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Abstract

This study utilizes Independent Component
Analysis (ICA) to unveil a consistent seman-
tic structure within embeddings of words or
images. Our approach extracts independent se-
mantic components from the embeddings of a
pre-trained model by leveraging anisotropic in-
formation that remains after the whitening pro-
cess in Principal Component Analysis (PCA).
We demonstrate that each embedding can be
expressed as a composition of a few intrinsic
interpretable axes and that these semantic axes
remain consistent across different languages,
algorithms, and modalities. The discovery of
a universal semantic structure in the geometric
patterns of embeddings enhances our under-
standing of the representations in embeddings.

1 Introduction

Embeddings play a fundamental role in represent-
ing meaning. However, there are still many aspects
of embeddings that are not fully understood. For
instance, issues such as the dimensionality of em-
beddings, their interpretability, and the universal
properties shared by embeddings trained with dif-
ferent algorithms or in different modalities pose
important challenges in practical applications.

Discussions and research have explored the top-
ics of low-dimensionality and interpretability of
embeddings (Goldberg, 2017). Proposals have
been made for learning and post-processing meth-
ods that incorporate constraints, aiming to achieve
sparse embeddings or acquire semantic axes. Addi-
tionally, research has focused on aligning embed-
dings trained in different languages through various
transformations. However, in contrast to this on-
going trend, our specific focus lies on the intrinsic
independence present within embeddings.

∗ The first two authors contributed equally to this work.
Our code and data are available at https://github.

com/shimo-lab/Universal-Geometry-with-ICA.

Figure 1: (Left) Heatmap of normalized ICA-
transformed word embeddings shown for a selected
set of five axes out of 300 dimensions. Each axis has
its own meaning, and the meaning of a word is repre-
sented as a combination of a few axes. For example,
ferrari = [cars] + [italian] and kurosawa = [film] +
[japanese]. (Right) Scatterplots of normalized ICA-
transformed word embeddings for the ([italian], [cars])
axes and ([japanese], [film]) axes. The word embed-
dings in the heatmap were plotted as black dots. The
words are highlighted with colors corresponding to their
respective axes. For more details, refer to Section 3 and
Appendix B.

In this research, we post-process embeddings us-
ing Independent Component Analysis (ICA), pro-
viding a new perspective on these issues (Hyväri-
nen and Oja, 2000). There are limited studies that
have applied ICA to a set of word embeddings,
with only a few exceptions (Lev et al., 2015; Al-
bahli et al., 2022; Musil and Mareček, 2022). There
has also been a study that applied ICA to word-
context matrices instead of distributed represen-
tations (Honkela et al., 2010). Although it has
received less attention in the past, using ICA al-
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(a) Normalized ICA-transformed word embeddings for seven languages.

(b) Normalized PCA-transformed word embeddings for seven languages.

Figure 2: The rows represent fastText embeddings of words for seven languages transformed by (a) ICA and (b)
PCA. Each embedding is normalized to have a norm of 1 for visualization purposes. The components from the
first 100 axes of 500 embeddings are displayed in the upper panels, and the first five axes are magnified in the
lower panels. For each axis of English embeddings, the top 5 words were chosen based on their component values,
and their translated words were used for other languages. Correlation coefficients between transformed axes were
utilized to establish axis correspondences and carry out axis permutations; English served as the reference language
to align with the other languages when matching the axes, and the aligned axes were rearranged in descending order
according to the average correlation coefficient, as detailed in Section 4 and Appendix C.

lows us to extract independent semantic compo-
nents from a set of word embeddings. By leverag-
ing these components as the embedding axes, we
anticipate that each word can be represented as a
composition of intrinsic (inherent in the original
embeddings) and interpretable (sparse and consis-
tent) axes. Our experiment suggests that the num-
ber of dimensions needed to represent each word
is considerably less than the actual dimensions of
the embeddings, enhancing the interpretability.

Fig. 1 shows an example of independent seman-
tic components that are extracted by ICA. Each
axis has its own meaning, and a word is repre-
sented as a combination of a few axes. Further-
more, Figs. 2a and 3a show that the semantic axes
found by ICA are almost common across different
languages when we applied ICA individually to
the embeddings of each language. This result is
not limited to language differences but also applies

when the embedding algorithms or modalities (i.e.,
word or image) are different.

Principal Component Analysis (PCA) has tra-
ditionally been used to identify significant axes
in terms of variance, but it falls short in compar-
ison to ICA; the patterns are less clear for PCA
in Figs. 2b and 3b. Embeddings are known to be
anisotropic (Ethayarajh, 2019), and their isotropy
can be greatly improved by post-processes such
as centering the mean, removing the top princi-
pal components (Mu and Viswanath, 2018), stan-
dardization (Timkey and van Schijndel, 2021), or
whitening (Su et al., 2021), which can also lead to
improved performance in downstream tasks. While
the whitening obtained by PCA provides isotropic
embeddings regarding the mean and covariance of
components, notably, ICA has succeeded in discov-
ering distinctive axes by focusing on the anisotropic
information left in the third and higher-order mo-
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(a) ICA

(b) PCA

Figure 3: Cross-correlation coefficients for ICA and
PCA-transformed embeddings. The clear diagonal lines
for the ICA-transformed embeddings indicate a good
alignment. (Left) English fastText and Spanish fastText
shown in Fig. 2. (Middle) fastText and BERT shown in
Fig. 7. (Right) Image models of ViT-Base and ResMLP-
12 shown in Fig. 8.

Figure 4: Illustration of the spiky shape of the word em-
bedding distributions in high-dimensional space. This
spiky shape is actually observed in the scatterplots of
the normalized ICA-transformed embeddings for seven
languages, as shown in Fig. 15 in Appendix C.

ments of whitened embeddings.

2 Background

2.1 Interpretability in word embeddings
The interpretability of individual dimensions in
word embedding is challenging and has been the
subject of various studies.

A variety of studies have adopted explicit con-
straints during re-training or post-processing of em-
beddings to improve sparsity and interpretability.
This includes the design of loss functions (Arora
et al., 2018), the introduction of constraint con-
ditions by sparse overcomplete vectors (Faruqui
et al., 2015), and re-training using k-sparse au-
toencoders (Makhzani and Frey, 2013; Subrama-
nian et al., 2018), sparse coding (Murphy et al.,

2012; Luo et al., 2015), or ℓ1-regularization (Sun
et al., 2016). Additionally, the sense polar approach
designs objective functions to make each axis of
BERT embeddings interpretable at both ends (En-
gler et al., 2022; Mathew et al., 2020).

However, our study takes a distinct approach.
We do not rely on explicit constraints utilized in
the aforementioned methods. Instead, we leverage
transformations based on the inherent information
within the embeddings. Our motivation aligns with
that of Park et al. (2017) and Musil and Mareček
(2022), aiming to incorporate interpretability into
each axis of word vectors. Similar to previous
studies (Honkela et al., 2010; Musil and Mareček,
2022), we have confirmed that interpretable axes
are found by applying ICA to a set of embeddings.

2.2 Cross-lingual embeddings
Cross-lingual mapping. To address the task of
cross-lingual alignment, numerous methodologies
have been introduced to derive cross-lingual map-
pings. Supervised techniques that leverage transla-
tion pairs as training data have been proposed, such
as the linear transformation approach (Mikolov
et al., 2013b). Studies by Xing et al. (2015) and
Artetxe et al. (2016) demonstrated enhanced per-
formance when constraining the transformation
matrices to be orthogonal. Furthermore, Artetxe
et al. (2017) proposed a method for learning trans-
formations from a minimal data set. As for un-
supervised methods that do not leverage transla-
tion pairs for training, Lample et al. (2018) pro-
posed an approach incorporating adversarial learn-
ing, while Artetxe et al. (2018) introduced a ro-
bust self-learning method. Additionally, unsuper-
vised methods employing optimal transportation
have been presented: Alvarez-Melis and Jaakkola
(2018) introduced a method utilizing the Gromov-
Wasserstein distance, while studies by Grave et al.
(2019) and Aboagye et al. (2022) suggested meth-
ods that employ the Wasserstein distance.

Multilingual language models. Studies have
demonstrated that a single BERT model, pre-
trained with a multilingual corpus, acquires cross-
lingual grammatical knowledge (Pires et al., 2019;
Chi et al., 2020). Further research has also been
conducted to illustrate how such multilingual mod-
els express cross-lingual knowledge through em-
beddings (Chang et al., 2022).

Our approach. These cross-lingual studies, even
the ‘unsupervised’ mapping, utilize embeddings
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from multiple languages for training. Unlike these,
we apply ICA to each language individually and
identify the inherent semantic structure in each
without referencing other languages. Thus ICA,
as well as PCA, is an unsupervised transformation
in a stronger sense. In our study, the embeddings
from multiple languages and the translation pairs
are used solely to verify that the identified semantic
structure is shared across these languages. While
it is understood from previous research that there
exists a shared structure in embeddings among mul-
tiple languages (i.e., their shapes are similar), the
discovery in our study goes beyond that by reveal-
ing the universal geometric patterns of embeddings
with intrinsic interpretable axes (i.e., clarifying the
shapes of embedding distributions; see Fig. 4).

3 ICA: Revealing the semantic structure
in the geometric patterns of embeddings

We analyzed word embeddings using ICA. It was
discovered that they possess inherent interpretabil-
ity and sparsity. ICA can unveil these properties of
embeddings.

3.1 PCA-transformed embeddings

Before explaining ICA, we briefly explain PCA,
widely used for dimensionality reduction and
whitening, or sphering, of feature vectors.

The pre-trained embedding matrix is represented
as X ∈ Rn×d, where X is assumed to be cen-
tered; it is preprocessed so that the mean of each
column is zero. Here, n represents the number of
embeddings, and d is the number of embedding di-
mensions. The i-th row of X, denoted as xi ∈ Rd,
corresponds to the word vector of the i-th word, or
the embedding computed by an image model from
the i-th image.

In PCA, the transformed embedding matrix Z ∈
Rn×d is computed using algorithms such as Singu-
lar Value Decomposition (SVD) of X. This pro-
cess identifies the directions that explain the most
variance in the data. The transformation can be ex-
pressed using a transformation matrix A ∈ Rd×d

as follows:
Z = XA.

The columns of Z are called principal components.
The matrix Z is whitened, meaning that each col-
umn has a variance of 1 and all the columns are
uncorrelated. In matrix notation, Z⊤Z/n = Id,
where Id ∈ Rd×d represents the identity matrix.

3.2 ICA-transformed embeddings
In Independent Component Analysis (ICA), the
goal is to find a transformation matrix B ∈ Rd×d

such that the columns of the resulting matrix S ∈
Rn×d are as independent as possible. This transfor-
mation is given by:

S = XB.

