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Abstract

Machine learning (ML) systems in natural lan-
guage processing (NLP) face significant chal-
lenges in generalizing to out-of-distribution
(OOD) data, where the test distribution dif-
fers from the training data distribution. This
poses important questions about the robustness
of NLP models and their high accuracy, which
may be artificially inflated due to their under-
lying sensitivity to systematic biases. Despite
these challenges, there is a lack of comprehen-
sive surveys on the generalization challenge
from an OOD perspective in natural language
understanding. Therefore, this paper aims to
fill this gap by presenting the first comprehen-
sive review of recent progress, methods, and
evaluations on this topic. We further discuss
the challenges involved and potential future
research directions. By providing convenient
access to existing work, we hope this survey
will encourage future research in this area.

1 Introduction

Pre-trained Language Models (PLMs) (Devlin
et al., 2018; Liu et al., 2019b; Radford et al.,
2018) have revolutionized natural language pro-
cessing (NLP) and enabled remarkable advances
in Large-scale Language Models (LLMs) (Touvron
et al., 2023; Gozalo-Brizuela and Garrido-Merchan,
2023; Pichai, 2023) . Despite substantial progress
in developing accurate models in several natural
language understanding tasks, including sentiment
analysis (Kaushik et al., 2019; Ni et al., 2019; Yang
et al., 2021; Lu et al., 2022; Luo et al., 2022a,b),
natural language inference (Williams et al., 2018),
and machine reading comprehension (Kaushik and
Lipton, 2018; Sugawara et al., 2020), a major chal-
lenge persists – out-of-distribution (OOD) gener-
alization – which entails the ability of a model to

1These authors contributed equally to this work.
2“Large Language Models (LLMs)” refers to recent gen-

erative models while “Pre-trained Language Models refers to
small-scale pre-trained models” in this paper.

accurately classify text instances from distributions
different from those of the training data (Ben-David
et al., 2010; Hendrycks and Gimpel, 2017; Hup-
kes et al., 2022). This paper aims to provide a
comprehensive overview of the current state of re-
search in OOD generalization for natural language
understanding, highlighting key methodologies, ad-
vancements, and unique challenges.

The importance of OOD generalization in NLP
cannot be overstated, as real-world data often ex-
hibit diversity and unpredictability. Numerous ap-
plications, such as sentiment analysis, document
categorization, and spam detection (Shen et al.,
2021; Yang et al., 2022), necessitate models ca-
pable of adapting to novel and unforeseen data
distributions. While machine learning models gen-
erally demonstrate strong in-distribution perfor-
mance, their performance frequently deteriorates
when confronted with OOD instances, underscor-
ing the need for effective strategies that facilitate
generalization beyond the training distribution.

Although research on OOD generalization in
NLP is emerging, it is not on the scale of other
tasks like computer vision (Ye et al., 2021; Koh
et al., 2021) and time series (Du et al., 2021b;
Gagnon-Audet et al., 2022). Furthermore, most
related surveys in NLP focus on measuring and
improving model robustness against adversarial at-
tacks (Schlegel et al., 2020; Arora et al., 2021), or
providing causal explanations (Keith et al., 2020).
Among them, Wang et al. (2021d) is the most rele-
vant review to this paper, but their work does not
differentiate between data-level variance and short-
cut features and also not discuss LLMs.

To address these limitations, this survey provides
an extensive examination of the existing literature
on OOD generalization in NLP, covering a diverse
array of techniques and approaches. We focus on
two perspectives of OOD generalization: the data
distribution, which is model-independent and the
feature distribution, which is model-oriented. Ad-
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ditionally, we discuss the evaluation metrics and
benchmarks employed to assess the effectiveness
of these techniques, as well as the limitations and
drawbacks of current methodologies.

Throughout this survey, we trace the evolution
of OOD generalization techniques in natural lan-
guage processing, from the early approaches based
on traditional machine learning algorithms to more
recent advancements driven by deep learning ar-
chitectures, also including the discussion of the
most recent emergent abilities of LLMs. We iden-
tify the key innovations and breakthroughs that
have shaped the field, while also highlighting ar-
eas where progress has been relatively slow or
incremental. Our analysis emphasizes the inter-
connected nature of these advancements and the
importance of driving fundamental research in the
generalization problem towards unforeseen data
distributions. In addition, this survey aims to iden-
tify open challenges and future directions for OOD
generalization in NLP, especially for LLMs. We
discuss the limitations of current techniques, poten-
tial avenues for improving model robustness and
adaptability, and emerging research trends that may
contribute to the development of more effective
OOD generalization strategies.

The remainder of this survey is organized as
follows: we formalize the scope of OOD general-
ization in Section 2. Then, we propose a novel
taxonomy towards OOD robustness and review
existing methodologies developed for addressing
OOD issues in Section 3. In particular, we identify
two salient aspects of OOD generalization, namely
Data Variance and Shortcut Features. We outline
two representative application scenarios in Section
4, namely Deployment in High-stake Domains and
Social Bias. We also introduce the methods for
improving the OOD robustness in Section 5 before
discussing the redefinition of OOD in the era of
large language models.

2 The Scope of OOD Generalization

Denote a set of labeled data as D = {(xi, yi)}Ni=1,
where an input x ∈ X , output y ∈ Y , and N is the
number of datasets. A training dataset Dtrain ={(Xtrain, Ytrain)} is generated by sampling from
D with distribution Ptrain, and the test dataset
Dtest = {(Xtest, Ytest)} is sampled from D with
distribution Ptest. Out-of-distribution (OOD)
refers to the circumstance when Ptrain ≠ Ptest.

In the context of text classification, let X be the

set of all possible documents, Y be the set of all
possible labels, and D be a training distribution
defined on X × Y . Suppose the true target distri-
bution is PX ,Y , which is close to but not identical
to D with PX ,Y ≠ D. When we encounter a doc-
ument that is drawn from a distribution QX that
is significantly different from PX , we refer to it
as an out-of-distribution (OOD) sample. An OOD
sample may have a vocabulary or language not
presenting in PX .

A text classification model f ∶ X → Y is consid-
ered OOD if its performance on QX is significantly
worse than on PX due to the distribution shift. The
OOD detection function can be derived from a prob-
abilistic perspective using Bayesian inference. In
this case, we can estimate the posterior probability
of a document being OOD given its bag-of-words
features through Bayesian model averaging:

P (OOD∣x) = ∑
θ

P (OOD∣θ,x)P (θ∣x)
= ∑

θ

P (x∣OOD, θ)P (OOD∣θ)P (θ)
P (x)

where θ denotes the model parameters, x is
the bag-of-words representation of a document,
P (OOD∣θ) is the prior probability of the model
being OOD assuming the model parameter θ,
P (x∣OOD, θ) is the likelihood of observing the
bag-of-words features x given that the document
is OOD and the model parameter θ, P (θ) is the
prior probability of the model parameter θ, and
P (x) is the marginal likelihood of observing the
bag-of-words features x.

The conditional OOD probability of model fθ
on input x given the parameter θ is defined as:

P (OOD∣θ,x) = P (x∣OOD, θ)P (OOD∣θ)
P (x∣θ) .

