
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 439–456
December 6-10, 2023 ©2023 Association for Computational Linguistics

An Expression Tree Decoding Strategy for Mathematical Equation
Generation

Wenqi Zhang1, Yongliang Shen1† , Qingpeng Nong2, Zeqi Tan1

Yanna Ma3, Weiming Lu1†
1College of Computer Science and Technology, Zhejiang University

2Zhongxing Telecommunication Equipment Corporationy
3University of Shanghai for Science and Technology

{zhangwenqi, luwm}@zju.edu.cn

Abstract

Generating mathematical equations from natu-
ral language requires an accurate understanding
of the relations among math expressions. Ex-
isting approaches can be broadly categorized
into token-level and expression-level genera-
tion. The former treats equations as a mathe-
matical language, sequentially generating math
tokens. Expression-level methods generate
each expression one by one. However, each
expression represents a solving step, and there
naturally exist parallel or dependent relations
between these steps, which are ignored by cur-
rent sequential methods. Therefore, we inte-
grate tree structure into the expression-level
generation and advocate an expression tree de-
coding strategy. To generate a tree with ex-
pression as its node, we employ a layer-wise
parallel decoding strategy: we decode multiple
independent expressions (leaf nodes) in paral-
lel at each layer and repeat parallel decoding
layer by layer to sequentially generate these
parent node expressions that depend on oth-
ers. Besides, a bipartite matching algorithm is
adopted to align multiple predictions with an-
notations for each layer. Experiments show our
method outperforms other baselines, especially
for these equations with complex structures.

1 Introduction

Generating corresponding mathematical equations
and solutions from text is important for a range
of tasks, such as dialogues, question answering,
math word problem (MWP), etc. It necessitates
an accurate comprehension of semantics and the
complex relations between mathematical symbols.

We investigate the existing approaches from two
perspectives: the generation is at the token-level
or expression-level, and the order is based on se-
quence or tree structure. Firstly, sequence-to-
sequence methods (seq2seq in Figure 1) (Wang
et al., 2017, 2018; Chiang and Chen, 2019; Li et al.,

†Corresponding author.

Question: Two cars are traveling from two places 10 km apart, the speed of the
first car is 50km/h, the speed of the second car is 60km/h, the first car drives for
5 hours, the second car drives for 4 hours, finally how far apart are the two cars?

Seq2Tree: 9 Steps

4

+

550 60

× ×

Seq2Seq: 13 Steps Seq2Exp: 4 Steps
Postfix order: 50 5 × 60 4 × +

50 × 5 = Var1)50 5(× −
60 × 4 = Var2

Step1

Step2

Step3 Var3 = Var1 + Var2

Expression Tree: 3 Steps
Parallel + Sequential

Step1:

Step2:

……

Pre2ix order:+ + × 50 5 × 60 4 10

In2ix order: (50×5)+ 60×4 + 10

Step2

Step3

Step4
Step5

Step6

Step7
Step8

Step1 Step2 ……

Var1+Var2

50 × 5 60 × 4

+Step1

10
Step9

Step4 Var3 + 10

Step3: Var3+10

Token-level Exp-level

Seq

Tree

Figure 1: Four equation generation methods: Seq2Seq
generates mathematical tokens one by one at the token-
level; Seq2Tree generates tokens using prefix order. In
contrast, Seq2Exp generates expressions one by one at
expression-level. Our expression tree decoding strategy
predicts multiple math expressions in parallel and forms
a tree, with the minimum decoding steps.

2019) have considered mathematical symbols as
a special kind of language (i.e., mathematical lan-
guage) and employ sequential generation for the
equation. These methods belong to the token-level
sequential generation. Then a great deal of work
(Xie and Sun, 2019; Zhang et al., 2020; Patel et al.,
2021a; Li et al., 2020; Zhang et al., 2022c; Shen
et al., 2022b) has proposed a tree-order decoding
process (seq2tree in Figure 1) at the token-level.
This process considers it as an equation tree gener-
ation and predicts pre-order tokens one by one.

Recently, some researchers have explored
expression-level approaches for mathematical equa-
tion generation, including (Kim et al., 2020; Cao
et al., 2021; Jie et al., 2022; Zhang and Moshfeghi,
2022; Zhang et al., 2022a). These approaches
mostly place emphasis on generating a mathemati-
cal expression step by step (seq2exp), rather than a
token. These seq2exp methods belong to a sequen-

439

tial generation at expression-level.
However, it is imperative to recognize that each

mathematical expression represents a problem-
solving step, and there inherently exists a parallel
or dependent relation among these steps. The ex-
isting seq2exp approach may struggle to capture
these relations since they only produce expressions
in sequence. Therefore, there is a pressing need
for a versatile decoding strategy capable of simul-
taneously generating independent expressions in
parallel at one step, while sequentially producing
expressions that depend on others step by step.