The columns of S are called independent compo-
nents. The independence of random variables is
a stronger condition than uncorrelatedness, and
when random variables are independent, it implies
that they are uncorrelated with each other. While
both PCA and ICA produce whitened embeddings,
their scatterplots appear significantly different, as
observed in Fig. 5; refer to Appendix B for more
details. While PCA only takes into account the
first and second moments of random variables (the
mean vector and the variance-covariance matrix),
ICA aims to achieve independence by incorporat-
ing the third moment (skewness), the fourth mo-
ment (kurtosis) and higher-order moments through
non-linear contrast functions (Fig. 6).

In the implementation of FastICA1, PCA is used
as a preprocessing step for computing Z, and

S = ZRica

is actually computed2, and we seek an orthogonal
matrix Rica that makes the columns of S as in-
dependent as possible (Hyvärinen and Oja, 2000).
The linear transformation with an orthogonal ma-
trix involves only rotation and reflection of the zi
vectors, ensuring that the resulting matrix S is also
whitened, meaning that the embeddings of ICA, as
well as those of PCA, are isotropic with respect to
the variance-covariance matrix (Appendix A).

According to the central limit theorem, when
multiple variables are added and mixed together,
they tend to approach a normal distribution. There-
fore, in ICA, an orthogonal matrix Rica is com-
puted to maximize a measure of non-Gaussianity
for each column in S, aiming to recover indepen-
dent variables (Hyvärinen and Oja, 2000). This
idea is rooted in the notion of ‘projection pur-
suit’ (Huber, 1985), a long-standing idea in the
field. Since the normal distribution maximizes en-
tropy among probability distributions with fixed
mean and variance, measures of non-Gaussianity
are interpreted as approximations of neg-entropy.

1We used FastICA in Scikit-learn (Pedregosa et al., 2011).
2Since we can express S = XARica, and thus specifying

Rica is equivalent to specifying B = ARica.
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Figure 5: Scatterplots of word embeddings along specific axes: (0, 1), (2, 3), (49, 50), and (99, 100). The axes for
ICA and PCA-transformed embeddings were arranged in descending order of skewness and variance, respectively.
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Figure 6: Measures of non-Gaussianity for each axis of ICA and PCA-transformed word embeddings. Additionally,
the measures for each component of the raw word embedding and a Gaussian random variable are plotted as
baselines. Larger values indicate deviation from the normal distribution. The axes found by ICA are far more
non-Gaussian than those found by PCA. For more details, refer to Appendix B.

3.3 Interpretability and low-dimensionality of
ICA-transformed embeddings

Fig. 1 illustrates that the key components of a word
embedding are formed by specific axes that capture
the meanings associated with each word. Specifi-
cally, this figure showcases five axes selected from
the ICA-transformed word embeddings, that is, five
columns of S. The word embeddings X have a
dimensionality of d = 300 and were trained on
the text8 corpus using Skip-gram with negative
sampling. For details of the experiment, refer to
Appendix B.

Interpretability. Each of these axes represents
a distinct meaning and can be interpreted by ex-
amining the top words based on their normalized
component values. For example, words like dishes,
meat, noodles have high values on axis 16, while
words like cars, car, ferrari have high values on
axis 26. We labeled each axis with the word having
the highest component value, enclosed in brackets
like [dishes] for axis 16, and [cars] for axis 26.

Low-dimensionality. The meaning of a word is
approximately represented by the combination of a
few axes. For example, the word ferrari has large
values on [cars] (axis 26) and [italian] (axis 34).
This indicates that the meaning of the word ferrari

is approximately represented by these two axes.
Quantitative evaluation is provided in Section 6.

4 Universality across languages

This section examines the results of conducting
ICA on word embeddings, each trained individually
from different language corpora. Interestingly, the
meanings of the axes discovered by ICA appear to
be the same across all languages. For a detailed
description of the experiment, refer to Appendix C.

Setting. We utilized the fastText embeddings by
Grave et al. (2018), each trained individually on
separate corpora for 157 languages. In this exper-
iment, we used seven languages: English (EN),
Spanish (ES), Russian (RU), Arabic (AR), Hindi
(HI), Chinese (ZH), and Japanese (JA). The dimen-
sionality of each embedding is d = 300. For each
language, we selected n = 50,000 words, and com-
puted the PCA-transformed embeddings Zlang and
the ICA-transformed embeddings Slang for each
of the seven centered embedding matrices Xlang

(lang ∈ {EN,ES,RU,AR,HI,ZH, JA}).
We then performed the permutation of axes to

find the best alignment of axes between languages.
The matching is measured by the cross-correlation
coefficients between languages.
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Results. The upper panels of Fig. 3 display the
cross-correlation coefficients between the first 100
axes of English and those of Spanish embeddings.
The significant diagonal elements and negligible
off-diagonal elements observed in Fig. 3a suggest
a strong alignment of axes, indicating a good cor-
respondence between the ICA-transformed embed-
dings. Conversely, the less pronounced diagonal
elements and non-negligible off-diagonal elements
observed in Fig. 3b indicate a less favorable align-
ment between the PCA-transformed embeddings.

The semantic axes identified by ICA, referred to
as ‘independent semantic axes’ or ‘independent se-
mantic components’, appear to be nearly universal,
regardless of the language. In Fig. 2a, heatmaps
visualize the ICA-transformed embeddings. The
upper panels display the top 5 words for each of the
first 100 axes in English and their corresponding
translations in the other languages. It is evident
that words sharing the same meaning in different
languages are represented on the corresponding
axes. The lower panels show the first 5 axes with
their corresponding words. ICA identified axes in
each language related to first names, ships-and-sea,
country names, plants, and meals as independent
semantic components. Overall, the heatmaps for all
languages exhibit very similar patterns, indicating
a shared set of independent semantic axes in the
ICA-transformed embeddings across languages.

5 Universality in algorithm and modality

We expand the analysis from the previous section
to two additional settings. The first setting involves
comparing fastText and BERT, while the second
setting involves comparing multiple image models
and fastText simultaneously.

5.1 Contextualized word embeddings

Setting. Sentences included in the One Billion
Word Benchmark (Chelba et al., 2014) were pro-
cessed using a BERT-base model to generate con-
textualized embeddings for n = 100,000 tokens,
each with a dimensionality of d = 768. We com-
puted PCA and ICA-transformed embeddings for
both the BERT embeddings and the English fast-
Text embeddings. As with the cross-lingual case
of Section 4, the axes are aligned between BERT
and fastText embeddings by permuting the axes
based on the cross-correlation coefficients. Further
details can be found in Appendix D.1.

(a) ICA (b) PCA

Figure 7: The rows represent normalized word embed-
dings for English fastText and English BERT trans-
formed by (a) ICA and (b) PCA. The components from
the first 100 axes of 500 fastText and 1,500 BERT em-
beddings are displayed in the upper panels, and the first
five axes are magnified in the lower panels. For each
axis of fastText embeddings, the top 5 words were cho-
sen based on their component values. For each of these
words, 3 corresponding tokens from BERT were chosen
randomly. Correlation coefficients between transformed
axes were utilized to establish axis correspondences and
carry out axis permutations, as detailed in Section 5.1
and Appendix D.1.

Results. In Fig. 7a, the heatmaps for fastText and
BERT exhibit strikingly similar patterns, indicating
a shared set of independent semantic axes in the
ICA-transformed embeddings for both fastText and
BERT. The lower heatmaps show the first five axes
with meanings first names, community, ships-and-
sea, verb, and number. Furthermore, the middle
panel in Fig. 3a demonstrates a good alignment of
axes between fastText and BERT embeddings. On
the other hand, PCA gives a less favorable align-
ment, as seen in Figs. 3b and Fig. 7b.

5.2 Image embeddings
Setting. We randomly sampled images from
the ImageNet dataset (Russakovsky et al., 2015),
which consists of 1000 classes. For each class,
we collected 100 images, resulting in a total of
n = 100,000 images. These images were passed
through the five pre-trained image models listed in
Table 1, and we obtained embeddings from the
layer just before the final layer of each model.
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(a) Normalized ICA-transformed embeddings of images and words for five image models and English fastText.

(b) Normalized PCA-transformed embeddings of images and words for five image models and English fastText.

Figure 8: The rows represent (a) ICA-transformed embeddings and (b) PCA-transformed embeddings of images or
words. The lower panels magnify the first five axes. The components from the first 100 axes are displayed for the
1500 image embeddings and 500 word embeddings. For each axis of ViT-Base embeddings, the top 5 ImageNet
classes were chosen based on the mean of their component values, and 3 images were sampled randomly from
each class. These images were also used for the other image models. For fastText, words that best describe the
ImageNet class name were selected. Correlation coefficients between transformed axes were utilized to establish
axis correspondences and carry out axis permutations; ViT-Base was used as the reference model among the image
models to match the axes, and then the axes were aligned between ViT-Base and English fastText to ensure the
correlation coefficients are in descending order, as detailed in Section 5.2 and Appendix D.2.

model weight d

ViT-Base vit_base_patch32_224_clip_laion2b 768
ResMLP-12 resmlp_12_224 384

Swin-S swin_small_patch4_window7_224 768
ResNet-18 resnet18 512

RegNetY-200MF regnety_002 368

Table 1: pre-trained image models.

Among these models, we selected a specific model
of ViT-Base (Dosovitskiy et al., 2021) as our refer-
ence image model. This particular ViT-Base model
was trained with a focus on aligning with text em-

beddings (Radford et al., 2021). We computed PCA
and ICA-transformed embeddings for the five im-
age models. As with the cross-lingual case of Sec-
tion 4, the axes are aligned between ViT-Base and
each of the other four image models by permuting
the axes based on the cross-correlation coefficients.
Additionally, to align the axes between ViT-Base
and English fastText, we permuted the axes based
on the cross-correlation coefficients that were com-
puted using ImageNet class names and fastText
vocabulary as a means of linking the two modali-
ties. Further details can be found in Appendix D.2.
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Results. In Fig. 8a, the heatmaps of the five im-
age models and fastText exhibit similar patterns,
indicating a shared set of independent semantic
axes in the ICA-transformed embeddings for both
images and words. While we expected a good align-
ment between ViT-Base and fastText, it is note-
worthy that we also observe a good alignment of
ResMLP (Touvron et al., 2023) and Swin Trans-
former (Liu et al., 2021) with fastText. Further-
more, Fig. 3a demonstrates a very good alignment
of axes between ViT-Base and ResMLP. This sug-
gests that the independent semantic components
captured by ICA are not specific to a particular
image model but are shared across multiple mod-
els. On the other hand, PCA gives a less favorable
alignment, as seen in Figs. 3b and 8b.