As can be seen from the above equations, OOD
can be perceived in terms of both the data- and
model- levels, robust models can be more resistant
to data variances. The OOD detection function can
be defined as a threshold on the posterior OOD
probability:

g(x) = [max
y

P (y∣x) < ϵ],
where P (y∣x) is the posterior probability of the
document belonging to class y given the bag-of-
words features x, and ϵ is a threshold parameter
that determines the confidence of the prediction.
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“e-commerce” and 045
“network”.

Premise
Entailment
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Contradiction

Two dogs are running through a field.  
There are some animals outdoors.   

Some puppies are running to catch a stick besides a boy on the playground.  
Pets are sitting.  

Length (Spurious Feature)

5(<7)
14(>12)
3(<5)

OOD TestTechnology Biology
“Metaverse” “network” 
“Blockchain” …

“COVID-19” “vaccine” 
“diagnostic” …

Figure 1: Taxonomy of OOD generalization scope and examples.

The OOD detection performance can be evalu-
ated using metrics such as the Receiver Operating
Characteristic (ROC) curve or the Kolmogorov-
Smirnov (KS) statistic, which capture the trade-off
between true positive rate and false positive rate, or
the maximum distance between the cumulative dis-
tribution functions of the OOD and in-distribution
predictions, respectively.

3 Taxonomy of Out-of-Distribution
Problems

We classify OOD problems into two perspectives,
as depicted in Figure 1, namely Data and Features.
Data variance encompasses the domain general-
ization problem, while “shortcut features" repre-
sent a range of issues typically caused by shortcut
learning, which cannot be avoided from inductive
reasoning.

3.1 Data
Data variance can be seen as a typical problem of
domain generalization methods, assuming the un-
availability of labeled or unlabeled data from the
target domain. Previous studies have explored this
approach in sentiment analysis (SA) (Kaushik et al.,
2019; Ni et al., 2019; Yang et al., 2021; Lu et al.,
2022), natural language inference (NLI) (Williams
et al., 2018; Hendrycks et al., 2020), and named
entity recognition (NER) (Jia and Zhang, 2020;
Plank, 2021). Different domains have intrinsically
different feature distributions, and instances from
different domains have different predicted vocabu-
lary distributions, which leads to the OOD general-
ization challenge, as shown in Figure 1.

Numerous NLP studies aim to tackle system-
atic variations between training and testing distri-
butions, encompassing a vast body of literature on
domain generalization (Blitzer et al., 2006; Ganin
et al., 2016; Ruder and Plank, 2018; Han and Eisen-
stein, 2019; Guo et al., 2020) and cross-task trans-

fer (Johnson et al., 2017; Levy et al., 2017; Eriguchi
et al., 2018; Wang et al., 2022). These studies can
be broadly categorized into input-level variation
and output-level variation. Notable comprehensive
surveys dedicated to this task include those by Ram-
poni and Plank (2020) and Wang et al. (2021d) but
fail to decouple data and features.

Compositional generalization refers to the chal-
lenge of learning the distribution of atoms given
the surface distributions of their compositions. It
has garnered significant attention in NLP research,
encompassing areas such as semantic parsing (Iyer
et al., 2017; Gupta et al., 2022), QA (Gu et al.,
2021; Lewis et al., 2021), machine translation (Li
et al., 2021), and general natural language under-
standing (NLU) tasks (Lake and Baroni, 2018; Key-
sers et al., 2020). Researchers (Keysers et al., 2020;
Kim et al., 2021) have found that state-of-the-art
neural models struggle to generalize to novel com-
pounds in a manner similar to human performance.
Several benchmarks have been introduced to eval-
uate compositional generalization. For example,
the SCAN dataset by Lake and Baroni (2018) is
designed for sequence-to-sequence generalization
(Russin et al., 2019; Li et al., 2019a; Gordon et al.,
2019; Andreas, 2020). Additionally, Keysers et al.
(2020) and Kim and Linzen (2020) propose the
CFQ and COGS benchmarks, respectively, for se-
mantic parsing. Li et al. (2021) propose the CoGni-
tion dataset to assess how neural machine transla-
tion models generalize to novel compounds (Hup-
kes et al., 2020; Zheng and Lapata, 2021; Dankers
et al., 2021; Jung, 2022).

To address the challenges of compositional gen-
eralization, achieving OOD robustness is highly de-
sirable as current NLP models have shown fragility
to variations in expression, where even minor punc-
tuation changes can lead to different outputs (Wang
et al., 2021c). Furthermore, Moradi et al. (2021) ob-
serve significant performance decay of NLP mod-

4535



els in domain-specific tasks, such as the clinical do-
main, due to noise, grammar errors, missing words,
punctuation, typos, and other factors. Additionally,
Wang et al. (2021c) develop a unified multilingual
robustness evaluation platform for NLP tasks to
provide comprehensive robustness analysis.

Another source of OOD data is human-crafted
adversarial data. For example, the recently pro-
posed contrast sets (Kaushik et al., 2019; Gardner
et al., 2020; Warstadt et al., 2020) reveal the failure
of capturing true underlying distributions, which
show the fragility of models against small varia-
tions of input expressions. In addition, although
researchers also propose a benchmark to reveal the
importance of OOD detection (Hendrycks and Gim-
pel, 2017; Hendrycks et al., 2020; Fort et al., 2021),
there is a consensus that we still lack a standard
definition of OOD examples and fine-grained eval-
uations. A full survey of current available OOD
datasets can be found in Appendix A.

3.2 Features

Models’ predictions are often influenced by short-
cut features learned from spurious patterns between
training data and labels, as well as existing short-
cuts in the dataset. For instance, as illustrated in
Figure 1 (Model Perspective), sentence length has
inadvertently become a learned feature during train-
ing, where 60% of the hypotheses in entailment
examples have 7 or fewer tokens and half of the hy-
potheses with more than 12 or fewer than 5 tokens
are neutral or contradiction, respectively (Gururan-
gan et al., 2018).

Ideally, a model should learn rational (Jiang
et al., 2021; Lu et al., 2022) features for robust
generalization. Take sentiment classification for
example. In order to decide a positive polarity for
the sentence “I like this movie.”, a rationale fea-
ture should be “like” rather than “movie”. The
latter is referred to as a spurious feature (Kaushik
et al., 2020), which leads to reduced generaliza-
tion. Other cases of feature issues include shortcut
features (Geirhos et al., 2020). For instance, in
machine reading comprehension, if the question
asks for a date and the input passage contains only
one date, a model can bypass a reasoning process
and directly use the date feature for output (Lai
et al., 2021). For numerical (Hendrycks et al., 2020;
Wang et al., 2021a; Cobbe et al., 2021) and logi-
cal (Yu et al., 2019b; Liu et al., 2021c) reasoning
tasks, the rationale feature should be the underlying

algebraic and logic deduction, which turn out to
be extremely challenging to learn using existing
pre-trained models, leading to weak generalization.