Based on this belief, we propose an expression
tree decoding strategy by combining the seq2exp
with a tree structure at the expression level. Dif-
fering from the prior seq2tree, each node in this
tree represents an expression, rather than a token.
To construct an expression-level tree, we generate
multiple expressions in parallel at each step. These
expressions are independent to each other and act
as the leaf node in the expression tree. Those ex-
pressions depend on others, they act as parent nodes
and are sequentially generated based on their child
nodes. As shown in Figure 1, the two expressions
(50 × 5, 60 × 4) are completely independent and
generated in parallel at Step 1. The third expression
depends on the first two, forming an expression tree.
It not only empowers the model to exploit the in-
herent structure of the equation but also shortens
its decoding path (the minimum steps in Figure 1).

To achieve this, we design a layer-wise paral-
lel decoding strategy. At each decoder’s layer, it
can generate multiple independent expressions in
parallel and then proceeds to the next layer, and
repeat parallel prediction layer by layer. This layer-
wise parallel decoding process ensures that these
independent expressions are produced in parallel,
while these expressions depending on others are
sequentially generated layer by layer, eventually
constructing the entire expression tree.

Besides, to decode multiple expressions in par-
allel, we take inspiration from query-based object
detection (Carion et al., 2020; Jaegle et al., 2021;
Li et al., 2023). Similar to detecting multiple visual
objects by queries, we also utilize queries to iden-
tify multiple mathematical relations for expression
generation in parallel. Lastly, we adopt a bipartite
matching algorithm for loss calculation between
multiple predicted expressions and the label.

Cao et al. (2021) shares some similarities with
us but the challenges and approaches are different.

Cao et al. (2021) perform a bottom-up structure
to extract multiple equations (e.g., x+y=3, y-2=4),
whereas our method considers how to predict mul-
tiple expressions in parallel for a complex equation
at each step (e.g., output 50 × 5, 60 × 4 simulta-
neously for 50 × 5 + 60 × 4). Besides, Cao et al.
(2021) enumerates all possible expression combi-
nations but we first introduce bipartite matching to
achieve parallel prediction.

Our contributions are threefold:

• We introduce an expression tree decoding
strategy by combining seq2exp with tree struc-
ture. It considers the dependent or parallel
relation among different expressions (solving
steps). To the best of our knowledge, this is
the first effort to integrate query-based object
detection techniques with equation generation
in the literature.

• We design a layer-wise parallel decoding pro-
cess to construct an expression tree. It pre-
dicts multiple independent expressions in par-
allel and repeats parallel decoding layer by
layer. Besides, we employ bipartite matching
to align predicted expressions with labels.

• To assess our method, we evaluate on MWP
task and outperform prior baselines with
higher accuracy and shorter steps.

By aligning the decoding process with the inher-
ent structure of the equation, our approach paves
the way for more intuitive, efficient equation gen-
eration. Moreover, it provides insights that could
be applicable to many other structured tasks.

2 Related work

In advancing toward general-purpose AI, depend-
able reasoning remains imperative. The quest for
human-equivalent reasoning has been rigorously
explored in domains including NLP (Kojima et al.,
2022), RL (Zhang et al., 2022b), and Robotics
(Zhang et al., 2021). Recently, leveraging the plan-
ning and reasoning capabilities of LLMs paves the
way for the development of numerous intelligent
applications (Wei et al., 2022; Shen et al., 2023;
Zhang et al., 2023b). Accurate generation of math-
ematical equations is an important manifestation
of reasoning abilities, which has been extensively
investigated in a plethora of NLP tasks, e.g., Math
Word Problems (Wang et al., 2017; Ling et al.,
2017; Xie and Sun, 2019; Wang et al., 2022a),
Question Answering (Yu et al., 2018; Wu et al.,

440

2020b), Dialogue (Bocklisch et al., 2017; Wu et al.,
2022, 2023), etc. These tasks necessitate an accu-
rate understanding of the semantics within the text
as well as mathematical symbols.

Token-level Generation Mathematical equation
was treated as a translation task from human lan-
guage into the mathematical token (symbol) (Wang
et al., 2017; Chiang and Chen, 2019). Many
seq2seq-based methods were proposed with an
encoder-decoder framework. Li et al. (2019) in-
troduced a group attention to enhance seq2seq per-
formance. Lan et al. (2021) utilized a transformer
model for equation generation. Except for seq2seq
methods, some researchers (Liu et al., 2019a; Xie
and Sun, 2019; Zhang et al., 2020, 2022c) stud-
ied the decoding structures and proposed a tree-
based decoder using prefix sequence. Wu et al.
(2020a, 2021); Qin et al. (2021); Yu et al. (2021)
introduced mathematical knowledge to solve the
complex math reasoning. Liang et al. (2021b) im-
proved accuracy by knowledge distillation between
the teacher and student. Li et al. (2021) proposed
a prototype learning through contrasting different
equations. Shen et al. (2022a); Liang et al. (2022)
also used contrastive learning at the semantic and
symbolic expression levels. Yang et al. (2022b) im-
proved the interpretability by explicitly retrieving
logical rules. These generative approaches were
token-level generation in infix order or prefix order.