6 Quantitative evaluation

We quantitatively evaluated the interpretability
(Section 6.1) and low-dimensionality (Section 6.2)
of ICA-transformed embeddings comparing with
other whitening methods (PCA, ZCA) as well as
a well-known rotation method (varimax). These
baseline methods are described in Appendix E.1.
In the monolingual experiments, we used 300-
dimensional word embeddings trained using the
SGNS model on the text8 corpus, as outlined in
Appendix B. Furthermore, we assessed the cross-
lingual performance (Section 6.3) of PCA and ICA-
transformed embeddings, along with two other su-
pervised baseline methods.

6.1 Interpretability: word intrusion task

We conducted the word intrusion task (Sun et al.,
2016; Park et al., 2017) in order to quantitatively
evaluate the interpretability of axes. In this task,
we first choose the top k words from each axis, and
then evaluate the consistency of their word meaning
based on the identifiability of the intruder word.
For instance, consider a word group of k = 5,
namely, {windows, microsoft, linux, unix, os} with
the consistent theme of operating systems. Then,
hamster should be easily identified as an intruder.
Details are presented in Appendix E.3.

Results. The experimental results presented in
Table 2 show that the top words along the axes of
ICA-transformed embeddings exhibit more consis-
tent meanings compared to those of other methods.
This confirms the superior interpretability of axes
in ICA-transformed embeddings.

ZCA PCA Varimax ICA

DistRatio 1.04 1.13 1.26 1.57

Table 2: A large value of DistRatio indicates the consis-
tency of word meaning in the word intrusion task. We
set k = 5, and the reported score is the average of 10
runs with randomly selected intruder words.
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Figure 9: The performance of several whitened word
embeddings when reducing the non-zero components.
The values are averaged over 14 analogy tasks or six
word similarity tasks. The performance of a specific
case in analogy and word similarity tasks is shown in
Fig. 17 in Appendix E.4.

6.2 Low-dimensionality: analogy task & word
similarity task

We conducted analogy tasks and word similarity
tasks using a reduced number of components from
the transformed embeddings. Specifically, we eval-
uated how well the transformed embedding retains
semantic information even when reducing the non-
zero components from the least significant ones.
For each whitened embedding, we retained the k
most significant components unchanged while set-
ting the remaining components to zero. The spe-
cific axes we used depend on each embedding. The
performance was evaluated for the number of axes
k ranging from 1 to 300.

Results. Fig. 9 demonstrates that the ICA-
transformed embedding has the highest average per-
formance throughout the entire dataset. Detailed
settings and results, including those for unwhiten-
ing cases, are presented in Appendix E.4. These ex-
perimental results show that the ICA-transformed
embedding effectively represents word meanings
using only a few axes.

6.3 Universality: cross-lingual alignment
In Fig. 2a, we visually inspected the cross-
lingual alignment obtained by permutating ICA-
transformed embeddings, and we observed remark-
ably good alignment across languages. In this sec-
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Dataset Method Original Rand.

157langs-fastText

LS 84.72 55.28
Proc 84.95 18.72

ICA 19.48 18.60
PCA 0.92 0.64

MUSE-fastText

LS 78.91 51.44
Proc 78.41 20.19

ICA 43.27 43.31
PCA 2.13 0.40

Table 3: The average top-1 accuracy of the cross-lingual
alignment task from English to other languages. Two
datasets of fastText embeddings (157langs and MUSE)
were evaluated with the two types of embeddings (Orig-
inal and Random-transformation). LS and Proc are
supervised transformations using both the source and
target embeddings, while ICA and PCA are unsuper-
vised transformations. For the complete results, refer to
Table 15 in Appendix E.5.

tion, we go beyond that by thoroughly examining
the performance of the alignment task. Details are
presented in Appendix E.5.

Datasets. In addition to ‘157langs-fastText’ used
in Section 4 (Grave et al., 2018), we used ‘MUSE-
fastText’, pre-aligned embeddings across lan-
guages (Lample et al., 2018). The source language
is English (EN), and the target languages are Span-
ish (ES), French (FR), German (DE), Italian (IT),
and Russian (RU). For each language, we selected
50,000 words.

Supervised baselines. We used two supervised
baselines that learn a transformation matrix W ∈
Rd×d by leveraging both the source embedding X
and the target embedding Y. Each row of X and
Y corresponds to a translation pair. We minimized
∥XW − Y∥22 by the least squares (LS) method
(Mikolov et al., 2013b) or the Procrustes (Proc)
method with the constraint that W is an orthogonal
matrix (Xing et al., 2015; Artetxe et al., 2016).

Random transformation. In addition to the orig-
inal fastText embeddings, we considered embed-
dings transformed by a random matrix Q ∈ Rd×d

that involves random rotation and random scaling.
Specifically, for each X, we independently gener-
ated Q to compute XQ.

Results. Table 3 shows the top-1 accuracy of the
cross-lingual alignment task. The values are aver-
aged over the five target languages.

LS consistently performed the best, or nearly
the best, across all the settings because it finds the

optimal mapping from the source language to the
target language by leveraging both the embeddings
as well as translation pairs. Therefore, we con-
sider LS as the reference method in this experiment.
Proc performed similarly to LS in the original em-
beddings, but its performance deteriorated with
the random transformation. The original word em-
beddings had very similar geometric arrangements
across languages, but the random transformation
distorted the arrangements so that the orthogonal
matrix in Proc was not able to recover the original
arrangements.

ICA generally performed well, despite being an
unsupervised method. In particular, ICA was not af-
fected by random transformation and performed as
well as or better than Proc. The higher performance
of ICA for MUSE than for 157langs is likely due
to the fact that MUSE is pre-aligned. On the other
hand, PCA performed extremely poorly in all the
settings. This demonstrates the challenge of cross-
lingual alignment for unsupervised transformations
and highlights the superiority of ICA.

The observations from this experiment can be
summarized as follows. ICA was able to identify
independent semantic axes across languages. Fur-
thermore, ICA demonstrated robust performance
even when the geometric arrangements of embed-
dings were distorted. Despite being an unsuper-
vised transformation method, ICA achieved im-
pressive results and performed comparably to the
supervised baselines.

7 Conclusion

We have clarified the universal semantic structure
in the geometric patterns of embeddings using ICA
by leveraging anisotropic distributions remaining
in the whitened embeddings. We have verified that
the axes defined by ICA are interpretable and that
embeddings can be effectively represented in low-
dimensionality using a few of these components.
Furthermore, we have discovered that the meanings
of these axes are nearly universal across different
languages, algorithms, and modalities. Our find-
ings are supported not only by visual inspection
of the embeddings but also by quantitative eval-
uation, which confirms the interpretability, low-
dimensionality, and universality of the semantic
structure. The results of this study provide new
insights for pursuing the interpretability of models.
Specifically, it can lead to the creation of inter-
pretable models and the compression of models.
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Limitations

• Due to the nature of methods that identify se-
mantic axes by linearly transforming embed-
dings, the number of independent semantic
components is limited by the dimensionality
of the original embeddings.

• ICA transforms the data in such a way that
the distribution of each axis deviates from the
normal distribution. Therefore, ICA is not
applicable if the original embeddings follow a
multivariate normal distribution. However, no
such issues were observed for the embeddings
considered in this paper.

• In Section 4, we utilized translation pairs to
confirm the shared semantic structure across
languages. Consequently, without access to
such translation pairs, it becomes infeasible to
calculate correlation coefficients and achieve
successful axis matching. Therefore, in the
future, we intend to investigate whether it is
possible to perform matching by comparing
distributions between axes using optimal trans-
port or other methods without relying on trans-
lation pairs.

• When comparing heatmaps of embeddings
across languages in Fig. 2, we looked at five
words from each axis. Thus only a small frac-
tion of vocabulary words were actually ex-
amined for verifying the shared structure of
geometric patterns of embeddings. Although
this issue is already compensated by the plot
of cross-correlations in Fig. 3, where a sub-
stantial fraction of vocabulary words were ex-
amined, we seek a better way to verify the
shared structure in future work. For example,
the scatter plots in Fig. 15 may help us under-
stand the entire structure of word embedding
distributions.
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A Whitening and isotropic embeddings

In addition to the whitened embeddings Z ob-
tained through PCA, we also consider various other
whitened embeddings (Kessy et al., 2018). They

can be represented in the form of linear transforma-
tions using an orthogonal matrix R:

Y = ZR.

These transformed embeddings Y with any R are
again whitened3, meaning that the embeddings are
isotropic with respect to the variance-covariance
matrix. Also, the centering step of whitening makes
the embeddings centered, and the transformed em-
beddings Y with any R are again centered4, mean-
ing that the embeddings are isotropic with respect
to the mean vector. However, the linear transfor-
mation cannot make the embeddings isotropic with
respect to the third and higher-order moments.

The row vectors yi = (yi1, . . . , yid) and zi =
(zi1, . . . , zid) of Y and Z, respectively, satisfy the
equation5:

⟨yi,yj⟩ = ⟨zi, zj⟩,

where ⟨a,b⟩ =
∑d

k=1 akbk represents the inner
product. Therefore, the inner products of embed-
dings are preserved under this transformation, indi-
cating that the performance of tasks based on inner
products, such as those using cosine similarity, re-
mains unchanged.

B Details of experiment in Section 3

We summarize the details of the embeddings used
in Figure 1 and the monolingual quantitative evalu-
ations in Sections 6.1 and 6.2.

Corpus. We used the text8 (Mahoney, 2011),
which is an English corpus data with the size of
N = 17.0×106 tokens and |V | = 254×103 vocab-
ulary words. We used all the tokens separated by
spaces. The frequency of word w ∈ V in the cor-
pus is denoted as p(w), where

∑
w∈V p(w) = 1.

Training of the SGNS model. Word embeddings
were trained6 by optimizing the same objective

3In general, for an orthogonal matrix R, i.e., R⊤R = Id,
consider a transformed matrix Y = ZR. Then Y is whitened,
because Y⊤Y/n = (ZR)⊤ZR/n = R⊤Z⊤ZR/n =
R⊤R = Id.

4For centered embeddings Z, the mean vector is
(1n/n)

⊤Z = 0⊤
d , where 1n = (1, . . . , 1)⊤ ∈ Rn and

0d = (0, . . . , 0)⊤ ∈ Rd. Then, for any orthogonal matrix R,
(1n/n)

⊤Y = (1n/n)
⊤ZR = 0⊤

d R = 0⊤
d .

5Since yi = ziR, we have ⟨yi,yj⟩ = yiy
⊤
j =

ziR(zjR)⊤ = ziRR⊤z⊤j = ziz
⊤
j = ⟨zi, zj⟩.

6We used AMD EPYC 7702 64-Core Processor (64 cores
× 2). In this setting, the CPU time is estimated at about 12
hours.
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function used in Mikolov et al. (2013c). Param-
eters used to train SGNS are summarized in Ta-
ble 4. The learning rate shown is the initial value,
which we decreased linearly to the minimum value
of 1.0 × 10−4 during the learning process. The
negative sampling distribution was proportional to
the 3/4-th power of the word frequency, p(w)3/4.
The elements of xi were initialized by the uniform
distribution over [−0.5, 0.5] divided by the dimen-
sionality of the embedding, and the elements of x′

i

were initialized by zero.