Current NLP methods tend to learn implic-
itly superficial cues instead of the causal associ-
ations between the input and labels, as evidenced
by (Geirhos et al., 2020; Guo et al., 2023b), and
thus usually show their brittleness when deployed
in real-world scenarios. Recent work (Sugawara
et al., 2018, 2020; Lai et al., 2021; Wang et al.,
2021b; Du et al., 2021a; Zhu et al., 2021; Bastings
et al., 2021) indicates that current PLMs uninten-
tionally learn shortcuts to trick specific benchmarks
and such tricks (i.e., syntactic heuristics, lexical
overlap, and relevant words) that use partial evi-
dence to produce unreliable output, which is partic-
ularly serious in the open domain.

4 Application Scenarios

We highlight the importance of OOD generaliza-
tion in two real-world application scenarios, in
which low OOD robustness may lead to serious
consequences.

4.1 Deployment in Practical Domains

Despite the generalization ability of LLMs, such
as ChatGPT (OpenAI, 2023b), the relatively low
generalization ability of medium-size models hin-
ders the deployment of NLP systems, especially
for high-stake domains, from health and medicine
to finance and business (Imbens and Rubin, 2015;
Choi et al., 2023), and should be taken more se-
riously. Notably, a recent comprehensive evalua-
tion of OOD generalization in text classification
named GLUE-X (Yang et al., 2022) shows that
the average accuracy of PLMs on cross-domain
evaluations falls significantly short of human per-
formance, even for the highest-performing model
(80.1% – human versus 74.6% – model). In con-
trast to GLUE, where over 20 single-model results
outperform human baselines, none of the baselines,
including InstructGPT and ChatGPT, considered
in GLUE-X is able to surpass human performance
using OOD tests. The lack of sufficient OOD gen-
eralization ability is also related to social bias.

4.2 Social Bias

Recent studies (Gardner et al., 2020) have uncov-
ered a problematic tendency for gender bias in
sentiment analysis (Zmigrod et al., 2019; Maud-
slay et al., 2019; Lu et al., 2020). Bias exists
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Figure 2: Classifying methods regarding the OOD gen-
eralization problem.

in different forms of language representations, in-
cluding word embeddings (Bolukbasi et al., 2016;
Caliskan et al., 2017; Zhao et al., 2018b; Gonen
and Goldberg, 2019), contextualized word embed-
dings (Zhao et al., 2019) and sentence embeddings
(May et al., 2019). Some found that the embed-
dings of feminine words and masculine words are
often clustered into different groups (e.g., occu-
pation) (Bolukbasi et al., 2016; Caliskan et al.,
2017; Zhao et al., 2018b, 2019; Gonen and Gold-
berg, 2019). Gender bias also affects coreference
resolution systems, which tend to link a pronoun
to occupations dominated by the pronoun gen-
der (Rudinger et al., 2018; Zhao et al., 2018a). In
machine translation, Vanmassenhove et al. (2018)
and Stanovsky et al. (2019) find that models tend
to make stereotypical assignments of gender roles
when translating occupation words. Apart from
gender bias, there are other forms of social bias
in NLP data, such as disability (Hutchinson et al.,
2020), race (Kiritchenko and Mohammad, 2018),
age (Diaz et al., 2018), etc.

5 Methods

Existing work to address OOD issues in NLP can
be categorized into three groups: data augmenta-
tion (Sec.5.1), model-level control (Sec.5.2), and
training approaches (Sec.5.3) shown in Fig. 2. De-
scriptions of current OOD generalization meth-
ods categorized by tasks are introduced in the Ap-
pendix.

5.1 Data Augmentation

Data augmentation (DA) techniques are employed
to enhance the diversity of training data without the
need for explicitly collecting new data (Feng et al.,
2021). This approach proves beneficial for improv-
ing the generalization of NLP models by reducing
overfitting and enhancing robustness. Several ex-
isting surveys have discussed data augmentation
in low-resource NLP scenarios from different per-
spectives (Hedderich et al., 2021; Feng et al., 2021;

Bayer et al., 2021; Chen et al., 2021a; Li et al.,
2022). In this study, our focus is on data augmenta-
tion regarding OOD generalization.
Semi-fact Data Augmentation. One common type
of data augmentation method in NLP involves sub-
stituting part of the content or introducing perturba-
tions to the original data, primarily focusing on en-
hancing the diversity without altering the semantic
meaning or label. Synonym substitution has been
explored by Zhang et al. (2015), Miao et al. (2020)
and Yue and Zhou (2020) to replace words or en-
tities. Perturbation techniques typically involve
manipulating tokens within sentences (Zhang et al.,
2018; Wei and Zou, 2019; Miao et al., 2020; Xie
et al., 2020; Zhao et al., 2019, 2018a), as well as ad-
versarial perturbations (Miyato et al., 2017; Cheng
et al., 2019; Zhu et al., 2019; Jiang et al., 2020;
Zheng et al., 2020), which employ large pre-trained
models (e.g., GPT-2, BART, BERT) for generating
conditional data augmentations. Lu et al. (2022) ap-
ply the human-in-the-loop technique incorporated
with semi-fact data augmentation for improving the
OOD robustness of PLMs in sentiment analysis.
Counterfactual data augmentation (CDA) is
widely adopted to mitigate bias in neural NLP tasks
by operating on biased text (Maudslay et al., 2019;
Zmigrod et al., 2019). A counterfactual example
constructed by flipping the label helps to learn real
associations between input and label. For instance,
Lu et al. (2020) proposes a CDA method to mitigate
gender bias in neural coreference resolution, which
is a generic methodology for corpus augmentation
via causal interventions (i.e., breaking associations
between gendered and gender-neutral words). In
text classification, Kaushik et al. (2019), Kaushik
et al. (2020), and Wang and Culotta (2020) employ
humans for generating counterfactual data, which
has been shown to be effective to mitigate the in-
fluence of spurious patterns. Automatic counterfac-
tual generation aims to change the data distribution
of the training data so that models can alleviate re-
liance on dataset-specific bias and exclude spurious
correlations (Yang et al., 2021; Wang and Culotta,
2021; Wu et al., 2021) and has been improved in a
recent work (Fan et al., 2023) by using data-level
and sentence-level constraints.

5.2 Model-level Operations

Feature representation learning holds a pivotal role
in OOD generalization. In this section, we evaluate
model-level approaches, focusing on two critical
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aspects: invariance and the causal factor.

Invariant Common Features Research on invari-
ant features as a means to facilitate transfer learning
has been an enduring pursuit in the field. In the
context of discrete linear models, various methods
have been developed to harness data from the target
domain to aid representation learning. For instance,
Structured Correspondence Learning utilizes un-
labeled target-domain data to establish mappings
between features across different domains (Blitzer
et al., 2006). On a similar note, Daumé III (2009)
employs labeled data for this purpose.

Additionally, Johnson and Zhang (2005) also
uses unlabeled data, but in a different setting. Tran-
sitioning to neural models, adversarial learning
emerges as a prevalent technique (Goodfellow et al.,
2015; Ganin et al., 2016; Zhang et al., 2019a). In
this approach, an adversarial loss function is em-
ployed to train a domain classifier. This classifier
attempts to eliminate domain-specific information
in the hidden layers, thereby producing representa-
tions that are more amenable for cross-domain (Liu
et al., 2018; Li et al., 2019b; Du et al., 2020) or
cross-task decision making (Johnson et al., 2017;
Levy et al., 2017; Eriguchi et al., 2018; Lee et al.,
2019; Wang et al.; Keung et al., 2019; Vernikos
et al., 2020; Wang et al., 2022). In sentiment analy-
sis, Liu et al. (2018) and Du et al. (2020) conduct
adversarial training to derive enhanced domain-
invariant features for cross-domain classification.