Expression-level Generation Expression-level
generation has opened up a new perspective for
math solving. Kim et al. (2020) proposed an ex-
pression pointer generation. Cao et al. (2021) in-
troduced a DAG structure to extract two quantities
from bottom to top. Jie et al. (2022); Wang and Lu
(2023) further treated this task as an iterative rela-
tion extraction to construct an expression at each
step. Zhang and Moshfeghi (2022) treated expres-
sion generation as a program generation and exe-
cution. Besides, Lee and Kim (2023); Zhang et al.
(2023a); He-Yueya et al. (2023); Zhu et al. (2022)
harness the capabilities of LLMs and prompt en-
gineering to bolster mathematical reasoning under
the few-shot setting. These methods treat equation
generation as a multi-step expression generation
and achieve impressive performance. However,
these methods generate only one expression per
step using pre-defined order, which may potentially
impede the model’s acuity in accurately understand-
ing mathematical logic. In contrast, our method
generates multiple expressions in parallel per step.

3 Methodology

3.1 Overview
The task is to generate a complete equation based
on the problem description. The generation process
contains two vocabularies: number and operator vo-
cabulary (Vop={+,−,×,÷, · · · }). The number is
either from the original text or the math expression
results from previous steps.

Similar to object detection, where queries are
utilized to detect multiple objects, we also feed
multiple learnable queries to identify possible math
relations. As shown in Figure 2, a standard decoder
and multiple queries are adopted to generate can-
didate expressions at each layer. To construct an
expression tree, we must consider two structures
simultaneously: parallel and sequential. For these
expressions that have no dependent relations, we
employ a parallel strategy to generate them. Con-
versely, for these expressions that depend on others,
we generate them layer by layer (§ 3.2). We also
provide detailed cases in Figure A2 for decoding.
When training, we utilize a bipartite matching al-
gorithm to align the multiple predicted expressions
with the label set for loss calculation (§ 3.3).

3.2 Layer-wise Parallel Decoding
We devise a problem encoder, a decoder, and mul-
tiple learnable queries, where the query is used to
identify a specific mathematical relation and then
produce a candidate expression at each layer.

Problem Encoder Given a text description X
with Nn number words, we adopt the pre-trained
language model (Devlin et al., 2019; Liu et al.,
2019b) to obtain the contextualized problem repre-
sentations P . We obtain number vocabulary Vn=
{ein}Nn

i=1 from P , which denotes the embeddings
of the Nn number tokens from text. In addition,
we randomly initialize the learnable embedding for
each operator and a None label Vop={ejop}Nop+1

j=1 .
Learnable Query The decoder is designed for

extracting all candidate expressions in parallel
based on problem representation. Firstly, we de-
sign learnable embeddings as query Q = {qi}Ki=1,
where K means the number of the query. As shown
in Figure 2, the K queries are firstly fed into the
decoder and then are utilized to predict K possible
expressions at each layer.

Specifically, the decoder is the standard trans-
former decoder which contains a stack of identical
layers. At the l-th layer, the problem embeddings
P l−1 and the query embeddings Ql−1 from the

441

Decoder-Layer 1

Decoder-Layer 2

Decoder-Layer 3

Encoder

Text
Multiple Query

50 × 5 60 × 4

var1 + var2

50 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4

Expression Tree Decoding

Bipartite Matching For Step 1

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4Pred Set

Label Set 50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

Label Equation:
(50 × 5) + (60 × 4)

Label Set

× ×

+

50 605 4

Prefix Order:
+ × 50 5 × 60 4

Start with Leaf Node :
Step1: Set (50 × 5, 60 × 4, None,

None, None, None)
Step2: Set (var1+var2, None, None

None, None, None)

Step2
Label set

Step1
Label set

Optimal Permutation Index: = [0, 4, 1, 2, 3, 5]

Figure 2: We propose an expression tree decoding strategy by layer-wise parallel decoding. During training, we
feed six queries into the decoder, where each decoder’s layer generates six mathematical expressions. Then, we
transform the original equation label into multiple label sets and employ a bipartite matching algorithm to align the
label sets with the six predicted expressions for loss calculation. Thereafter, we update the problem representation
using valid expressions and feed it into the next decoding layer. The whole process forms an expression tree.

previous layer are fed into the current decoder’s
layer as inputs, and then interact with each other
by self-attention and cross-attention mechanism:

Ql = Decoder-Layerl(Ql−1;P l−1) (1)

where Ql means K query embeddings at l-th layer.
Parallel Decoding After obtaining K query vec-

tors, we use them to predict K expressions in par-
allel, each of which contains one operator and two
operands (l, op, r). Firstly, we use query to calcu-
late the operator and operands embedding:

sli, s
r
i , s

op
i = MLPl,r,op(qi), qi ∈ Ql (2)

where qi denotes the i-th query vectors in Ql. Then,

we predict three distributions as follows:

P l,r
i (∗)= Softmax(sl,ri en), ∀en∈Vn (3)

P op
i (∗)= Softmax(sopi eop),∀eop∈Vop (4)

where en and eop represent the number and opera-
tor embedding in vocabulary respectively. P l

i (∗),
P r
i (∗), and P op

i (∗) denotes the three distributions
for two operands and one operator. Lastly, we cal-
culate the embedding for this i-th expression:

vari = MLPn([sopi ; sli; s
r
i ; s

l
i ◦ sri]) (5)

We totally predict K independent expressions
from K queries at this layer. Then we continue to
the next layer for these expressions depending on
previous results (e.g.,var1 + var2 in Figure 2).

