion
mechanism to infuse the features of multimodal
inputs. Furthermore, we introduce the first Distress
and Cause annotated Multimodal (DCaM) corpus,
consisting of over 20,764 social media posts. We
illustrate the effectiveness of our method by com-
paring it to several state-of-the-art baselines. When
compared to human performance, the present state-
of-the-art models perform poorly, which serves to
emphasize the difficulty of the task at hand. We
believe our work will advance multimodal reason-
ing and comprehension while also assisting in the
resolution of a significant real-world problem.
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Limitations and Future Scope

Due to the low prevalence of hate speech on social
media (approximately 3% of messages are hateful),
(Fortuna and Nunes, 2018)), we scrape posts by
searching for hate words to increase the likelihood
of encountering hate-offensive content. This may
have invited some undesired sampling bias while
constructing the dataset. Additionally, emoticons
and other non-standard symbols like $ are often
used in current online interactions. One potential
research direction is to use these neglected visual
features of text information to adapt to more realis-
tic settings.

Ethical Consideration

We created our resource using publicly accessible
social media postings. We adhered to the data use
guidelines and did not infringe on any copyright
problems. Our Institutional Review Board also
reviewed and approved this research. We make
the code and data accessible for research purposes
through an appropriate data agreement mechanism.
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A Appendix

We discuss the implementation details and present
supporting details of the considered baselines and
the human evaluation metrics. We also discuss a
vivid qualitative analysis that compares our model’s
predictions with the best-performing baselines.

Figure 5: Word Cloud from Distressed posts.

A.1 Word characteristics
We generate word clouds to graphically represent
the word frequencies that appear more frequently
in the Distressed and Non-distressed posts. The
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bigger the term in the visual, the more often it ap-
peared in user descriptions. Figures 5 and 6 show
the word clouds generated from the 100 most fre-
quent words of each class. The difference in word
choices for the distinct classes is evident from the
figures. Table 8 shows some keywords used for
crawling posts from Twitter and Gab to develop
the DCaM dataset. Initially, we randomly crawled
around 5000 posts each for a period of 1 week from
both Twitter and Gab and performed topic model-
ing to fetch the trending topics. We randomly use a
subset of these topics to crawl posts for our dataset.
From the collected posts, we create a bag of fre-
quently occurring hashtags and use the generated
set to crawl further posts. We take care of non-
repetition in the collected posts by maintaining the
post IDs. Lastly, to supplement the lack of offen-
sive posts being crawled, we use the synonyms of
the words ’hate’, and ’offensive’ and use them as
tags (like for the word ’offensive’ an example syn-
onym could be ’insult’ and gab URL that can be
used: https://gab.com/tags/insult) to extract
posts during data scraping.

Figure 6: Word Cloud from Non-distressed posts.

A.2 Annotation Guidelines

Our annotation guidelines are rooted in the works
of (Poria et al., 2021; Ghosh et al., 2022c). The an-
notators were instructed to identify the set of causal
spans that accurately depict the reasons for a post
being tagged as distressed given an input post with
that label. The annotators annotated a post with the
No_cause tag if the cause of the post was latent,

Trending Hashtags
#MusicBankinChile, #RichaChadha, #SafeFlightOurAstronaut,

#Casteist_BCCI, #TheWhiteLotus, #InvestMPinBengaluru,
#LopezMartin, #mondaythoughts, #TradersWithDelhiBJP,

#RiotGamesONE, #thursdayvibes, #WatchingCricketOnPrime,
#NintendoSwitch2022, #AAPProtectsCorruption,

#MumbaiAttacks, #MondayMotivation, #KashmirFiles,
#IndigoByRM, #pac12championship, #GoBlue,

#GujaratElectionResult, #ThePayoff, #TheGameAwards,
Trending Topics

Thanksgiving, Galwan, Shame On You NBT,
False News Not Required, Media SoldOut InSSRCase,

Fake News Factory, Modiji FastTrack SSRCase,
Never Forget, Spiritual Revolution, Cause of Conspiracy,
Hurdle For Missionaries, Israel, One Future, Presidency,

SSRCulprits Whitewash Shameful, APOLOGIZE TO LISA,
Hunter Biden, James Gunn, Christmas, Ukraine

Hate-Offensive Synonyms
toxic, illegal, slave, panic, victim, crisis,

assault, protect, terror, protest, teach, justice, sad,
alone, broken, feelings, mood, stressed, depression, pain,

ugly, attack, shameless, stupid, poverty,
revenge, hell, poor, liers, suffer, violence

Table 8: Sample keywords used for scarping posts to
construct DCaM.

that is, if there was no stated causal span. Two
human experts—graduate students with adequate
task knowledge—annotated every post. We used
the union of candidate spans from distinct annota-
tors as the final causal span only when the size of
their intersection was at least 50% of the size of
the smallest candidate span. A third annotator was
brought in if the final span could not be determined
from the previous spans. This third annotator was
similarly told to choose shorter spans over larger
spans where they could adequately depict the rea-
son without losing any information.