Feature clustering and other techniques are also
adopted to learn invariant features, which requires
OOD generalization on unseen tasks. For instance,
Johnson et al. (2017), Arivazhagan et al. (2019),
Ji et al. (2020), Liu et al. (2021a) train translation
models for better learning of language-independent
representations, which help the model generalize
to unseen language pairs. More recently, Yin et al.
(2022) categorize source contextualized representa-
tions to boost compositional generalization.

Causal-based Features Causal inference aims
to determine the effectiveness of one variable
on another variable (Holland, 1986; Morgan and
Winship, 2015; Imbens and Rubin, 2015; Pearl
et al., 2000). Because the relationships between the
causal features and the labels are invariant under
distribution shift (Pearl et al., 2000; Quionero-
Candela et al., 2009), learning causal relationships
allows a model to acquire robust knowledge that
holds beyond the distribution of a set of training
tasks or the observed data (Schölkopf et al., 2021).

In addition, learning a causal model requires fewer
examples to adapt to new environments (Schölkopf
et al., 2021).

There has been much research on using causal
inference to improve OOD generalization. For in-
stance, in social media, Pryzant et al. (2018) induce
a lexicon that is helpful for target label prediction
yet uncorrelated to a set of confounding variables,
and Saha et al. (2019) perform propensity score-
based causal analysis on social media posts for
evaluating the effect of psychiatric medications.

5.3 Training Approaches

In the presence of distribution shifts, optimization
tends to be influenced by irrelevant signals, result-
ing in severe failures when applied to OOD test
data (Liu et al., 2021b). Consequently, there has
been significant interest in recent work regarding
training techniques.
Distributionally Robust Optimization (DRO)
aims to learn a model on the worst-case distribu-
tion scenario (domain) while expected to generalize
well on test data. To improve the worst-case do-
main, Sagawa et al. (2020) propose a group DRO
method that requires explicit group annotation of
samples. Methods based on group DRO and its
variants have recently been applied in NLP tasks,
such as NLI (Sagawa et al., 2020; Liu et al., 2021b),
machine translation (Zhou et al., 2021a), spoken
language understanding (Broscheit et al.), and toxi-
city detection (Michel et al., 2020). For example,
Oren et al. (2019) design a DRO procedure for
generative modeling that minimizes the simulated
worst-case distribution scenario over the mixture of
topics. Zhou et al. (2021c) consider the worst-case
with language pairs to optimize multilingual neural
machine translation.
Invariance Risk Minimization (IRM) Different
from DRO, which focuses on domain shift robust-
ness, IRM methods focus on learning invariant rep-
resentations. IRM (Arjovsky et al., 2019) is a re-
cently proposed learning paradigm that estimates
non-linear, invariant, causal predictors from mul-
tiple training environments for improving OOD
generalization. It has several advantages. For ex-
ample, it does not need extra knowledge to manip-
ulate the original data (e.g., human intervention
or rule-based methods) and extra large computa-
tion. Existing work has studied the IRM and its
variants in NLP. Choe et al. (2020) investigate IRM
on synthetic settings and simple MLP and machine
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learning models in sentiment analysis. Dranker
et al. (2021) study OOD generalization for NLI by
IRM, in which environments are constructed by
ensuring whether the dataset and bias are synthetic
or naturalistic. Peyrard et al. (2021) propose a
language framework based on IRM-games (Ahuja
et al., 2020) for learning invariant representations
that generalize better across multiple environments.
The OOD objective in learning the causal invari-
ance can also be viewed as a multi-objective op-
timization problem, which has been explored by
Chen et al. (2023b) using a pareto learning strategy.

Tuning Three popular tuning approaches for pre-
serving the pre-trained features are reviewed:
prompt tuning, adapter tuning, and linear probing.

Adapter tuning (Rebuffi et al., 2017; Houlsby
et al., 2019) contains a few task-specific train-
able parameters and are injected between layers
of frozen pre-trained models. Training only the
adapter modules can help models achieve com-
petitive performance on various tasks, such as
multi-task text classification (Houlsby et al., 2019),
NER (Pfeiffer et al., 2020), multi-task QA (Fried-
man et al., 2021), and multilingual speech transla-
tion (Le et al., 2021).

Prompt tuning (Liu et al., 2021f) methods con-
vert the downstream problems into language mod-
eling problems. It adds prompt tokens as the prefix
to the questions and converts them to input texts,
then use a pre-trained language model to process
the input texts in order to generate the answer se-
quences. There are two variations of prompt tokens,
hard prompt tokens, and soft prompt tokens. Tun-
ing hard prompt tokens requires fine-tuning the
pre-trained models (Petroni et al., 2019; Cui et al.,
2021). Tuning soft prompt tokens only need to fine-
tune the prompt tokens, thus preserving the pre-
trained features (Li and Liang, 2021; Lester et al.,
2021; Qin and Eisner, 2021; Liu et al., 2021g). Soft
prompt tuning is helpful for a wide range of cross-
domain tasks, such as NER (Chen et al., 2021c,
2022b), text classification (Gao et al., 2021; Zhong
et al., 2021a; Utama et al., 2021), table-to-text (Li
and Liang, 2021), QA and paraphrase detection
(Lester et al., 2021) and NLU (Liu et al., 2021g).

Linear probing (Liu et al., 2019a) fine-tunes the
top layers while keeping the lower layers frozen.
Compared to full fine-tuning, linear probing per-
forms better for OOD generalization but reaches
lower accuracy on IID data. Kumar et al. (2022)
propose a two-step strategy, which first trains the

model with linear probing and then performs fine-
tuning (LP-FT). This approach has been theoreti-
cally proven to improve both in-domain and OOD
performance for deep neural models.

6 Large Language Models

Large language models (LLMs) have attracted in-
creasing attention in the field of artificial intelli-
gence recently. However, as a crucial property
towards artificial general intelligence (AGI), the
OOD robustness is still under-explored (Wang
et al., 2023b). Given its importance, we review the
recent work on the OOD generalization of LLMs.
OOD Definition It is of imminent importance to
reframe the OOD definition in the era of LLM dom-
inance since the pre-trained corpora of LLMs are
not publicly available. The absence of pre-trained
corpus information makes it hard to define OOD
examples for LLMs in NLP. Although providing an
accurate and strict definition remains challenging
for large foundation models, researchers make at-
tempts to build label-sharing OOD data for LLMs
from two perspectives, namely, synthetic data, and
distribution shift over time. Synthetic data is gen-
erally defined as artificially annotated information
generated by algorithms or simulations, which can
be hand-crafted as challenging OOD examples for
LLMs. Distribution shift over time refers to the
idea of using real-world datasets collected after
2021 as OOD test data, which is the latest data
collection time of ChatGPT (Wang et al., 2023b).