442

Layer by Layer Prediction The K predicted
expressions contain K1 valid expressions and K2

invalid expressions. An invalid expression implies
that the operator in (l, op, r) is predicted to None.
We will discuss it in section (§ 3.3). First, we
concat all valid expression embeddings with the
problem representations P l−1 for the next layer:

P l=MLPu([P l−1⊕var1⊕var2....⊕varK1])
(6)

where var1, var2,, varK1 means K1 new gen-
erated expression embeddings in l-th layer. ⊕
means the concatenation of the vectors. Besides,
we also update the number embedding: V l

n =
V l−1
n ∪ var1 ∪ var2.... ∪ varK1 using K1 new ex-

pression embeddings as new number embeddings.
As shown in Figure 2, we proceed to the next

layer of decoding using P l and Ql, as Equation 1:

Ql+1 = Decoder-Layerl+1(Ql;P l) (7)

At layer l+1, we still decode K expressions in par-
allel and continue to the next layer. If all predicted
expressions are invalid, i.e., K operators are classi-
fied as None, it signifies the equation generation
is complete.

3.3 Loss For Parallel Decoding
As mentioned before, each decoder’s layer gener-
ates multiple mathematical expressions. However,
the annotations of equations in the dataset are usu-
ally serial (e.g., “50”, “×”, “5”, “+”, “60”, “×”,
“4”), and it is crucial to design a method to utilize
these annotations for training parallel decoding.

To this end, we first convert the original equation
annotations into multiple label sets, each set com-
prising K mathematical expressions. Then, bipar-
tite matching is employed to align the K predicted
expressions with the K mathematical expressions
in the label set to compute model loss.

Label Set As shown in Figure 2, we initially
convert the label equations from infix order to pre-
fix order, thus forming an equation tree. Starting
from the leaf nodes, we iterative gather two leaves
and their parent node into a label set for each step,
eventually producing multiple label sets (e.g. set1
= {50× 5, 60× 4}, set2 = {var1× var2}). Each
label set contains several non-dependent expres-
sions that can be generated in parallel. Each label
set is also padded with a specific label None to
ensure all sets contain K elements. We provide
two detailed cases for this process in Figure A2.

Bipartite Match For each layer, K candidate
mathematical expressions are predicted. We com-
pute the function loss for the K predicted expres-
sions based on the corresponding label set, which
also contains K golden expressions. However, as
the K expressions are unordered, it is difficult to
calculate the loss directly. For instance, if the la-
bel set is {50 × 5, 60 × 4}, and the prediction is
{60× 4, 50× 5}, the loss in this case should be 0.
To address this, we adopt a bipartite matching algo-
rithm to align the two sets, i.e., align the K predic-
tions with the K golden labels. As shown in Figure
2, six golden expressions align with six predicted
expressions. Specifically, we denote the golden
expression in the label set as {y1, y2, ..., yK}, and
the set of predicted expressions by ŷ = {ŷi}Ki=1.
To find an optimal matching, we search for a per-
mutation (β ∈ OK) of K elements with the lowest
cost. As shown in Figure 2, the optimal permu-
tation for predicted set is [ŷ0, ŷ4, ŷ1, ŷ2, ŷ3, ŷ5]. It
can be formalized as:

β∗ = argmin
β∈OK

K∑

i

Lmatch

(
yi, ŷβ(i)

)
(8)

where Lmatch

(
yi, ŷβ(i)

)
is a pair matching cost be-

tween the golden expression yi and the predicted
expression ŷ with index β(i). We use the Hun-
garian algorithm (Kuhn, 1955) to compute this
pair-matching cost. Each golden expression con-
tains two operands and one operator, i.e. yi =
(li, opi, ri) and each predicted expression has three
distributions, i.e. ŷi = (P l

i (∗), P op
i (∗), P r

i (∗)).
We calculate Lmatch as follow:

Lmatch

(
yi, ŷβ(i)

)
= −1{opi ̸=None}

[
popβ(i) (opi)

+ plβ(i) (li) + prβ(i) (ri)
]

(9)
After we get the optimal matching β∗, we calcu-

late the final loss L(y, ŷ) as:

L(y, ŷ) =
N∑

i=1

{
− log popβ∗(i) (opi)

+ 1{opi ̸=None}
[
− log plβ∗(i) (li)

− log prβ∗(i) (ri)
]}

(10)

We calculate the predicted loss for each decoder
layer after aligning two sets. A detailed match
process is provided in Figure A3.