A.3 Experimental Setup

We use PyTorch8, a Python-based deep learning
package, to develop our proposed model. We con-
duct experiments with the BERT import from the
huggingface transformers 9 package. To establish
the ideal value of the additive angle x, which affects
performance, five values ranging from 0.1 to 0.5
were examined. The default value for x is 0.30. We
set amplification value a as 64. All experiments
are carried out on an NVIDIA GeForce RTX 2080
Ti GPU. We conducted a grid search across 200
epochs. We find empirically that our Embedding

8https://pytorch.org/
9https://huggingface.co/docs/transformers/

index
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size is 812 bytes. We use Adam (Kingma and Ba,
2015) for optimization. The learning rate is 0.05,
and the dropout is 0.5. The auto-latent encoder’s
dimension is fixed at 812. The discriminator D con-
sists of two completely linked layers and a ReLU
layer and accepts 812-D input features. Stochastic
gradient descent has a learning rate of 1e-4 and a
weight decay of 1e-3. with a momentum of 0.5. We
perform 5 cross-validations of the DCaM dataset
for training and testing purposes. We run our ex-
periments for 200 epochs and report the averaged
scores after 5 runs of the experiments to account
for the non-determinism of Tensorflow GPU opera-
tions.

A.4 Baselines

We discuss the details of the considered baselines
below. Similar to the DICE approach, to adapt
the baselines to our multi-task scenario, we add a
linear layer on top of the hidden-states output in the
output layer of the CE task to calculate span start
and end logits. The output layer for the CE task
employs sigmoid activation, in which the threshold
value is set at 0.4.

A.4.1 BiRNN-Attention
The only difference between this model and the
BiRNN model is the addition of an attention layer
(Liu and Lane, 2016) after the sequential layer. In
order to further train the attention layer outputs, we
calculate the cross entropy loss between the atten-
tion layer output and the ground truth attention.

A.4.2 CNN-GRU
Zhang et al. (2018) employed CNN-GRU to
achieve state-of-the-art on several hate speech
datasets. We add convolutional 1D filters of win-
dow sizes 2, 3, and 4, with 100 filters per size,
to the existing architecture. We employ the GRU
layer for the RNN component and max-pool the
hidden layer output representation. This hidden
layer is routed via a fully connected layer to yield
prediction logits.

A.4.3 BERT
We fine-tune BERT (Liu et al., 2019a) by adding a
fully connected layer, with the output correspond-
ing to the CLS token in the input. Next, to add
attention supervision, we try to match the atten-
tion values corresponding to the CLS token in the
final layer to the ground truth attention. This is
calculated using a cross-entropy between the atten-

tion values and the ground truth attention vector, as
detailed in (Mathew et al., 2021).

A.4.4 ViL-BERT CC
ViL-BERT CC (Lu et al., 2019) is a variant of
the ViL-BERT model that has been pre-trained on
the Conceptual Captions (CC) dataset. Conceptual
Captions is a large-scale dataset containing image-
caption pairs sourced from the web. By leveraging
the rich and diverse data in CC, ViL-BERT CC is
designed to understand and generate captions for
images, enabling tasks such as image captioning,
visual question answering, and image retrieval.

A.4.5 Visual BERT COCO
Visual BERT COCO (Li et al., 2019) is a vari-
ant of the Visual BERT model that has been
pre-trained on the Common Objects in Context
(COCO) dataset. COCO is a widely used dataset
for object detection, segmentation, and captioning
tasks. By pre-training on COCO, Visual BERT
COCO learns to encode visual features and under-
stand the context of images, enabling tasks such
as object recognition, image captioning, and visual
question answering. Visual BERT COCO enhances
the model’s ability to analyze visual content and
perform various vision-related tasks.

A.4.6 BiRNN-HateXplain and
BERT-HateXplain

We fine-tune the models10 made available by
Mathew et al. (2021) on our DCaM dataset by
changing the output layers as described earlier to
suit our task’s objective.