Another type of OOD data refers to the task of
generalizing to unseen classes. For instance, in
open-set label shift (Garg et al., 2022), the test data
includes examples from novel classes not present
in the training data, making it impossible for clas-
sical small models to predict correctly. LLMs such
as ChatGPT can alleviate this issue by using in-
context learning, as evidenced by recent research
(Xu et al., 2022). This means that LLMs can be
used to improve robustness with minimal human in-
tervention but they cannot fully solve this problem
and open-set label shift remains challenging.
OOD Detection Previous research on OOD de-
tection has employed models to identify test ex-
amples that come from a different distribution
(Hendrycks and Gimpel, 2017; Hendrycks et al.,
2018). Some of these approaches introduce new
training objectives, such as using a contrastive ob-
jective (Winkens et al., 2020; Zhou et al., 2021c).
When the type of distribution shift is known, the
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model can be trained to exhibit uncertainty when
presented with known OOD examples (Hendrycks
et al., 2020). However, the distribution of SOTA
LLMs, such as ChatGPT and GPT-4 is hidden and
cannot be inferred. Very recently, CoNAL (Xu
et al., 2022) provides an alternative for generating
novel examples which simulate open-set shifts and
has proven to be effective for OOD detection.

Regarding language models (LLMs), the deep-
fake detectors aimed at distinguishing content gen-
erated by humans or LLMs is closely related to pre-
vious algorithms designed for OOD detection (Guo
et al., 2023a). When it comes to deepfake detec-
tion, one intuitive approach is to employ statistical
boundaries that differentiate linguistic patterns be-
tween human-written and machine-generated text
(Mitchell et al., 2023). However, these statistical
methods have a limitation: they assume access
to the model’s prediction distributions is possible,
which hinders their application to models behind
APIs, such as ChatGPT. An alternative paradigm
involves training neural-based detectors (Bakhtin
et al., 2019; Fagni et al., 2021), including the offi-
cial implementation of OpenAI (OpenAI, 2023a).

OOD Robustness Previous studies have exten-
sively examined various aspects of ChatGPT in
the domains of law (Choi et al., 2023), ethics (Shen
et al., 2023), reasoning (Bang et al., 2023) and
planning (Yao et al., 2023). However, limited atten-
tion has been given to its robustness (Kawaguchi
et al., 2017) against out-of-distribution (OOD) in-
puts. Evaluating OOD robustness in a reliable man-
ner poses a significant challenge due to the massive
and unknown training data of LLMs. Wang et al.
(2023b) offers an initial investigation into the ro-
bustness of ChatGPT by presenting OOD results
on Flipkart and DDXPlus. Building on this work,
Ye et al. (2023) delimit the robustness of LLMs in
comparison to conventional models, with a focus
on aligning the threat model to the realistic deploy-
ment of LLMs. Additionally, Zhu et al. (2023)
measures LLMs’ resilience to adversarial prompts
using adversarial textual attacks on character, word,
sentence, and semantic levels. Collectively, these
evaluations raise similar concerns regarding the
limited robustness of ChatGPT. Among different
attack levels, character-level attacks demonstrate
higher robustness, while word-level attacks pose
the greatest vulnerability. Recently, we have no-
ticed that several papers survey the robustness issue
in Large Language Models (LLMs) from differ-

ent perspectives, including factuality (Wang et al.,
2023a), hallucination (Rawte et al., 2023), and eval-
uation methods (Chang et al., 2023).

7 Future Directions and Conclusion

We consider multiple promising directions for im-
proving the OOD robustness from four perspec-
tives: (1) enhancing the learning of such salient
causal features, either by the help of human guid-
ance (Kaushik et al., 2019; Lu et al., 2022) via
human-in-the-loop or through psychologically in-
spired neural structures (Chowdhery et al., 2022),
can be worthy of consideration; (2) data-centric
AI: both the selection of training data and the care-
ful design of prompt learning have proven effective
in domain generalization (Chen et al., 2022c). In
addition, the emerging ability of large-scale lan-
guage models holds a huge potential for OOD gen-
eralization, benefiting from the instruction tuning,
which requires a high-quality data construction pro-
cess; (3) alignment methods: this can be effec-
tuated through the deployment of reinforcement
learning algorithms, be it in an online or offline
setting (Christiano et al., 2017; Chen et al., 2023a);
(4) neuro-symbolic modeling for NLP: purely
neural models like ChatGPT can possess incredi-
bly powerful generalization abilities. While it is
more-or-less accepted that purely neural models
face challenges of reasoning beyond surface-level
patterns. In order to avoid picking up spurious cor-
relations, neuro-symbolic approaches are proposed
to improve the models’ OOD robustness by com-
bining the learning capabilities of neural networks
with the expressive power of symbolic reasoning
(Alon et al., 2022; Jung et al., 2022; Manhaeve
et al., 2018; Hamilton et al., 2022).

This paper presents an ambitious attempt to cate-
gorize the challenges of OOD generalization, focus-
ing on both data and model levels. By undertaking
this categorization, our aim is to shed light on the
limitations of current methods, emphasize the cru-
cial nature of OOD robustness, and provide quick
access to existing references for further exploration.
In addition, we emphasize the ongoing significance
of OOD robustness in the era of large language
models, emphasizing the need to address this as-
pect. We call upon researchers in the NLP commu-
nity to delve deeper into the proper definition of
OOD in the context of large models and develop ap-
propriate benchmark tests that accurately measure
the OOD generalization ability of LLMs.
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8 Limitations

When we categorise OOD-related NLP work, we
mostly focus on the recently appearing papers,
which can be retrospected to classical generaliza-
tion studies. Moreover, the literature on domain
generalization and domain adaptation has not been
distinguished in this work. Lastly, the introduction
of classical transfer learning algorithms has not
been included for the time being.
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A Appendix

In an effort to clearly outline the various challenges
tied to OOD generalization, we divide our discus-
sion into two distinct aspects, represented by Table
1 (Data Distribution) and Table 2 (Feature Distribu-
tion), respectively. In Table 1, we focus on issues
that arise due to differences and changes in data. It
systematically lists the ways in which variability
in data attributes can make it difficult for mod-
els to effectively generalize to out-of-distribution
samples in different tasks. In general, we cate-
gorize the reference materials from two perspec-
tives: annotation artifacts (label-sharing generaliza-
tion) and output variance (label-different general-
ization). Different from label-sharing generaliza-
tion approaches, which rely on few-shot or unla-
beled data from the target domain, label-different
generalization is based on zero-shot learning using
clustering and other techniques. We also outline
the typical datasets for each task and corresponding
representative methods.

On the other hand, we concentrate on a different
set of issues from the feature perspective. These
problems originate from the models’ tendencies to
learn from spurious patterns or “shortcut features”
in the data, which might not reflect the true underly-
ing relationships between inputs and labels, leading
to the generalization challenge. Ideally, a model
should learn rational features. However, inductive
reasoning naturally relies on patterns and trends
from the training data. This reliance can result in
models performing well on familiar data but poorly
when faced with new, OOD examples. The OOD
generalization challenge can not be avoided when
using deep learning based approaches, yet it can
be alleviated by several techniques as illustrated in
Table 2. Collectively, Table 1 and Table 2 provide a
thorough understanding of the challenges in OOD
generalization, and set the stage for developing
strategies to address these issues.