443

Model Test Acc.
Se

q2
Se

q
/T

re
e

GroupAttn(Li et al., 2019) 70.4
GTS (Xie and Sun, 2019) 71.3
G2T(Zhang et al., 2020) 72.0
BERT-T(Liang et al., 2021a) 73.8
mBERT(Tan et al., 2021) 77.1
T-Dis†(Liang et al., 2021b) 73.1
Prototype (Li et al., 2021) 76.3
Textual-CL†(Shen et al., 2022a) 78
Ana-CL (Liang et al., 2022) 79.6

Se
q2

E
xp

E-pointer†(Kim et al., 2020) 73.5
M-Tree†(Wang et al., 2022a) 76.5
RE-Ext(Jie et al., 2022) 78.6
M-View♢(Zhang et al., 2022a) 79.5
Elastic ♣(Zhang and Moshfeghi, 2022) 80.3
MWP-NAS†(Bin et al., 2023) 79.2

L
L

M gpt-3.5-turbo†(OpenAI, 2022) 42.6
Self-Consistency†(Wang et al., 2022b) 50.7

Ours 81.5±0.13
Ours (Layer-Shared) 81.1±0.23

Table 1: Results on MathQA. † means our reproduc-
tion. ♢ means we reproduce M-View using the stan-
dard dataset without data Augmentation (their report).
♣ means Elastic use a different data pre-processing
method and operators, so we reproduce their method.

3.4 Training and Inference

During training, we calculate the loss after employ-
ing the bipartite match for each layer. Besides,
we also adopt the teacher forcing (Williams and
Zipser, 1989) by using golden expressions for the
next layer (Equation 5, 6). During inference, each
layer predicts K expressions in parallel. Those
expressions whose predicted operator is None are
filtered out before proceeding to the next layer gen-
eration. The entire process is finished when all K
expressions are predicted to be None.

4 Experiments

Math Word Problem Task We first evaluate our
expression tree decoding strategy on the Math
Word Problem task (MWP). MWP represents a
challenging mathematical reasoning task where the
model is required to comprehend the semantics
of a given problem and generate a complete equa-
tion and the solution. Encompassing a spectrum of
topics, including engineering, arithmetic, geome-
try, and commerce, MWP effectively evaluates the
model’s prowess in semantic understanding as well
as mathematical symbol generation. We use three
standard MWP datasets1 across two languages:

1The criteria for the selection of the dataset: 1. Dataset size.
2. Datasize label includes not just answers but also complete

Model Test 5-fold

Se
q2

Se
q

/T
re

e

GroupAttn(2019) 69.5 66.9
GTS (2019) 75.6 74.3
G2T(2020) 77.4 75.5
mBERT(2021) 75.1 -
Symbol-Dec(2021) - 75.7
BERTGen(2021) 76.6 -
PLM-Gen (2021) 76.9 -
H-Reasoner(2021) 83.9 82.2
BERT-T(2021a) 84.4 82.3
Rank†(2021) 85.4 -
Logic-Dec(2022b) 83.4 -
T-Dis(2021b) 79.1 77.2
Prototype (2021) 83.2 -
Textual-CL (2022a) 85.0 82.6†
Ana-CL (2022) 85.6 83.2†

Se
q2

E
xp

E-Pointer†(2020) 78.7 76.5
DAG (2021) 77.5 75.1
M-Tree(2022a) 82.5 80.8†
RE-Ext(2022) 85.4 83.3
M-View♢(2022a) 85.6 83.1
Elastic†(2022) 84.8 82.9
MWP-NAS(2023) 84.4

L
L

M gpt-3.5-turbo†(2022) 54.8 -
Self-Consistency†(2022b) 66.1 -

Ours 86.2±0.30 84.1±0.65
Ours (Layer-Shared) 85.6±0.25 83.4±0.38

Table 2: Testing and five-fold Acc. on Math23k.

MathQA (Amini et al., 2019), Math23K (Wang
et al., 2017), and MAWPS (Koncel-Kedziorski
et al., 2016). We follow (Jie et al., 2022; Zhang
et al., 2022a) to preprocess datasets. The statistics
of datasets are reported in Appendix A.3.

Baselines We compare our method with three
types of baselines: (1) Seq2Seq/Tree: PLM-Gen
(Lan et al., 2021), Rank (Shen et al., 2021), Symbol-
Dec (Qin et al., 2021), H-Reasoner (Yu et al., 2021),
Logic-Dec (Yang et al., 2022b), Prototype (Li et al.,
2021), T-Dis (Liang et al., 2021b), Textual-CL
(Shen et al., 2022a), Ana-CL (Liang et al., 2022)
and several representative methods. (2) Seq2Exp:
E-Pointer (Kim et al., 2020), DAG (Cao et al.,
2021), RE-Ext (Jie et al., 2022), M-View (Zhang
et al., 2022a), ELASTIC(Zhang and Moshfeghi,
2022), M-Tree (Wang et al., 2022a) and MWP-
NAS (Bin et al., 2023). Besides, we also com-
pare with gpt-3.5-turbo (OpenAI, 2022) and Self-
Consistency (Wang et al., 2022b) prompted by one
demonstration through the OpenAI API. More de-
tails are listed in Appendix A.1.