Dimensionality 300
Epochs 100
Window size h 10
Negative samples ν 5
Learning rate 0.025
Min count 1

Table 4: SGNS parameters.

Discarding low-frequency words. After com-
puting the embeddings, we discarded words w that
appeared less than 10 times in the text8 corpus. The
new vocabulary V ′ consists of the 47,134 words
that appeared 10 times or more in the text8 corpus.

Resampling word embeddings. We resampled
the word w with probability q(w) when preparing
the data matrix X ∈ Rn×d. As an example, we will
explain the procedure when employing q(w) ∝
p(w) for w ∈ V ′. First, we randomly sampled
100,000 words from V ′ with replacement using
the weight q(w). This resulted in the selection
of 14,942 unique words. Subsequently, we added
15,058 words from the remaining unselected words,
ordered by descending frequency, to reach a total
of 30,000 unique words. Each row of X represents
the embeddings of the n = 115,058 words selected
through the aforementioned process.

Selection of resampling weight. We considered
resampling weights in the form of q(w) ∝ p(w)α,
where α takes values from the candidate set α ∈
{1/2, 3/4, 1}. We conducted an experiment to de-
termine the optimal value of α. For each q(w), we
prepared the data matrix X using the resampling
method explained above. Additionally, we created
an unweighted X with n = |V ′|. We then com-
puted ICA-transformed embeddings and evaluated
the performance on the analogy and word similar-
ity tasks using a reduced number of components,
which are explained in detail in Section 6.2 and Ap-
pendix E.4. The results are shown in Fig. 10. We

observed that either α = 3/4 or α = 1 is the best,
and we decided that using α = 1 is appropriate for
ease of implementation in general.
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Figure 10: Performance of ICA-transformed embed-
dings using a reduced number of components with vary-
ing resampling weights specified by α. Larger values
indicate better performance. We measured the top-10
accuracy for the analogy task and the Spearman rank
correlation for the word similarity task. These values
represent averages across 14 analogy tasks and six word
similarity tasks.
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Figure 11: Performance of ICA-transformed embed-
dings with varying iterations. The settings are the same
as those in Fig. 10.

Selection of the number of FastICA iterations.
We demonstrate that our analysis remains unaf-
fected by changes in the number of iterations in Fas-
tICA. Specifically, we evaluated the embeddings
obtained by varying the number of iterations (100,
200, 1000, 10000) in FastICA. The evaluation was
performed on the word intrusion task, analogy task,
and word similarity task. The results are presented
in Table 5 and Fig. 11. In both experiments, we
observed that reducing the number of FastICA it-
erations slightly diminished task performance, al-
though the difference was very small. Therefore,
we conclude that changing the number of FastICA
iterations did not significantly impact the results.

ICA-transformed embeddings. We utilized the
implementation of FastICA, with the default setting
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Figure 12: Scatter plots of the normalized ICA-transformed embedding for eight combinations of the five axes. The
plots for the other two combinations are shown in Fig. 1. The words are highlighted with colors corresponding to
their respective axes. We observe that each axis can be interpreted by words that have large values along that axis.
Some words are represented by a combination of axes, such as sushi = [japanese] + [dishes] or fellini = [italian] +
[film]. In some pairs of two axes, there may be no words represented by their combination. For example, in the plot
of ([dishes], [cars]) axes, no words are found where both of these components are large.

4661



Varimax (baseline) ICA (100 iterations) ICA (200 iterations) ICA (1000 iterations) ICA (10000 iterations)

DistRatio 1.26 1.42 1.47 1.52 1.55

Table 5: Performance of ICA-transformed embeddings with varying iterations. Large values of DistRatio indicate
better interpretability. The settings are the same as those in Table 2.

(a) ICA-transformed word embeddings. The axis numbers are sorted by skewness.

(b) PCA-transformed word embeddings. The axis numbers are sorted by variance.

Figure 13: Scatter plots of transformed word embeddings along specific axes: (0, 1), (2, 3), (49, 50), and (99, 100).
Colors indicate word frequency in the corpus, with warmer colors being more frequent.

except for the number of iterations set to 10,000
and a tolerance of 10−10. The contrast function
used was G(x) = log cosh(x). It should be noted
that the embeddings obtained through ICA have ar-
bitrariness in the sign of each axis and the order of
the axes. We calculated the skewness of each axis
and flipped the sign of axes as necessary to ensure a
positive sign of skewness. We then sorted the axes
in descending order of skewness. When visualizing
embeddings or selecting word sets, we normalized
each embedding to have a unit norm for facilitating
interpretation unless otherwise specified.

Details of Fig. 1 in Section 1. To illustrate the ad-
ditive compositionality of embeddings, the words
in the heatmap were selected as follows. For each
of the six combinations of axes {[dishes], [cars],
[films]} × {[italian], [japanese]}, we selected 20
words with the largest sum of the two component
values. From these 20 words, we chose the top
five words based on the second-largest component
value among the five axes. As a result, a total of
6 × 5 = 30 words were selected in this process.

Next, we created scatterplots of the normalized
ICA-transformed embeddings for all the ten combi-
nations of two axes selected from {[dishes], [cars],
[films], [italian], [japanese]}. Two of these scatter-
plots are shown in Fig. 1, and the remaining eight
are presented in Fig. 12.

Scatter plots of ICA and PCA-transformed
word embeddings. To visualize the transformed
embedding, scatterplots are displayed with selected
pairs of axes. Fig. 13a shows the ICA-transformed
embeddings given in Section 3.2, plotting specified
columns of S, with the axis numbers sorted in de-
scending order of skewness. Fig. 13b shows the
PCA-transformed embeddings given in Section 3.1,
plotting specified columns of Z, with the axis num-
bers sorted in descending order of variance. Colors
indicate word frequency in the corpus, with warmer
colors being more frequent. Unlike other visualiza-
tions, each embedding is not normalized to have
a unit norm. The plots in Fig. 5 in Sectoin 3 are
superpositions of the plots in Figs. 13a and 13b,
but the frequency information was omitted.
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The distributions of these two types of word em-
bedding have exactly the same shape in Rd because
they can be transformed into each other by rotation
as S = ZRica. However, there are significant
differences in the word distributions on each axis.
The distribution of ICA-transformed embeddings
exhibits anisotropy with a heavy-tailed shape along
each axis, thereby characterizing the meaning of
each axis. The distribution of PCA-transformed
embeddings is more isotropic and lacks specific
characterization of each axis, except for the top
few axes that encode word frequency as pointed
out by Mu and Viswanath (2018). Interestingly,
pronounced frequency bias is not observed in the
axes of ICA-transformed embeddings.

The spiky shape of the distribution of word em-
beddings observed in Fig. 13a is illustrated in Fig. 4.
As Figs. 2a and 3a suggest, the distribution of word
embeddings across multiple languages has a nearly
common shape, so they can be mapped by orthogo-
nal transformations.

Measures of non-Gaussianity. Fig. 6 in Sec-
toin 3 displays four non-Gaussianity measures. Let
X denote a random variable representing the com-
ponent on a specified axis, and let Z denote a
Gaussian random variable; here the symbols X
and Z are not related to X and Z. Since both PCA
and ICA-transformed embeddings are whitened,
we assume that X and Z have a mean of zero
and a variance of one; E(X) = E(Z) = 0 and
E(X2) = E(Z2) = 1, where E() denotes the ex-
pectation.

• The first measure is the skewness E(X3). If
it is negative, we flip the sign of the axis so
that E(X3) ≥ 0. Since E(Z3) = 0, a large
value of skewness indicates a deviation from
Gaussianity.

• The second measure is the kurtosis E(X4)−
E(Z4), where E(Z4) = 3. We observed that
it is nonnegative for most of the components
of embeddings, indicating that their distribu-
tions are more spread out with heavy tails than
the normal distribution.

• The third measure labeled logcosh is de-
fined as {E(G(X)) − E(G(Z))}2 with the
contrast function G(x) = log cosh(x) and
E(G(Z)) = 0.374567207491438. This mea-
sure is used as the objective function in the
implementation of FastICA.

• The fourth measure labeled Gaussian is
{E(G(X)) − E(G(Z))}2 with the con-
trast function G(x) = − exp(−x2/2) and
E(G(Z)) = −1/

√
2.

Properties of the last two measures are well stud-
ied in Hyvarinen (1999).

C Details of experiment in Section 4

The procedure described for this cross-lingual ex-
periment serves as a template for the other experi-
ments in the following sections.

Dataset. We employed the fastText embeddings
trained for 157 languages by Grave et al. (2018),
referred to as ‘157langs-fastText’ in this study.
We also made use of the dictionaries provided by
MUSE (Lample et al., 2018) to aid in the map-
ping of English words to their counterparts in other
languages7. Given that the vocabulary of 157langs-
fastText is substantial, containing 2,000,000 words,
our initial step was to lowercase and select non-
duplicate words included in both the English-to-
other language and other language-to-English dic-
tionaries provided by MUSE. These dictionaries
contain 6,500 unique source words from the com-
bined train and test sets. Subsequently, from the
2,000,000 words, those not yet chosen were se-
lected based on their frequency. We determined
the frequency using the Python package word-
freq (Speer, 2022), which provides word frequen-
cies across various languages. The vocabulary was
then capped at 50,000 words for each language.

PCA and ICA-transformed embeddings. We
then implemented PCA and ICA transformations
on the fastText embeddings, each containing
50,000 words per language. We used PCA and
FastICA in Scikit-learn (Pedregosa et al., 2011)
with ICA performed for a maximum of 10,000 it-
erations. Finally, we computed the skewness for
each axis and flipped the sign of the axis if nec-
essary to ensure positive skewness. These PCA
and ICA transformations were applied to each lan-
guage individually to identify the inherent semantic
structure within each language without referencing
other languages. The following steps are devoted
to verifying that the identified semantic structure in

7Here, we solely utilized the dictionaries provided by
MUSE and did not make use of the embeddings included
in MUSE. The multi-lingual embeddings in MUSE are pre-
aligned across languages, which makes them unsuitable for
this particular experiment.
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the axes of ICA-transformed embeddings is shared
across these languages.

Dataset ES RU AR HI ZH JA

157langs Train
Pairs 11965 10883 11559 8689 8645 6992

Source 4991 4996 4988 4983 4965 4821
Target 10154 9512 9650 7149 6521 5715

Table 6: The number of translation pairs, unique source
English words, and unique target words for each target
language.
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Figure 14: Correlation coefficients between the matched
components of English and each of the other languages
for ICA and PCA-transformed embeddings. The axes
were sorted by the correlation coefficients averaged
across the six languages.