To provide a fine-grained description of OOD
generalization methods in NLP, we introduce key
points of representative methods in different tasks
from Tables 3-5, ranging from the scope and
method to dataset and metric. We hope these mate-
rials can serve as a quick access to existing refer-
ences for further exploration.
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Data Variance Task Papers Key Methods Typical Datasets

Sentiment
Analysis

Ganin et al. (2016); Chen and Cardie (2018);
Laparra et al. (2020).

Adversarial learning ;
Multinomial adversarial net-
works.

Amazon Reviews;
IMDB Reviews.

MT
Belinkov and Bisk (2017); Khayrallah and
Koehn (2018).

Invariant representation learning;
Training on adversarial exam-
ples.

WiCoPaCo; RWSE
Wikipedia;
Revision Dataset;
MERLIN corpus.

Label-sharing
NER

Liu et al. (2021d); Huang et al. (2021a). Noisy supervised pre-training;
Calibrated confidence methods.

CoNLL2003; Tweet; Web-
page; Wikigold.

Annotation
artifacts

QA
Cai et al. (2017); Min et al. (2019); Bartolo
et al. (2021b,a); Lyu et al. (2022).

Generator-in-the-loop models.
ROC Story; HOTPOTQA;
NewsQA; SQuAD1.1;
AdversarialQA.

NLI

Poliak et al. (2018); Naik et al. (2018); Zellers
et al. (2018); Feng et al. (2019); McCoy
et al. (2019); Le Bras et al. (2020); Sakaguchi
et al. (2020); Nie et al. (2020); Liu et al.
(2020); Gardner et al. (2021); Pezeshkpour
et al. (2022); Wu et al. (2022).

Data augmentation;
Human-and-model-in-the-loop;
Adversarial filtering;
Training on adversarial exam-
ples.

Stress Test; ANLI;
SWAG; HANS; SNLI-
hard; MultiNLI-hard.

MRC
Kaushik and Lipton (2018); Sugawara et al.
(2018, 2020); Bartolo et al. (2020); Lai et al.
(2021).

Shortcut investigation. bAbI; SQuAD; CBT; CNN;
Whodid-What; DuoRc.

MT
Vanmassenhove et al. (2018); Stanovsky et al.
(2019); Tomalin et al. (2021); Choubey et al.
(2021).

Adversarial learning;
Gender-filtered self-training. WinoMT; MuST-SHE.

Coreference
Resolution

Rudinger et al. (2018); Zhao et al. (2018a). Data augmentation.
WinoBias;
Winogender Schemas.

Toxicity Detection Park et al. (2018); Dixon et al. (2018).
Data augmentation;
Debias word embeddings.

Sexist Tweets (st);
Abusive Tweets (abt).

Output variance
Label-Different

NER

Snell et al. (2017); Ghaddar and Langlais
(2017); Wu et al. (2020); Nguyen et al. (2021);
Cui et al. (2021); Ma et al. (2021); Zhou et al.
(2021b); Lee et al. (2021); Das et al. (2021);
Wang et al. (2022).

Self-training methods; Prompt-
based methods; Information the-
ories; Prototype-based meth-
ods; Distance-based methods;
Knowledge-enhanced methods.

CoNLL2003; MIT Movie;
MIT Restaurant;
WNUT2017; Ontonotes
5.0 Dataset; BioNER.

Machine
Translation

Johnson et al. (2017); Zhang et al. (2020); Ari-
vazhagan et al. (2019); Ji et al. (2020); Liu
et al. (2021a).

Multilingual corpus pre-training;
Back translation;
Invariance representation learn-
ing;
Language independent represen-
tations learning.

WMT’14; WMT’17; New-
stest 2012; Newstest 2013;
Newstest 2016; Newstest
2015; IWSLT 2017.

Table 1: OOD generalization challenges related to the data variance.
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Flexibility of
Expression Task Papers Key Methods Typical Datasets

Text Classification

Oren et al. (2019); Hendrycks et al.
(2020); Wang et al. (2021b); Du et al.
(2021a); Liu et al. (2021b); Moradi and
Samwald (2021); Náplava et al. (2021);
Wang et al. (2021c).

Data augmentation;
Regularization on shortcuts;
Spurious features identification & re-
moval;
Distributionally robust optimization
(DRO).

WildNLP; TextFlint;
IMDB Reviews;
Kindle Reviews.

Natural Language
Generation

Cheng et al. (2019); Zhang et al.
(2019b); Zhou et al. (2021a); Hewitt
et al. (2021).

Adversarial attack learning;
Group DRO; Robust fine-tuning.

NIST; WMT’14;
WevNLG; XSUM;
Open-domain QA.

Compositional
generalization

Evaluations

Czarnowska et al. (2019); Kaushik et al.
(2019); Gardner et al. (2020); Warstadt
et al. (2020); Hu et al. (2020); Lewis
et al. (2020); Lazaridou et al. (2021);
Liu et al. (2021e); Koh et al. (2021);
Chen et al. (2022a).

Contrast sets; Fine-grained evaluations.
BLiMP; XTREME;
MLQA; ARXIV; Wilds;
SQuAD.

NLU

Lake and Baroni (2018); Russin et al.
(2019); Li et al. (2019a); Gordon et al.
(2019); Andreas (2020); Keysers et al.
(2020); Kim and Linzen (2020); Kim
et al. (2021).

Dedicated train objects;
Structure annotation.

SCAN; CFQ; COGS.

Semantic Parsing

Iyer et al. (2017); Lake and Baroni
(2018); Dong and Lapata (2018); Lake
(2019); Yu et al. (2019a); Furrer et al.
(2020); Kim (2021); Gupta et al. (2022).

Span-level supervised attention;
Human-in-the-loop;
Meta sequence-to-sequence learning;
Structurally diverse sampling.

ATIS; GEO; SCAN; CFQ.

Machine
Translation

Chen et al. (2020); Li et al. (2021);
Zheng and Lapata (2021).

Neural symbolic stack machines;
Representation disentanglement. CoGnition; SCAN.

QA
Gu et al. (2021); Lewis et al. (2021);
Bogin et al. (2021).

Data augmentation; Prompt-tuning;
Continual pre-training.

GRAILQA; TriviaQA;
Open Natural Questions;
WebQuestions.

Logic reasoning MRC

Dong and Lapata (2016); Yu et al.
(2019b); Rogers et al. (2021); Liu et al.
(2021c); Zhong et al. (2021b); Huang
et al. (2021b).

GAN; Graph neural networks;
Knowledge-enhanced methods.

SQuAD; DROP; LogiQA;
HotpotQA; ReClor; AR-
LAST.

Mathematical
Problem

Brown et al. (2020); Cobbe et al. (2021);
Drori et al. (2021); Hendrycks et al.
(2021)

Self-supervised training (GPT3);
Training verifiers; Program synthesis
(Codex).

MATH Datasets;
DeepMind Datasets.

Table 2: OOD generalization challenges related to shortcut features learned by models.
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Work Task Scope Method Dataset Metric

Dong and Lapata (2016) MRC
Logical

Reasoning
(Domain Variance)

Propose an attention-enhanced encoder-decoder
model invariant representation JOBS, GEO, ATIS, IFTTT Accuracy

Yu et al. (2019b) MRC Logical
Reasoning (Bias)

Introduce a new Reading Comprehension dataset
requiring logical reasoning (ReClor) extracted
from standardized graduate admission examina-
tions.