Training Details Following most previous
works (Zhang et al., 2022a; Jie et al., 2022), we re-
port the average accuracy (five random seeds) with

equations. 3. Extensively employed in prior research.

444

Model 5-fold Acc.

Se
q2

Se
q

/T
re

e
GroupAttn(2019) 76.1
GTS (2019) 82.6
G2T(2020) 85.6
Rank(2021) 84.0
BERTGen(2021) 86.9
PLM-Gen (2021) 88.4
PLM-GTS (2021a) 88.5
PLM-G2T (2021a) 88.7
H-Reasoner(2021) 89.8
T-Dis(2021b) 84.2
Prototype† (2021) 89.6
Textual-CL† (2022a) 91.3
Ana-CL†(2022) 91.8

Se
q2

E
xp

E-Pointer (2020) 83.4
M-Tree(2022a) 82.0
RE-Ext(2022) 92.2
M-View♢ (2022a) 92.1
Elastic ♣(2022) 91.8
MWP-NAS(Bin et al., 2023) 88

L
L

M gpt-3.5-turbo†(2022) 91.5
Self-Consistency†(2022b) 92.5

Ours 92.3 ± 0.41
Ours (Layer-Shared) 92.2 ± 0.28

Table 3: Five-fold cross-validation results on MAWPS.

standard deviation for Math23K and MathQA, and
5-fold cross-validation for Math23K and MAWPS.
The test-set accuracy is chosen by the best dev-set
accuracy step. Since most of the math problems
only require two or three mathematical expressions
to be generated in parallel for each step, we set
the number of queries K to be 6, which is suffi-
cient to cover all cases. Except for using a standard
decoder for layer-wise decoding (Our), we also
explore an alternate variant (Our Layer-Shared),
in which parallel decoding is performed at every
N transformer layer, but each decoding step shares
the parameter of these N layers. This model is
efficient with fewer parameters. Model details are
reported in Figure A1.

4.1 Results
As shown in Table 1, 2 and 3, our expression tree
decoding strategy achieves SoTA performance on
two large datasets, especially on the most difficult
MathQA with +1.2% gains. Similarly, we gain
+0.6% (test) and +0.8% (5-fold) improvements
on Math23K and comparable performance on the
MAWPS. Moreover, we also notice that our perfor-
mance still substantially outperforms LLMs in the
case of complex mathematical equation generation
(MathQA: +30.8% and Math23K: +20.1%). Fur-
thermore, our variant model (Our w/ Layer-Shared)
has also demonstrated comparable performance

Math23K Seq2Exp Our Seq2Seq Seq2Tree

Avg Step 2.4 1.92 7.01 5.62
Std Step 1.22 0.8 3.4 2.1
Max Step 9 8 27 19

MathQA Seq2Exp Our Seq2Seq Seq2Tree
Avg Step 4.33 3.2 16.74 9.87
Std Step 2.26 1.6 11.03 5.51
Max Step 11 8 109 55

Table 4: The statistics for decoding steps between four
types of methods.

Variant Acc.

Bipartite Matching 81.5 ± 0.13

Sequence Matching 78.8 ± 0.27

Random Matching 20.1 ± 1.55

w/ Operand None Loss 80.7 ± 0.36

w/o Operator None Loss 79.6 ± 0.21

w/o Parallel decoding 79.9 ± 0.31

Table 5: Ablation on MathQA about bipartite matching.

(+0.8% on MathQA), with fewer parameters.

From the view of three types of methods, our
method is more stable and effective, with +1.9%
and +1.2% gains against the best Seq2Tree base-
line (Ana-CL) and best Seq2Exp baseline (Elas-
tic) on MathQA. The Seq2Exp focuses on genera-
tion at the sequence at the expression-level, while
Seq2Tree absorbs the feature of a tree structure.
In contrast, our expression tree decoding strategy,
more than generating the expressions, also inte-
grates the tree structure into the parallel decoding
process, performing well for complex equations.

In addition to the accuracy comparison, we also
analyze the difference in the number of decoding
steps. We report the average decoding steps, step
standard deviation, and maximum steps for the four
types of methods (Seq2Seq: mBERT, Seq2Tree:
Ana-CL, Seq2Exp: RE-Ext, and Expression-tree:
Ours) in Table 4. We observe that the decoding
steps of the token-level generation methods (e.g.,
Seq2Seq and Seq2Tree) are significantly higher
than those of Expression-level methods (about four
to five times). Compared to other methods, our
parallel decoding method requires fewer decoding
steps, especially on the more complex MathQA.
We offer some intuitive examples in Figure A2.
These results suggest that our parallel strategy not
only offers superior accuracy but also reduces
the number of decoding steps.