Word translation pairs. As the first step of the
verification, we established the correspondence be-
tween the embeddings of English and the embed-
dings of other languages in the 157langs-fastText
dataset. This linking information between embed-
dings is necessary to compute cross-correlation
coefficients. For the purpose of illustration, we will
explain the procedure using the language pair of
English and Spanish. First, we gathered all pairs of
English and Spanish words from the train set of the
MUSE dictionaries, including both the English-to-
Spanish and Spanish-to-English translation pairs.
Next, we filtered out any pairs where either the En-
glish word or the Spanish word was not included
in the vocabulary set of 50,000 words prepared for
each language. The total number of pairs collected
was 11,965, where a word may be included in mul-
tiple translation pairs. The number of unique En-
glish words obtained from this process was 4,991.
The results of applying this procedure to the six
target languages are presented in Table 6, where
the source language is English.

Alignment of axes via permutation. Next, we
established a correspondence between the axes of

English word embeddings and those of other lan-
guages by appropriately permuting the indices of
axes. This involves permuting the columns of the
transformed embedding matrix. For illustrative
purposes, we will explain the procedure using En-
glish and Spanish word embeddings. Since both
the English and Spanish word embeddings have di-
mensions of 300, we computed a total of 300×300
cross-correlation coefficients using the translation
pairs of English words and their corresponding
Spanish words. From these cross-correlation coef-
ficients, we identified matched pairs of axes with
high correlations in a greedy fashion, starting from
the highest correlation. The columns of Spanish
word embeddings were then permuted to match
those of English word embeddings. This procedure
was applied to all other languages, ensuring that
their axes align with those of English.

Reordering axes. Subsequently, we computed
the average correlation coefficients of the aligned
axes to determine the reordering of the axes based
on their degree of similarity. For each language,
we calculated 300 correlation coefficients between
the axes and the corresponding axes of English.
These correlation coefficients were then averaged
across Spanish, Russian, Arabic, Hindi, Chinese,
and Japanese. Finally, we reordered the axes in
descending order based on the average correla-
tion coefficient. The cross-correlations between
the aligned axes as well as the average correlation
coefficients are shown in Fig. 14.

Diagnosing the axis alignment. For both ICA-
transformed and PCA-transformed embeddings,
we demonstrated the 100× 100 cross-correlation
coefficients between the first 100 axes of reordered
English and Spanish word embeddings in Fig. 3.
The diagonal elements represent the correlation co-
efficients between the aligned pairs of axes, while
the off-diagonal elements represent the correlation
coefficients between unaligned axes. In the case
of ICA-transformed embeddings, as depicted in
Fig. 3a, it is clear that the diagonal elements ex-
hibit significantly positive values, while the major-
ity of the off-diagonal elements are close to zero.
Thus, ICA gives a strong alignment of the axes.
In contrast, for PCA-transformed embeddings, as
shown in Fig. 3b, the diagonal elements are smaller
compared to ICA, and a considerable number of
off-diagonal elements deviate significantly from
zero. Thus, PCA gives a less favorable alignment.
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Word selection for visualization. After reorder-
ing the axes, we normalized all the embeddings to
ensure that their norm is equal to 1. We focused on
the first 100 axes for further analysis. We limited
the selection to words that have translation pairs
in the complete set of MUSE in all languages, in-
cluding English, Spanish, Russian, Arabic, Hindi,
Chinese, and Japanese. From this restricted set,
we selected the top 5 words for each axis of the
English word embeddings based on their largest
component values. For the remaining languages,
we selected words from the translation pairs. To
ensure diversity, we excluded duplicates that occur
in both singular and plural forms of nouns.

Analyzing the heatmaps. In Fig. 2, we presented
heatmaps that illustrate the components of the nor-
malized 500-word embeddings selected through
this procedure for both ICA-transformed and PCA-
transformed embeddings.

In Fig. 2a, which represents the ICA-transformed
embeddings, we observe that the top 5 words for
each axis have significant values along that axis.
This leads to a diagonal pattern of large values due
to the sparsity in other components. This consis-
tent pattern is observed in all seven languages. The
lower panels of the figure magnify the first five
axes, allowing us to identify the top 5 words cho-
sen for each axis. It is evident that each axis has
a specific semantic relevance. For example, the
first axis corresponds to first names, and we ob-
serve that such semantically meaningful axes can
be effectively aligned across languages.

Conversely, in Fig. 2b representing the PCA-
transformed embeddings, it can be observed that
the top 500 words do not exhibit significant values
along the diagonal. Additionally, in the magnified
heatmaps depicting the 25 words, when compared
to Fig. 2a, the semantics of the words for each axis
appear to be more ambiguous.

Visualization via scatterplots along the five axes.
In the heatmaps, we visualized embeddings for 25
words in each language. To overcome the limita-
tion of the heatmap, which only allows us to view
a small subset of words, we utilized scatterplots to
visualize all the words in the vocabulary. In Fig. 15,
we projected the normalized ICA-transformed em-
beddings into two dimensions using the same five
axes as those used in the heatmaps.

Similarly to the heatmaps, the meaning of each
axis can be interpreted based on the words arranged

along the axis. When viewed as a whole, the distri-
bution of embeddings for each language exhibits a
distinctive shape with spikes along axes. This spiky
shape is universally observed across all languages.

We should discuss whether this spiky shape is
real or not. ICA seeks axes that maximize non-
Gaussianity (Hyvärinen and Oja, 2000). More gen-
erally, projection pursuit aims to find ‘interesting’
projections of high-dimensional data (Huber, 1985).
However, these methods may detect apparent struc-
tures that are not statistically significant, particu-
larly when γ = d/n is large (Bickel et al., 2018). In
the case of cross-lingual word embeddings, where
d = 300 and n = 50,000, γ = 0.006 ≪ 1 is very
small. Therefore, it can be said that the chances
of detecting apparent non-Gaussian structures are
quite low. Taking into account the discovery of
numerous common axes across all languages, it
can be argued that the universal shape in the cross-
lingual embedding distributions is real.

The signature of ICA-transformed embed-
dings. To investigate the characteristics of ICA-
transformed word embeddings for each language,
we plotted two measures of non-Gaussianity,
namely skewness and kurtosis, along each axis in
Fig. 16. Summary statistics for the skewness and
kurtosis of the embeddings are given in Table 7.
These results allow us to discern deviations from
the isotropy of the distributions of word embed-
dings. All the kurtosis values for all axes in all
languages were positive, indicating that the distri-
butions are spreading more than the normal distri-
bution. Although a general trend is observed in
the plots, there are differences depending on the
language. In particular, English shows the high-
est non-Gaussianity, indicating a most spiky shape.
In contrast, Chinese and Hindi have the lowest
non-Gaussianity and smoother shapes. It remains
unclear whether these differences are language-
specific or induced by the embedding training pro-
cess.

D Details of experiment in Section 5

D.1 Contextualized word embeddings

Dataset. We used bert-base-uncased, a pre-
trained BERT model from the huggingface trans-
formers library. This model was pre-trained on
the BookCorpus (Zhu et al., 2015) and English
Wikipedia. Sentences from the One Billion Word
Benchmark (Chelba et al., 2014) were sequentially
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(a) English

(b) Spanish (c) Russian (d) Arabic

(e) Hindi (f) Chinese (g) Japanese

Figure 15: Normalized ICA-transformed word embeddings for seven languages. Scatterplots along the five axes
presented in Fig. 2a were drawn by projecting the embeddings into two dimensions. For each language, all words in
the vocabulary were plotted in respective colors. The 25 words in the heatmap were labeled and indicated by black
dots.
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Figure 16: Skewness and kurtosis calculated for each
axis of ICA-transformed word embeddings for seven
languages. For each language, the axes are sorted in
descending order of skewness.

skewness kurtosis

lang mean median mean median

EN 3.25 1.84 129.63 30.12
ES 2.50 1.84 54.43 24.18
RU 2.49 1.75 48.65 22.63
AR 2.06 1.50 57.03 23.58
HI 1.53 1.01 35.70 20.08
ZH 1.38 1.34 15.62 11.84
JA 2.13 1.88 58.38 21.31

Table 7: Summary statistics of the skewness and kurto-
sis calculated for each axis of ICA-transformed word
embeddings shown in Fig. 16.

inputted into BERT, generating 100,000 tokens,
including [CLS] and [SEP]. Unlike static word em-
beddings like those from fastText, BERT yields dy-
namic word embeddings. Consequently, the same
word can have different embeddings, labeled se-
quentially in their order of appearance, for instance,
as sea_0, sea_1, and so on.

PCA and ICA-transformed embeddings. Simi-
lar to the cross-lingual experiments, we computed
PCA-transformed and ICA-transformed embed-
dings for the obtained BERT embeddings. All the
axes of the transformed embeddings were adjusted
to have positive skewness.

Alignment of axes via permutation. We utilized
the same English fastText embeddings used in Ap-
pendix C along with the BERT embeddings. We
paired the fastText words with the BERT-labeled
tokens. If the same word appeared k times in the
BERT tokens, we created k pairs with that word.
To adjust for this effect, the correlation coefficients
were computed using the inverse frequency weight,
1/k. Given that the dimensionality of fastText em-
beddings is 300 while that of BERT is 768, we
greedily matched pairs of axes based on the most

significant correlation coefficients, thereby select-
ing 300 pairs of axes.

Reordering axes. Subsequently, we reordered
the axes in descending order of the correlation co-
efficients between the aligned axes of fastText and
BERT. The cross-correlation coefficients between
the first 100 axes are presented in the middle panels
of Fig. 3. ICA gives a strong alignment of the axes,
while PCA gives a less favorable alignment.

Word selection for visualization. We normal-
ized each embedding to have a norm of 1. We
limited BERT tokens to those included in the fast-
Text vocabulary. We selected the top 5 words from
the fastText axis based on their component values.
To examine the diversity of words, duplicates in sin-
gular and plural forms of nouns were disregarded.
To verify the variations in dynamic word embed-
dings, we randomly selected 3 BERT embeddings
for each word, instead of selecting those with the
three largest component values. In the heatmaps,
these three BERT embeddings were placed in de-
scending order based on the component values. We
performed this process for the initial 100 axes of
both the ICA-transformed and PCA-transformed
embeddings, and we presented the heatmaps of the
components of the embeddings when selecting 500
words from fastText and 1,500 tokens from BERT.

Analyzing the heatmaps. In Fig. 7a, which il-
lustrates the ICA-transformed embeddings, we ob-
serve similar patterns to the cross-lingual experi-
ment. In the upper panels, representing 500 words
and 1,500 tokens, the components of the top 5
words and sampled 15 tokens for each axis ex-
hibit large values. This is due to the sparsity of
the remaining components, resulting in significant
values along the diagonal. Moreover, in the lower
panels, we can observe consistent component pat-
terns across most pairs of axes for the 25 words
and 75 tokens.