A.4.7 SpanBERT
SpanBERT (Joshi et al., 2020) follows a differ-
ent pre-training objective compared to traditional
BERT system (e.g. predicting masked contiguous
spans instead of tokens) and performs better on
question-answering tasks. Following the work in
(Ghosh et al., 2022c) where SpanBERT is used to
solve a mix of classification and cause extraction
tasks, we fine-tune the SpanBERT base model on
our DCaM dataset to meet our objective.

A.4.8 Cascaded Multitask System with
External Knowledge Infusion
(CMSEKI)

We contrast the performance of our model with
the state-of-the-art CMSEKI system presented in

10https://github.com/punyajoy/HateXplain
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(Ghosh et al., 2022b). CMSEKI leverages common-
sense knowledge in the learning process to address
multiple tasks simultaneously.

A.5 Metric Definitions
The following metrics collectively provide a quan-
titative assessment of how well our model performs
in the task of extracting causal spans for manifesta-
tions and determinants.

A.5.1 Evaluation Metrics
• Full Match (FM): This metric measures the

percentage of predicted outputs that exactly
match the ground truth outputs. In the con-
text of span extraction, it would indicate the
proportion of extracted causal spans that are
completely correct.

• Partial Match (PM): This metric evaluates
the similarity between the predicted outputs
and the ground truth outputs, but it allows for
some degree of variation. It takes into account
cases where only a portion of the prediction
matches the ground truth. This can be useful
when the extracted causal spans are almost
correct but might have minor variations.

• Hamming Distance (HD): Hamming Distance
is a measure of the difference between two
strings of equal length. It counts the number
of positions at which the corresponding sym-
bols in the two strings are different. In the
context of causal extraction, it could represent
the number of positions where the predicted
and ground truth causal relationships differ.

• Jaccard Similarity (JS): Jaccard Similarity is a
measure of set similarity that calculates the ra-
tio of the size of the intersection of two sets to
the size of their union. In the context of causal
extraction, it would assess the similarity be-
tween the sets of tokens (or other elements) in
the predicted and ground truth sequences.

• Ratcliff-Obershelp Similarity (ROS): The ROS
is a sequence comparison metric that mea-
sures the similarity between two sequences by
identifying the common substrings between
them. It calculates a similarity score based
on the length of the longest common subse-
quence between the sequences. This metric
would quantify how much of the predicted
causal spans match the ground truth causal
spans in terms of shared subsequence patterns.

A.5.2 Human Evaluation-based Metrics
1. Fluency: This determines whether or not the

extracted span is fluent and natural. Natural
and regular answers get a score of 5, whereas
inarticulate ones receive a 0.

2. Knowledge consistency: This determines
whether or not the produced answer has used
the appropriate knowledge. If the model gen-
erates responses based on irrelevant informa-
tion, it must get a score of 0, while the se-
lection of pertinent knowledge must receive a
score of 5.

3. Informativeness: This metric is used to as-
sess how informative the produced replies are.
Here, a score of 0 means that the replies are
uninformative, and a score of 5 means that
they are.

A.6 Error Analysis
Although our proposed DICE framework performs
well in the majority of the test cases, still there are
certain scenarios where it fails to make the correct
predictions. We show some sample predictions
from the test set in Table 9. In the first two in-
stances, our model is able to partially predict the
causal spans; however, in the first example, it fails
to categorize the post as Distressed. It is also to
be noted that the model extracted span in the sec-
ond example seems to be more appropriate than
the actual annotation by the human annotator. The
model rightfully ignores the irrelevant information
’Video shows’ and focuses on the relevant action
part of the post. This illustrates our model’s strong
ability to comprehend offensive reasoning among
diverse test cases. In the third and fourth examples,
our model fails to extract any relevant cause from
the given input. Moreover, in the third example,
the model wrongly categorizes the post as Non-
distressed. This can be due to the lack of sufficient
context that hindered our model’s comprehension
ability for the given input.
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Post Extracted Span Predicted Label
Partially extracted causal spans

1. Rutgers Professor On White People: “ We Gotta Take These MF’ers Out! ”
#Rutgers #Professor #WhitePeople

Take These MF’ers Out! Non-Distressed

2. EXCLUSIVE: Video shows terrifying ambush-style robbery, shooting in
San Francisco #California #Crime

terrifying ambush-style robbery,
shooting in San

Distressed

Causal spans not extracted
3. Apu reads a children’s book about a transsexual Nazi. No_Cause Non-Distressed

4. Speaking with Raymond Ibrahim about #Christian Persecution No_Cause Distressed

Table 9: Error Analysis from the Proposed Systems. Color Coding: Blue- Correct, Red: Incorrect; Teal: Incomplete.
Highlighted text in pink shows the human-annotated causal spans.
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