445

Expression Tree

Single

Expression Chain

Equation Type Diagram
Exp 1

Exp 1 Exp 2 Exp 3

Exp 1

Exp 2
Exp 4

Exp 3

Exp 5

Example
a ÷ b

(a + b) × 𝑐 − 𝑑

(a + b) × (𝑐 − 𝑑) − 𝑒 ÷ 𝑓

4.2 Ablations

Bipartite matching is essential for our parallel strat-
egy. Therefore, we study how it works: I. Se-
quence Matching. Firstly, we ablate bipartite
matching and instead use a simple matching strat-
egy for multiple expressions: sequence matching.
It means we align the first expression predicted by
the first query with the first label, and then the sec-
ond predicted expression aligns with the second
label, and so on. II. Random Matching. Then we
random match the predicted expressions with the
labels. III. Operand None Loss. As illustrated
in Equation 10, for these labels padded with the
None category, we only compute the loss for the
operator. At this point, we add two operands’ loss
between None to analyze its effect. IV. Opera-
tor None Loss. We remove the operator loss for
the None category. V. Parallel Decoding. Lastly,
we remove the whole parallel decoding, i.e., adopt
only one query per layer. We provide a detailed
visualization for these designs in Figure A3.

As shown in Table 5, when we replace with se-
quence matching, there is a notable degradation in
accuracy (-2.7%). In this case, the performance is
similar to the Seq2Exp (RE-Ext:78.6% vs Ablation:
78.8%). It undermines the advantages of expres-
sion tree decoding since aligning process still intro-
duces manually-annotated order. Secondly, we find
random matching may lead to a training collapse.
Then we observe disregarding None operator loss
or adding the None operands loss, both having a
negative impact (-0.9%, -0.8%). In the last ablation
experiments, our performance drops from 81.5%
to 79.9% (-1.6%) when we remove the parallel de-
coding from our system. More comparisons can be
found in Appendix A.4.

4.3 Analysis

We investigate the efficacy of the expression tree
decoding strategy in scenarios involving complex
equation generation. We conduct the analysis along
two dimensions: the structure of the equation and
the length of the equation. Besides, we also analyze
the impact of different query numbers on parallel
decoding performance.

Model Single Exp Chain Exp Tree Overall

M-View
RE-Ext
M-Tree
Ana-CL
Ours

79.7 82.7 65.7 79.5
77.4 82.5 64.7 78.6
75.2 80.2 64.5 76.5
79.9 82.8 67.8 79.6
80.1 82.0 75.2 81.5

Table 6: We categorize the structures of equations into
three types: Single, Chain and Tree, and evaluate the
performance of five methods on three structures.

55

60

65

70

75

80

85

90

95

100
Math23K Ours MathQA Ours
Math23K M-View MathQA M-View
Math23K RE-Ext MathQA RE-Ext
Math23K BERT-T MathQA mBERT

#Expression MathQA
Pr

ed
ic

tio
n

ac
cu

ra
cy

(%
)

1 2 3 4 5 6 7 ≥8

1 2 3 ≥ 4

#Expression Math23K

Figure 3: Performance on the sample with the different
number of expressions.

Equation Structure In Table 6, we categorize
the structures of equations into three types: (1)
Single expression, where the entire equation con-
sists of only one expression; (2) Expression chain,
where the equation is comprised of multiple ex-
pressions forming a chain; (3) Expression Tree,
which involves complex tree structures composed
of multiple expressions. We evaluate the model’s
accuracy on three types of equation structures.

As shown in Table 6, our expression tree de-
coding strategy gains comparable performance to
other baselines in the first two evaluations (Sin-
gle Expression and Expression Chain). In contrast,
in the Expression Tree evaluation, most of these
instances in this type involve sophisticated equa-
tion structures and complex solving processes. Our
method significantly outperforms the other base-
lines (≥ +7.4%). Specifically, in comparison to
the seq2tree approach, we achieve a +7.4% im-
provement (Our:75.2% vs Ana-CL:67.8%), and
gain a more substantial advantage (+9.5%) rela-
tive to the seq2exp method. Under this case, our
method outperforms seq2tree, and seq2tree in turn
outperforms seq2exp. This clearly demonstrates
that introducing the structural feature of equations
indeed contributes to the capable of handling equa-
tions with complex structures.

Equation Length An equation comprises mul-
tiple mathematical expressions, with each expres-

446

sion representing a reasoning step. Complex equa-
tions usually contain more expressions. There-
fore, we evaluate the performance on the instance
with different numbers of expressions. In Fig-
ure 3, as the number of expressions increases, the
equation becomes more complex and the perfor-
mance decreases rapidly. However, our method
consistently maintains high accuracy (≥70% on
MathQA) across all cases, especially on complex
cases. Compared with baselines, our advantage
increases from +1.0% (#2) to +6.4% (#5). For the
equation with the longest expressions (≥#8), our
strategy maintains an improvement by nearly +6%,
showing expression tree decoding strategy is more
stable for complex equations.