On axis-1 of fastText embeddings, words such
as people and those are relatively ambiguous and
context-dependent. Considering that even in static
fastText, their component values are smaller com-
pared to other axes, it might be more challenging
for a single axis to exhibit more significant compo-
nents in dynamic embeddings of BERT.

On axis-2 of BERT embeddings, the compo-
nent value for shore_0 is nearly zero, while the
component values for shore_1 and shore_2 are
large. Upon reviewing the sentences containing
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these words, shore_0 appeared in the verb phrase
shore up, while shore_1 and shore_2 were used to
refer to the land along the edge of a sea. Therefore,
axis-2 effectively represents a consistent meaning
related to ships-and-sea.

Conversely, in Fig. 7b, which illustrates PCA-
transformed embeddings, we did not observe the
characteristics seen in Fig. 7a, mirroring the find-
ings from the cross-lingual scenario.

D.2 Image embeddings

Dataset. Beyond examining the universality
across different languages and distinct word em-
bedding models, we also investigated the univer-
sality across different image models. For the 1000
classes in ImageNet (Russakovsky et al., 2015), we
assembled a dataset comprising 100,000 images,
randomly selecting 100 images per class. As for
the image models, we chose ViT-Base (Dosovitskiy
et al., 2021) which is the backbone of CLIP (Rad-
ford et al., 2021), ResMLP (Touvron et al., 2023),
Swin Transformer (Liu et al., 2021), ResNet (He
et al., 2016), and RegNet (Han et al., 2018). The
feature embeddings of these image models were
extracted from their penultimate layer. We utilized
the pre-trained weights from the huggingface Py-
Torch Image Models (Wightman, 2019) for these
investigations, and Table 1 outlines the model types,
weight types, and the dimensionalities of the em-
beddings.

PCA and ICA-transformed embeddings. Just
as we did for fastText and BERT word embed-
dings, we computed PCA-transformed and ICA-
transformed embeddings for image embeddings.
All the axes of the transformed embeddings were
adjusted to have positive skewness.

Alignment of axes via permutation. Similar to
the cross-lingual experiment, where English fast-
Text served as the reference model, we used ViT-
Base as the reference model among the image
models. In the process of computing the corre-
lation coefficients between ViT-Base and another
image model, the embeddings for the same im-
age were treated as a pair. To align the axes of
the ViT-Base embeddings with those of the other
four image models, we employed the greedy match-
ing approach based on the cross-correlation coef-
ficients. Unlike the cross-lingual scenario, the im-
age model embeddings have different dimensions.
Therefore, we extracted only the axes from the

ViT-Base model that matched all the other mod-
els. As a result, there were 292 axes for the PCA-
transformed embeddings and 276 axes for the ICA-
transformed embeddings that were common among
all the models.

Diagnosing the axis alignment. As an exam-
ple, we presented the cross-correlation coefficients
between the first 100 axes of the ViT-Base and
ResMLP-12 models for both the PCA-transformed
and ICA-transformed embeddings in the bottom
panels of Fig. 3. As observed in previous ex-
periments, the alignment between the ViT-Base
and ResMLP-12 models is evident for the ICA-
transformed embeddings. However, for the PCA-
transformed embeddings, the alignment appears to
be less clear and more ambiguous.

Alignment with fastText. Next, we considered
the correspondence between the axes of ViT-Base
embeddings and English fastText embeddings. It
is important to note that the class names in Ima-
geNet are not individual words but sentences, such
as ‘king snake, kingsnake’. We parsed the class
names into separate words and searched for those
words in the vocabulary of English fastText, such
as ‘king’ and ‘snake’. For each ImageNet class,
we randomly sampled 100 images, resulting in 100
pairs for ‘king’ and 100 pairs for ‘snake’ in the case
of ‘king snake, kingsnake’. If a class name did not
contain any of the words present in the vocabulary,
that particular class was excluded from further anal-
ysis. When calculating the cross-correlation coeffi-
cients between the axes of ViT-Base embeddings
and English fastText embeddings, each image-word
pair was weighted inversely proportional to its fre-
quency. Utilizing these cross-correlation coeffi-
cients, we employed the greedy matching approach
to align the axes of ViT embeddings with the axes
of fastText embeddings.

Reordering axes. Lastly, we rearranged the
aligned axes of ViT-Base and fastText embeddings
to ensure the correlation coefficients of the aligned
axes are in descending order. The axes of other
image models, previously matched with ViT-Base
axes, were also rearranged according to the order
of the ViT-Base axes.

Analyzing the heatmaps. We normalized each
embedding to have a norm of 1. For each axis
of ViT-Base, we selected the top 5 classes that
have the highest average component values. For
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each selected class, we randomly chose 3 images
from the 100 images and sorted them in descend-
ing order based on the component value. The class
name was parsed to find words in the English fast-
Text vocabulary, and we selected the word with
the largest component value on the corresponding
axis. This process was applied to the first 100 axes
for both PCA-transformed and ICA-transformed
embeddings. The resulting heatmaps of the embed-
dings are displayed in Fig. 8.

From Fig. 8a for ICA-transformed embeddings,
in the case of the 1,500 images and 500 words pre-
sented in the upper panels, the 15 images and 5
words on each axis exhibit significant values on
that particular axis, much like in the cross-lingual
and BERT experiments. This is because other com-
ponents are sparse, causing large values to appear
on the diagonal. The lower panels illustrate the
heatmaps of the embeddings of 75 images and 25
words corresponding to the first five axes. For
instance, axis-2 of ViT-Base is oriented toward
alcohol-related concepts, the component values
are large for images of bottles and beers. Models
such as ResMLP-12, Swin-S, and RegNetY-200MF
also manifest larger component values on axis-2
for images related to alcoholic beverages. When
class names are partitioned into words, words se-
lected on axis-2 of fastText include beer, bottle,
and wine. The significant component values on the
corresponding axes suggest a successful alignment
between the axes of the image models and fastText.

Conversely, in Fig. 8b for PCA-transformed em-
beddings, the correspondence of axes is not evident.
Furthermore, the interpretation of the top 5 classes
associated with ViT-Base axes remains unclear.

It is important to note that ViT-Base, extracted
from the pre-trained CLIP, aligns well with other
models such as ResMLP-12 and Swin-S. This ob-
servation suggests that the decent alignment of ViT-
Base with fastText is not merely a result of CLIP
learning from both image and text.

E Details of experiment in Section 6

E.1 Whitened embeddings
We introduce several whitening methods below. In
Appendix A, we mentioned that they can be repre-
sented as

Y = ZR

from the embeddings Z obtained through PCA and
an orthogonal matrix R. Although these whitened
embeddings do not differ in terms of performance

on tasks based on inner products, they do differ in
terms of interpretability, low-dimensionality, and
cross-lingual performance. This study aims to iden-
tify the inherently interpretable subspace within
pre-trained embeddings and analyze their sparsity
and interpretability. Consequently, the baselines
were chosen with this perspective in mind. In other
words, embeddings learned directly from a cor-
pus, which incorporate explicit sparsity and inter-
pretability objectives in their optimization, are be-
yond the scope of this research.

PCA. Let Σ = X⊤X/n be the covariance ma-
trix of the row vectors of X. In one implementa-
tion of PCA, eigendecomposition is performed as
Σ = UD2U⊤, where U is an orthogonal matrix
consisting of the eigenvectors and D2 is a diagonal
matrix consisting of the eigenvalues. Using these,
the transformed matrix Z is computed as8:

Z = XUD−1.

Another implementation directly computes Z from
the singular value decomposition X = ZDU⊤.

ICA. As mentioned in Section 3.2, ICA is repre-
sented as S = ZRica with the orthogonal matrix
Rica. Thus S is whitened.

ZCA-Mahalanobis whitening. The whitening
transformation that minimizes the total squared
distance between X and Y is computed as:

Yzca = XΣ−1/2,

where Σ−1/2 := UD−1U⊤ (Bell and Sejnowski,
1997; Kessy et al., 2018). This can be expressed9

as Yzca = ZRzca, where Rzca = U⊤. Since the
columns of U represent the directions of princi-
pal components, Yzca simply rescales the original
X along these directions without introducing any
rotation.

Crawford-Ferguson rotation family. A fam-
ily of measures for the parsimony of matrix Y
is proposed by Crawford and Ferguson (1970)
as fκ(Y) = (1 − κ)

∑n
i=1

∑d
j=1

∑d
k ̸=j y

2
ijy

2
ik +

κ
∑d

k=1

∑n
i=1

∑n
j ̸=i y

2
iky

2
jk, where 0 ≤ κ ≤ 1 is a

parameter.
Although initially proposed for post-processing

the factor-loading matrix in factor analysis (Craw-
8Z = XA with A = UD−1 in Section 3.1.
9By noting X = ZDU⊤, we have Yzca = XΣ−1/2 =

(ZDU⊤)(UD−1U⊤) = ZDD−1U⊤ = ZU⊤.
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ford and Ferguson, 1970; Browne, 2001), this mea-
sure can be used to find an optimal R by minimiz-
ing fκ(ZR), and use ZR. Different values of κ
correspond to different rotation methods, such as
quartimax (κ = 0), varimax (κ = 1/n), parsimax
(κ = (d − 1)/(n + d − 2)), or factor parsimony
(κ = 1).

If Z is a whitened matrix, the resulting matrix
Y = ZR is almost the same regardless of the
choice of κ. This is because the second term
of fκ(Y) satisfies

∑d
k=1

∑n
i=1

∑n
j ̸=i y

2
iky

2
jk =

dn2 − ∑d
k=1

∑n
i=1 y

4
ik = dn2(1 + Op(n

−1))
as the rotated matrix Y is also whitened, i.e.,∑n

i=1 y
2
ik/n = 1. Therefore, the second term is

almost constant with respect to Y, and the result
of the minimization is not significantly influenced
by the value of κ.

E.2 Unwhitened embeddings

We introduced some embeddings obtained by rotat-
ing the centered embeddings X without rescaling.

PCA. The diagonal elements of D represent the
standard deviations of X in the directions of the
principal components. Simply rescaling Z by these
standard deviations results in the same scaling as
X, yielding

Xpca := ZD = XU.

ICA. Since S = ZRica, we define

Xica := XpcaRica = X(URica).

It should be noted that columns of S are intended
to be independent random variables, while this is
not the case for columns of Xica.

ZCA. Given that Yzca = ZU⊤, we define

Xzca := XpcaU
⊤ = X,

which brings us back to the original X. This ex-
plains that ZCA involves only scaling without rota-
tion.