ReClor Accuracy

Liu et al. (2021c) MRC Logical
Reasoning (Bias)

Introduce a comprehensive dataset which is
sourced from expert-written questions. Logiqa Accuracy

Zhong et al. (2021b) MRC Logical
Reasoning (Bias)

Introduce a new dataset consisting of questions
from the Law School Admission Test from 1991
to 2016.

AR-LSAT Accuracy

Kaushik and Lipton (2018) MRC Annotation artifacts

Establish sensible baselines for the bAbI,
SQuAD, CBT, CNN, and Who-did-What
datasets, finding that question- and passage-only
models often perform surprisingly well.

bAbI, SQuAD, CBT, CNN, Whodid-What Accuracy

Sugawara et al. (2018) MRC Annotation artifacts

Establish sensible baselines for the bAbI,
SQuAD, CBT, CNN, and Whodid-What
datasets, finding that question- and passage-only
models often perform surprisingly well.

QA4MRE, CNN/Daily Mail, Children’s Book,
WikiReading, LAMBADA, Who-did-What,
ProPara, CliCR, SQuAD, DuoRC

Accuracy

Sugawara et al. (2020) MRC
Annotation artifacts

(shortcut)

Propose a semi-automated, ablation-based
methodology to evaluate capacity of MRC
datasets.

CoQA,DuoRC, HotpotQA, SquAD, SQuAD,
ARC, MCTest, MultiRC, RACE, SWAG Accuracy F1

Bartolo et al. (2020) MRC
Annotation artifacts

(shortcut)

Propose an adversarial annotation data collec-
tion method. Training on adversarially collected
samplesleads to strong generalization.

SQuAD1.1 F1

Lai et al. (2021) MRC
Annotation artifacts

(shortcut)

Propose two synthetic dataset and two new
method to investigate shortcut in MRC espe-
cially on paraphrasing.

QWM-Para dataset derived from SQuAD F1

Cheng et al. (2019) NLG Data noise Propose double adversarial input MT model to
improve the robustness.

LDC corpus, NIST, WMT’14, new-
stest2013,2014 BLEU score

Zhang et al. (2019b) NLG Annotation artifacts
(exposure bias)

In word-level sampling context words is not only
from the ground truth sequence but also from the
predicted sequence by the model during training,
where the predicted sequence is selected with a
sentence-level optimum.

NIST, WMT’14 BLEU score

Zhou et al. (2021a) NLG Annotation artifacts
(domain)

Propose a new learning objective for MNMT
based on DRO.

58-languages TED talk corpus, WMT BLEU score

Hewitt et al. (2021) NLG Annotation artifacts
(domain)

Present methods to combine the benefits of full
and lightweight finetuning, achieving strong per-
formance both ID and OOD.

WebNLG, XSUM, Open-domain QA
BLEU score

ROUGE-2 score
Exact match accuracy

Table 3: Methods towards OOD generalization challenge in the task of MRC and NLG.
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Work Task Scope Method Dataset Metric

Jia et al. (2019) NER Input variance Design cross-domain and cross- task network
for NER domain generalization.

CoNLL, BioNLP13PC, BioNKP13CG,
CBS Newws

F1

Jia and Zhang (2020) NER Input variance Multi-task learning with multi-cell LSTM for
NER domain generalization.

CoNLL2003, Broad Twitter, Twitter,
BioNLP13PC, BioNLP13CG, CBS News F1

Liu et al. (2021h) NER Input variance Introduce a cross-domain NER dataset with a
domain-related corpus and propose a baseline. CoNLL2003, CrossNER F1

Chen et al. (2021b) NER Input variance

Data Augmentation for crossdomain NER. Pro-
pose a novel neural architecture to transform the
data representation from a high-resource to a
low-resource domain.

Ontonotes 5.0, Temporal Twitter F1

Ghaddar and Langlais (2017) NER Output variance Propose a large, high quality, annotated corpus
WiNER for cross-domain NER.

CoNLL, MUC, ONTO, WGOLD, WEB F1

Vu et al. (2020) NER Output variance Adversarially trained masked LMs with domain
generalization.

CoNLL2003, WNUT2016, FIN, JNLPBA,
BC2GM, BioNLP09, BioNLP11EPI F1

Wu et al. (2020) NER Output variance Propose a teacher-student learning method fro
cross-linguial NER. CoNLL-2002, CoNLL-2003 F1

Nguyen et al. (2021) NER Output variance Cross domain zero shot NER with knowledge
base.

music, science datset F1

Cui et al. (2021) NER Output variance

Propose a template-based method for NER, treat-
ing NER as a language model ranking problem
in a sequence-to-sequence framework, where
original sentences and statement templates filled
by candidate named entity span are regarded as
the source sequence and the target sequence.

CoNLL, MIT Movie Review, MIT Restaurant
Review

F1

Ma et al. (2021) NER Output variance Reformulate NER tasks as LM problems without
templates. CoNLL2003, Ontonotes 5.0, MIT-Movie F1

Zhou et al. (2021b) NER Output variance

Propose Masked Entity Language Modeling
(MELM) as a novel data augmentation frame-
work for low-resource NER to alleviate the
token-label misalignment.

CoNLL F1

Lee et al. (2021) NER Output variance
Propose a demonstration-based learning method
for NER, which lets the input be prefaced by
task demonstrations for in-context learning.

CoNLL-2003, Ontonotes 5.0, BC5CDR F1

Das et al. (2021) NER Output variance

Propose a novel contrastive learning technique
that optimizes the inter-token distribution dis-
tance instead of class-specific attributes for Few-
Shot NER.

OntoNotes, CoNLL’03, WNUT ’17, GUM F1

Wang et al. (2022) NER Output variance
Propose an information theoretic perspective
method to imporve out-of-vocabulary entities
prediction.

WNUT2017,TwitterNER,BioNER, Conll03-
Typos, Conll03-OOV F1

Liu et al. (2021d) NER Data noise
Propose a calibrated confidence estimation and
integrate it into a self-training framework for
boosting performance in general noisy settiings.

CoNLL, Tweet, Webpage, Wikigold F1

Gu et al. (2021) QA
Compositional

generlization (Bias)

Construct new large-scale, high-quality dataset
GrailQA, and propose a novel BERT-based
KBQA model.

GRAILQA F1

Lewis et al. (2021) QA
Compositional

generlization (Bias)

Evaluate three popular open-domain benchmark
datasets and find that all models perform dramat-
ically worse on questions that cannot be memo-
rized from training sets.

WebQuestions, TriviaQA, Open Natural Ques-
tions

Exact match score

Bogin et al. (2021) QA
Compositional

generlization (Bias)

Propose a model that computes a representation
and denotation for all question spans in a bottom-
up, compositional manner using a CKY-style
parser. Inductive bias towards tree structures
dramatically improves systematic generalization
to out-of-distribution examples.

arithmetic expressions benchmark, CLEVR,
CLOSURE

F1

Cai et al. (2017) QA
Compositional
generalization

Propose a hierarchical RNN with attention to
encode the sentence in the story and score candi-
date endings.