Crawford-Ferguson rotation family. We sim-
ply apply the optimization procedure to X. Specif-
ically, we find an optimal R by minimizing
fκ(XR), and use XR. For unwhitened matrix
X, the minimization of fκ(XR) depends on the
value of κ.

Quartimax Varimax Parsimax Parsimony

DistRatio 1.26 1.26 1.26 1.26

Table 8: Consistency of word meaning in the word
intrusion task with Crawford-Ferguson rotation family.

E.3 Interpretability: word intrusion task
Selection of the intruder word. Our objective
is to assess the interpretability of the word embed-
dings Y ∈ Rn×d, where each row vector yi ∈ Rd

corresponds to a word wi. In order to select the
wintruder(a) for the set of top k words of each axis
a ∈ {1, . . . , d}, denoted as topk(a), we randomly
chose a word from a pool of words that satisfy
both of the following criteria simultaneously: (i)
the word ranks in the lower 50% in terms of the
component value on the axis a, and (ii) it ranks in
the top 10% in terms of the component value on
some axis other than a.

Evaluation metric. We adopted the following
metric proposed by Sun et al. (2016).

DistRatio =
1

d

d∑

a=1

InterDist(a)

IntraDist(a)

IntraDist(a) =
∑

wi,wj∈topk(a)
wi ̸=wj

dist(wi, wj)

k(k − 1)

InterDist(a) =
∑

wi∈topk(a)

dist(wi, wintruder(a))

k

In this formula, we defined dist(wi, wj) = ∥yi −
yj∥. Here, IntraDist(a) denotes the average dis-
tance between the top k words, and InterDist(a)
represents the average distance between the top
words and the intruder word. The score is higher
when the intruder word is further away from the set
topk(a). Therefore, this score serves as a quantita-
tive measure of the ability to identify the intruder
word, thus it is used as a measure of the consis-
tency of the meaning of the top k words and the
interpretability of axes.

Results for Crawford-Ferguson rotation family.
Table 8 shows the DistRatio for whitened embed-
dings with the four different choices of κ value.
As we have discussed in Appendix E.1, there is
no significant difference between the four rotation
methods. So, we presented the result for the well-
known varimax rotation in Table 2 of Section 6.1.
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k = 1 k = 10 k = 100 k = 300

Tasks ZCA PCA Vari. ICA ZCA PCA Vari. ICA ZCA PCA Vari. ICA ZCA PCA Vari. ICA

Analogy

capital-common-countries 0.00 0.03 0.17 0.57 0.26 0.37 0.44 0.90 0.94 0.95 0.94 0.97 0.97 0.97 0.97 0.97
capital-world 0.00 0.01 0.08 0.33 0.13 0.20 0.34 0.74 0.87 0.87 0.89 0.92 0.92 0.92 0.92 0.92
currency 0.00 0.00 0.29 0.20 0.05 0.07 0.30 0.28 0.17 0.20 0.24 0.27 0.23 0.23 0.23 0.23
city-in-state 0.00 0.01 0.00 0.14 0.14 0.13 0.08 0.33 0.63 0.67 0.62 0.66 0.72 0.72 0.72 0.72
family 0.00 0.06 0.19 0.21 0.16 0.23 0.37 0.51 0.73 0.70 0.75 0.75 0.81 0.81 0.81 0.81
gram1-adjective-to-adverb 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.11 0.09 0.11 0.09 0.13 0.13 0.13 0.13
gram2-opposite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.12 0.11 0.13 0.14 0.14 0.14 0.14
gram3-comparative 0.00 0.00 0.00 0.21 0.06 0.02 0.04 0.33 0.33 0.30 0.34 0.38 0.42 0.42 0.42 0.42
gram4-superlative 0.00 0.00 0.00 0.12 0.02 0.02 0.01 0.14 0.25 0.25 0.25 0.29 0.32 0.32 0.32 0.32
gram5-present-participle 0.00 0.02 0.00 0.03 0.04 0.04 0.05 0.19 0.32 0.30 0.35 0.38 0.40 0.40 0.40 0.40
gram6-nationality-adjective 0.01 0.05 0.18 0.38 0.34 0.47 0.52 0.90 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99
gram7-past-tense 0.00 0.01 0.00 0.06 0.02 0.03 0.09 0.17 0.31 0.31 0.34 0.34 0.40 0.40 0.40 0.40
gram8-plural 0.00 0.00 0.09 0.24 0.19 0.15 0.30 0.54 0.68 0.72 0.69 0.74 0.78 0.78 0.78 0.78
gram9-plural-verbs 0.00 0.03 0.00 0.05 0.01 0.03 0.04 0.15 0.28 0.30 0.31 0.35 0.39 0.39 0.39 0.39

Average 0.00 0.02 0.07 0.18 0.10 0.13 0.18 0.37 0.48 0.48 0.49 0.52 0.54 0.54 0.54 0.54

Similarity

MEN 0.08 0.09 0.24 0.36 0.30 0.30 0.39 0.55 0.65 0.66 0.67 0.68 0.70 0.70 0.70 0.70
WS353 0.14 0.21 0.31 0.33 0.31 0.32 0.46 0.66 0.64 0.67 0.68 0.71 0.71 0.71 0.71 0.71
MTurk 0.10 0.07 0.26 0.37 0.25 0.33 0.47 0.57 0.54 0.52 0.54 0.58 0.55 0.55 0.55 0.55
RW -0.03 0.02 0.02 0.09 0.08 0.07 0.16 0.16 0.35 0.31 0.29 0.33 0.35 0.35 0.35 0.35
SimLex999 0.05 0.00 -0.01 0.03 0.08 0.13 0.10 0.14 0.25 0.25 0.22 0.23 0.26 0.26 0.26 0.26
SimVerb3500 -0.03 -0.02 0.01 0.00 0.03 0.04 0.04 0.04 0.12 0.12 0.11 0.12 0.15 0.15 0.15 0.15

Average 0.05 0.06 0.14 0.20 0.17 0.20 0.27 0.36 0.43 0.42 0.42 0.44 0.45 0.45 0.45 0.45

Table 9: The performance of whitened embeddings (Appendix E.1) with components of top k absolute value was
evaluated. The values represent the top-10 accuracy for analogy tasks and the Spearman rank correlation for word
similarity tasks.

k = 1 k = 10 k = 100 k = 300

Tasks Orig. PCA Parsi. ICA Orig. PCA Parsi. ICA Orig. PCA Quarti. ICA Orig. PCA Vari. ICA

Analogy

capital-common-countries 0.01 0.02 0.32 0.56 0.32 0.49 0.84 0.94 0.98 0.98 0.97 0.99 0.98 0.98 0.98 0.98
capital-world 0.00 0.01 0.21 0.32 0.20 0.36 0.64 0.82 0.92 0.92 0.93 0.95 0.95 0.95 0.95 0.95
currency 0.00 0.00 0.27 0.22 0.04 0.09 0.28 0.28 0.23 0.25 0.24 0.26 0.27 0.27 0.27 0.27
city-in-state 0.00 0.00 0.08 0.13 0.16 0.19 0.21 0.37 0.67 0.74 0.69 0.73 0.76 0.76 0.76 0.76
family 0.00 0.05 0.26 0.21 0.25 0.41 0.51 0.53 0.78 0.80 0.84 0.83 0.86 0.86 0.86 0.86
gram1-adjective-to-adverb 0.01 0.00 0.00 0.00 0.01 0.04 0.03 0.05 0.19 0.20 0.19 0.15 0.22 0.22 0.22 0.22
gram2-opposite 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.03 0.09 0.16 0.14 0.18 0.20 0.20 0.20 0.20
gram3-comparative 0.01 0.00 0.02 0.23 0.09 0.07 0.12 0.40 0.44 0.47 0.48 0.53 0.56 0.56 0.56 0.56
gram4-superlative 0.00 0.00 0.00 0.12 0.03 0.03 0.05 0.17 0.31 0.37 0.36 0.36 0.43 0.43 0.43 0.43
gram5-present-participle 0.00 0.04 0.03 0.01 0.06 0.10 0.11 0.23 0.44 0.43 0.44 0.48 0.52 0.52 0.52 0.52
gram6-nationality-adjective 0.01 0.01 0.21 0.37 0.37 0.49 0.71 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
gram7-past-tense 0.00 0.07 0.04 0.06 0.05 0.11 0.12 0.26 0.44 0.44 0.42 0.44 0.52 0.52 0.52 0.52
gram8-plural 0.02 0.00 0.13 0.23 0.21 0.19 0.32 0.55 0.74 0.80 0.78 0.80 0.84 0.84 0.84 0.84
gram9-plural-verbs 0.00 0.02 0.00 0.02 0.03 0.13 0.05 0.23 0.39 0.48 0.46 0.44 0.52 0.52 0.52 0.52

Average 0.00 0.02 0.11 0.18 0.13 0.19 0.29 0.41 0.54 0.57 0.57 0.58 0.62 0.62 0.62 0.62

Table 10: The performance of unwhitened embeddings (Appendix E.2) with components of top k absolute value
was evaluated. The values represent the top-10 accuracy for analogy tasks.

k = 1 k = 10 k = 100 k = 300

Tasks Orig. PCA Vari. ICA Orig. PCA Quarti. ICA Orig. PCA Vari. ICA Orig. PCA Vari. ICA

Similarity

MEN 0.12 0.13 0.34 0.36 0.35 0.34 0.53 0.60 0.68 0.68 0.69 0.70 0.72 0.72 0.72 0.72
WS353 0.13 0.11 0.40 0.32 0.33 0.40 0.58 0.67 0.68 0.70 0.73 0.73 0.73 0.73 0.73 0.73
MTurk 0.16 0.21 0.42 0.38 0.28 0.46 0.62 0.62 0.61 0.64 0.62 0.65 0.64 0.64 0.64 0.64
RW 0.03 0.06 0.03 0.13 0.13 0.19 0.14 0.22 0.37 0.34 0.34 0.37 0.38 0.38 0.38 0.38
Simlex999 0.05 0.06 -0.00 0.06 0.10 0.17 0.12 0.16 0.25 0.26 0.25 0.25 0.27 0.27 0.27 0.27
SimVerb3500 -0.03 0.03 -0.06 0.02 0.03 0.07 0.06 0.07 0.14 0.14 0.14 0.14 0.16 0.16 0.16 0.16

Average 0.08 0.10 0.19 0.21 0.20 0.27 0.34 0.39 0.46 0.46 0.46 0.47 0.48 0.48 0.48 0.48

Table 11: The performance of unwhitened embeddings (Appendix E.2) with components of top k absolute value
was evaluated. The values represent the Spearman rank correlation for word similarity tasks.