ROC Story Accuracy

Min et al. (2019) QA
Compositional
generalization Propose a single-hop BERT-based RC model. HOTPOTQA F1

Bartolo et al. (2021b) QA
Compositional
generalization

(domain)

Introduce a generator-in-the-loop model to pro-
vide real-time suggestions for annotator, which
maintains the advantages of DADC and reduce
annotation cost.

SQuAD1.1, AdversarialQA, GAA-assisted data

Median time per exam-
ple
Validated Model Error
Rate (vMER)
Median time per vali-
dated model-fooling ex-
ample
Downstream effective-
ness (F1 score)

Lyu et al. (2022) QA
Compositional
generalization

(domain)

Extend the scope of “OOD” by splitting QA ex-
amples into different subdomains according to
their several internal characteristics including
question type, text length, answer position. Ex-
amine the performance of QA systems trained
on the data from different subdomains.

SQuAD 1.1, NewsQA F1

Table 4: Methods towards OOD generalization challenge in the task of NER and QA.
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Work Task Scope Method Dataset Metric

Wang et al. (2021b) SA Annotation artifacts
(shortcut)

Automatically identify such spurious correla-
tions in NLP models at scale.

SST, Yelp, Occupation dataset, Amazon Kitchen,
Amazon Electronics

Precision
Importance score

Kaushik et al. (2019) SA, NLI Input variance CDA. SNLI, IMDB Accuracy

Kaushik et al. (2020) SA, NLI Input variance evaluate the efficacy of CDA. IMBb, Yelp, Amazon, Semeval, CRD, SNLI,
MultiNLI

Accuracy

Hendrycks et al. (2020) SA, NLI Input variance evaluate OOD generalization of pre-trained
model.

SST-2,Yelp Review,Amazon Review,MultiNLI Accuracy

Wang and Culotta (2020) SA Input variance Train spurious feature detector & improve OOD
generalization.

IMDB reviews, Kindle reviews, Toxic com-
ment,Toxic tweet Accuracy

Wang and Culotta (2021) SA Input variance train spurious feature detector & Improve robust-
ness to spurious correlations via CDA. IMDB reviews, Amazon, Kindle reviews Accuracy

Yang et al. (2021) SA Input variance CDA & improve OOD genralization. SST-2, IMDB, Amazon Reviews, Semeval 2017,
Yelp Reviews Accuracy

Lu et al. (2022) SA Input variance improving robustness via auto Semi-factual data
augmentation

IMDb, Amazon reviews, Yelp reviews, SST,
SemEval-2017 Twitter.

Accuracy

Chen and Cardie (2018) SA Data noise improving OOD generalization via learning in-
variant features.

Amazon reviews, FDU-MTL dataset Accuracy

Johnson et al. (2017) MT Output variance zero-shot MT via training on multilingual corpus WMT’14, WMT’15. BLEU score

Zhang et al. (2020) MT Output variance improve zero-shot MT: enforce translation to the
target language via backtranslation. OPUS-100

BLEU score
Win ratio

Arivazhagan et al. (2019) MT Output variance improve zero-shot MT: learn invariant represen-
tations via auxiliary losses.

newstest-2012, WMT14, newstest-2013, IWSLT
2017

BLEU score

Ji et al. (2020) MT Output variance improve zero-shot MT: obtain an universal en-
coder for different languages. Europarl, MultiUN BLEU score

Liu et al. (2021a) MT Output variance improve zero-shot MT: removing residual con-
nections.

IWSLT 2017, Europarl v7, PMIndia BLEU score

Zheng and Lapata (2021) MT
Compositional
generalization

Improve composional generalization: propose
an extension to sequence-to-sequence models
which encourages disentanglement.

COGS, CFQ
BLEU score

Exact match score
Compound translation error rate

Belinkov and Bisk (2017) MT Data noise Increase model robustness: structure-invariant
word representations & robust training.

IWSLT 2016, WiCoPaCo, Wikipedia Revision
Dataset, The MERLIN corpus, Czech: manually
annotated essays

BLEU score

Stanovsky et al. (2019) MT Annotation artifacts present the challenge set for evaluating gender
bias in machine tranlation. WinoMT

Accuracy
F1

Choubey et al. (2021) MT Annotation artifacts propose gender-filtered self-training (GFST) to
improve gender translation accuracy. WinoMT, MuST-SHE

Accuracy
F1

Recall
BLEU score

Williams et al. (2018) NLI Input variance introduce MultiNLI benchmark. MultiNLI, SNLI Accuracy

Naik et al. (2018) NLI Annotation artifacts propose Stress Test dataset for NLI. MultiNLI
Accuracy
Error rate

Zellers et al. (2018) NLI Annotation artifacts propose dataset SWAG for measuring common
reasoning of NLI model. SWAG, SNLI Accuracy

Feng et al. (2019) NLI Annotation artifacts We illustrate how partial-input baselines can
overshadow trivial. SNLI Accuracy

McCoy et al. (2019) NLI Annotation artifacts Introduced HANS dataset which contains three
fallible syntactic heuristics. MultiNLI, HANS Accuracy

Le Bras et al. (2020) NLI Annotation artifacts Use AFLITE to reduce dataset biases, thus im-
prove OOD generalization.

SNLI, ANLI, HANS, NLI-Diagnostics, Stress
tests, QNLI, MultiNLI Accuracy

Sakaguchi et al. (2020) NLI Annotation artifacts Introduce WINOGRANDE, which is harder &
larger than Winograd Schema Challenge.

WINOGRANDE, WSC, DPR , COPA,
KnowRef, Winogender Accuracy

Nie et al. (2020) NLI Annotation artifacts
Introduce ANLI, collected via itera-
tive&adversarial human-and-model-in-the-loop
procedure.

ANLI, SNLI, MultiNLI, SNLI-Hard, NLI Stress
Tests

Accuracy
Error rate

Liu et al. (2020) NLI Annotation artifacts
derive adversarial examples in terms of the
hypothesis-only bias and explore eligible ways
to mitigate such bias.

SNLI, MultiNLI Accuracy

Wu et al. (2022) NLI Annotation artifacts generating debiased datasets through filter out
instances contribute to spurious correlations.

SNLI, MultiNLI, HANS, SNLI-hard, MultiNLI-
hard

Accuracy

Du et al. (2021a) NLI Annotation artifacts
(shortcut)

Propose a shortcut mitigation framework LTGR
using knowledge distillation framework, to sup-
press the model from making overconfident pre-
dictions for samples with large shortcut degree.

MultiNLI, FEVER, and MultiNLI-backdoor Accuracy

Liu et al. (2021b) NLI Annotation artifacts
(domain)

Propose a simple two-stage approach, that min-
imizes the loss over a reweighted dataset (sec-
ond stage) where we upweight training examples
that are misclassified at the end of a few steps of
standard training (first stage). It overcome the
requirement of expensive group annotations in
group DRO.

MultiNLI, CivilComments-WILDS Accuracy

Oren et al. (2019)
Text

classification
Annotation artifacts

(bias)
Propose a new DRO based approach called topic
conditional value at risk.

Yelp, ONEBWORD, TPIPADV perplexity

Table 5: Methods towards OOD generalization challenge in the task of SA, NLI, and MT.
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