E.4 Low-dimensionality: analogy task &
word similarity task

Analogy task. We used the Google analogy
dataset (Mikolov et al., 2013a), which includes 14

types of word relations for the analogy task. Each
task is composed of four words that follow the re-
lation w1 : w2 = w3 : w4. Using w1, w2 and w3,
we calculated w3 + w2 − w1 and identified the top
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k = 1 k = 10 k = 100 k = 300

Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi.

Analogy Average 0.07 0.07 0.07 0.07 0.18 0.18 0.18 0.18 0.49 0.49 0.49 0.49 0.54 0.54 0.54 0.54

Similarity Average 0.14 0.14 0.14 0.14 0.27 0.27 0.27 0.27 0.42 0.42 0.42 0.42 0.45 0.45 0.45 0.45

Table 12: The average performance of the four rotation methods for whitened embeddings. The values are averaged
over 14 analogy tasks and six word similarity tasks.

k = 1 k = 10 k = 100 k = 300

Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi. Quarti. Vari. Parsi. FacParsi.

Analogy Average 0.04 0.03 0.11 0.03 0.24 0.22 0.29 0.20 0.57 0.56 0.56 0.55 0.62 0.62 0.62 0.62

Similarity Average 0.18 0.19 0.15 0.12 0.34 0.33 0.32 0.28 0.46 0.46 0.46 0.46 0.48 0.48 0.48 0.48

Table 13: The average performance of the four rotation methods for unwhitened embeddings. The values are
averaged over 14 analogy tasks and six word similarity tasks.
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Figure 17: The performance of several whitened word
embeddings when reducing the non-zero components.
The top-10 accuracy for the analogy task (capital-
common-countries) and the Spearman rank correlation
for the word similarity task (WS353).

10 words with the highest cosine similarity to see
if w4 is included in them.

Word similarity task. We used MEN (Bruni
et al., 2014), WS353 (Finkelstein et al., 2002),
MTurk (Radinsky et al., 2011), RW (Luong et al.,
2013), SimLex999 (Hill et al., 2015), and SimVerb-
3500 (Gerz et al., 2016). They provide word pairs
along with human-rated similarity scores. As the
evaluation metric, we used the Spearman rank cor-
relation coefficient between the human ratings and
the cosine similarity of the word embeddings.

Reducing the non-zero components. For each
transformed embedding y = (y1, . . . , yd) and a
specified value of k, we retained only the k most
significant components of y. For example, if the
components are |y1| ≥ |y2| ≥ · · · ≥ |yd|, then
we used (y1, y2, . . . , yk, 0, . . . , 0) ∈ Rd, where the
d− k least significant components are replaced by
zero.

Results. The detailed results of the experiments
presented in Section 6.2 are shown in Table 9 for

whitened embeddings and Tables 10, 11 for un-
whitened embeddings. These results are derived
from varying the number of non-zero components
k, set to k = 1, 10, 100, and 300 for each em-
bedding. The performance of a specific case in
analogy and word similarity tasks is also illustrated
in Fig. 17.

For k = 300, all the components of the 300-
dimensional word vectors were used as they are.
Note that the performance for k = 300 is identical
for all the whitened (or unwhitened) embeddings,
because the difference is only their rotations, and
both analogy tasks and similarity tasks are based
on the inner product of embeddings.

Although there is a tendency for accuracy to
decrease when reducing the number of non-zero
components, it can be confirmed that the degree
of decrease is smaller when using ICA compared
to the other methods. The specific tasks depicted
in Fig. 17 are those that achieved the highest per-
formance at k = 300 in Table 9; capital-common-
countries has the highest top-10 accuracy 0.97 in
the analogy tasks, and WS353 has the highest
Spearman correlation 0.71 in the word similarity
tasks.

Results with embeddings that are transformed by
the Crawford-Ferguson rotation family are shown
in Table 12 for whitened embeddings and Table 13
for unwhitened embeddings. For whitened embed-
dings, there is no significant difference between the
four rotation methods as discussed in Appendix E.1.
So, we presented the results for the well-known
varimax rotation in Section 6.2 and Table 9. For
unwhitened embeddings, quartimax, varimax, and
parsimax were similarly good. This result is con-
sistent with the findings of Park et al. (2017). The
best rotation was identified as boldface in Table 13
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for the analogy task and word similarity task at
each k, and the selected rotation method was used
in Tables 10, 11.

E.5 Cross-lingual alignment

Dataset ES FR DE IT RU

157langs Train
Pairs 11965 10861 14669 9648 10883

Source 4991 4994 4995 4993 4996
Target 10154 9194 11221 8622 9512

157langs Test
Pairs 2975 2943 3660 2585 2447

Source 1500 1500 1500 1500 1500
Target 2869 2855 3429 2532 2374

MUSE Train
Pairs 11977 10872 14677 9657 10887

Source 5000 5000 5000 5000 5000
Target 10166 9205 11229 8631 9516

MUSE Test
Pairs 2975 2943 3660 2585 2447

Source 1500 1500 1500 1500 1500
Target 2869 2855 3429 2532 2374

Table 14: The number of translation pairs, unique source
English words, and unique target words for each target
language.

Datasets and visual inspection. In addition to
the fastText by Grave et al. (2018) utilized in Sec-
tion 4, we employed fastText by MUSE (Lam-
ple et al., 2018). We refer to these word embed-
dings as 157langs-fastText and MUSE-fastText,
and chose some of the languages common to these
two datasets. For the cross-lingual alignment task,
English (EN) was designated as the source lan-
guage, while Spanish (ES), French (FR), German
(DE), Italian (IT), and Russian (RU) were specified
as the target languages. Following the same proce-
dure as in Appendix C, we limited the vocabulary
size to 50,000 in each language. The embeddings
for the six languages are visualized in Fig. 18, by
applying the same procedure as in Fig. 2.

Applying a random transformation. Note that
MUSE-fastText already has pre-aligned word em-
beddings across languages. To resolve any such
relationship across languages, we applied a random
transformation to embeddings. For each embed-
ding matrix X ∈ Rn×d, we generated a random
matrix Q ∈ Rd×d to compute XQ. The random
matrix was generated independently as

Q = MLN,

where all the elements of M,N ∈ Rd×d and L =
diag(l1, . . . , ld) ∈ Rd×d are distributed indepen-
dently. Specifically, the elements are Mij , Nij ∼

N (0, 1/d), the normal distribution with mean 0
and variance 1/d, and li ∼ Exp(1), the exponen-
tial distribution with mean 1. The random matrices
M and N primarily induce rotation because they
are roughly orthogonal matrices, while L induces
random scaling.

Word translation pairs. We established the cor-
respondence between the embeddings of English
and the embeddings of other languages in the
157langs-fastText and MUSE-fastText datasets. To
accomplish this, we followed the procedure out-
lined in Appendix C, but now we applied it to both
the train set and the test set of MUSE dictionaries.
The results of applying this procedure to the five
target languages are presented in Table 14, where
the source language is English. The train pairs were
used for training supervised baselines and also for
computing cross-correlation coefficients. The test
pairs were used for computing the top-1 accuracy.

Supervised baselines. Two supervised baselines
were considered to learn a linear transformation
from the source embedding X to the target em-
bedding Y. We rearranged the word embeddings
so that each row of X and Y corresponds to a
translation pair, i.e., the meaning of the i-th row
xi corresponds to that of yi. We then computed
the optimal transformation matrix W ∈ Rd×d that
solves the least squares (LS) problem (Mikolov
et al., 2013b):

min
W∈Rd×d

∥XW −Y∥22.

In the optimization of the Procrustes (Proc) prob-
lem, the transformation matrix W was restricted to
an orthogonal matrix. Although LS is more flexi-
ble, the performance of cross-lingual alignment can
possibly be improved by Proc (Xing et al., 2015;
Artetxe et al., 2016). In these supervised methods,
the two embeddings X and Y underwent centering
and normalization as preprocessing steps.

Cross-lingual alignment methods. We consid-
ered both supervised and unsupervised transforma-
tions for cross-lingual alignment from the source
language to the target languages. In the super-
vised transformation methods, LS and Proc, we
first trained the linear transformation using both
the source and target embeddings.

In the unsupervised transformation methods,
PCA and ICA, we first applied the transformation
individually to each language and then permuted
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(a) Normalized ICA-transformed embeddings from multiple languages.

(b) Normalized PCA-transformed embeddings from multiple languages.

Figure 18: The embeddings for the six languages are visualized. They were obtained by applying the same procedure
as in Fig. 2. Details of the datasets are presented in Appendix E.5.

Original Random transformation

Dataset Method ES FR DE IT RU Avg. ES FR DE IT RU Avg.

157langs-fastText

LS 89.33 87.00 85.73 87.20 74.33 84.72 66.93 62.73 58.53 44.33 43.87 55.28
Proc 88.40 86.93 86.80 86.80 75.80 84.95 26.00 20.93 20.00 14.73 11.93 18.72

ICA 27.20 22.20 18.93 17.73 11.33 19.48 22.73 21.40 19.87 17.00 12.00 18.60
PCA 1.53 0.87 0.80 0.80 0.60 0.92 0.80 0.67 0.67 0.60 0.47 0.64

MUSE-fastText

LS 84.47 83.87 80.53 80.53 65.13 78.91 60.60 59.73 53.53 44.33 39.00 51.44
Proc 84.40 83.13 80.87 79.87 63.80 78.41 25.87 23.13 21.40 17.40 13.13 20.19

ICA 53.00 54.27 45.80 43.60 19.67 43.27 52.93 52.80 45.93 43.33 21.53 43.31
PCA 2.73 3.00 1.67 1.93 1.33 2.13 0.67 0.47 0.53 0.07 0.27 0.40

Table 15: The top-1 accuracy of the cross-lingual alignment task from English to other languages. Two datasets
of fastText embeddings (157langs and MUSE) were evaluated with the two types of embeddings (Original and
Random-transformation). LS and Proc are supervised transformations using both the source and target embeddings,
while ICA and PCA are unsupervised transformations.

the axes based on the cross-correlation (see Ap-
pendix C). Although PCA and ICA are unsuper-
vised transformations, the axis permutation is su-
pervised because cross-correlation coefficients are
computed from the embeddings of both languages.

Evaluation metric. For each word in the source
language, we computed the transformed embed-
ding and found the closest embedding from the
target language in terms of cosine similarity. To
mitigate the hubness problem, we used the CSLS
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method (Lample et al., 2018) instead of the stan-
dard k-NN method. The top-1 accuracy was com-
puted as the frequency of finding the correct trans-
lation word.

Results. The top-1 accuracy for all the five tar-
get languages is shown in Table 15, and only the
average value is shown in Table 3. We used two
datasets: 157langs-fastText and MUSE-fastText.
Two types of embeddings were considered: one us-
ing the original word embeddings for all languages,
and the other applying a random transformation to
all the embeddings. The conclusions obtained in
Section 6.3 regarding the average results of cross-
lingual alignment hold true when considering each
of the target languages.
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