Query Number We further analyze the impact
of the number of queries on parallel decoding per-
formance. The number of queries is set from 1 to
30. As shown in Table A2, as the number of queries
increases, the performance initially increases no-
tably and then decreases. Specifically, when there
is only one query per layer (# query = 1), the par-
allel decoding strategy is removed. Conversely,
when we adopt too many queries (# query >= 10),
the performance of parallel decoding drops rapidly.
We speculate that this might be because most of
the queries are redundant and are matched to the
"None" label under this case. Too many queries
may lead to instability in training. Apart from too
many or too few queries, the performance gains at-
tributed to parallel decoding remain both stable and
pronounced. For instance, as the number of queries
fluctuates between 4 and 8, the improvement con-
sistently remains within the range of +1.2% to
+1.5%. It suggests that although the number of
queries is a hyperparameter, it does not need to be
carefully tuned.

4.4 Case Study and Visualization

We explore the role of learnable queries in the ex-
pression tree decoding process. We first calculate
the similarity between query vectors and problem
representations for each layer and then visualize
the results in Figure A4. As shown in the first case,
the sixth query is activated twice through two steps,
thus performing two division operations. In the
second case, the first and second queries generate
two valid expressions (14 + 6, 4 + 6) in parallel in
the first layer, and then the last query in the second
layer outputs a division operation (Exp1 + Exp2)
using two results from the first layer. These exam-

ples illustrate that our method is highly flexible and
can adaptively predict expressions in parallel or se-
quentially based on the context, thereby composing
an expression tree.

5 Conclusion

We devise an expression tree decoding strategy
for generating mathematical equations layer by
layer. Each layer produces multiple mathematical
expressions in parallel which are non-dependent
and order-free, achieving flexible decoding. During
the training, we employ a bipartite matching algo-
rithm to align the multiple generated expressions
with the golden labels and compute the parallel
prediction loss under the optimal matching scheme.
Extensive experiments demonstrate that our expres-
sion tree decoding strategy can effectively absorb
the structural features of equations and enhance
the capacity for generating complex equations for
math reasoning.

Limitations

Firstly, when faced with a mathematical problem
that requires an extensive number of solving steps,
we have to increase the number of decoder layers.
It consequently leads to an increase in the model
parameters. This is due to our layer-wise decoding
strategy, where more complex equations require ad-
ditional decoding layers. To address this, we have
designed a variant model with shared parameters
(Layer-Shared in Figure A1), which achieves com-
parable results without modifying layer number.

Secondly, some hyperparameters (e.g., the num-
ber of queries and layer), need to be manually ad-
justed according to the dataset. In the future, we
will explore how to utilize our query-based, layer-
wise expression tree decoding strategy to address a
broader range of structured generation tasks.

Acknowledgments

This work is supported by the Fundamental Re-
search Funds for the Central Universities (No. 226-
2023-00060), Key Research and Development Pro-
gram of Zhejiang Province (No. 2021C01013),
National Key Research and Development Project
of China (No. 2018AAA0101900), Joint Project
DH-2022ZY0013 from Donghai Lab, and MOE
Engineering Research Center of Digital Library.

447

References
Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik

Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yi Bin, Mengqun Han, Wenhao Shi, Lei Wang, Yang
Yang, and Heng Tao Shen. 2023. Non-autoregressive
math word problem solver with unified tree structure.
CoRR, abs/2305.04556.

Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management. arXiv
preprint arXiv:1712.05181.

Yixuan Cao, Feng Hong, Hongwei Li, and Ping Luo.
2021. A bottom-up dag structure extraction model
for math word problems. In Thirty-Fifth AAAI Con-
ference on Artificial 2021, pages 39–46.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part I 16, pages 213–229.
Springer.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2656–
2668, Minneapolis, Minnesota. Association for
Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Shifeng Huang, Jiawei Wang, Jiao Xu, Da Cao, and
Ming Yang. 2021. Recall and learn: A memory-
augmented solver for math word problems. arXiv
preprint arXiv:2109.13112.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative atten-
tion. In International conference on machine learn-
ing, pages 4651–4664. PMLR.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5944–5955, Dublin, Ireland. Association for Compu-
tational Linguistics.

Bugeun Kim, Kyung Seo Ki, Donggeon Lee, and Gah-
gene Gweon. 2020. Point to the Expression: Solv-
ing Algebraic Word Problems using the Expression-
Pointer Transformer Model. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3768–3779,
Online. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Yihuai Lan, Lei Wang, Qiyuan Zhang, Yunshi Lan,
Bing Tian Dai, Yan Wang, Dongxiang Zhang, and
Ee-Peng Lim. 2021. Mwptoolkit: An open-source
framework for deep learning-based math word prob-
lem solvers. arXiv preprint arXiv:2109.00799.

Yunshi Lan, Lei Wang, Jing Jiang, and Ee-Peng
Lim. 2022. Improving compositional generaliza-
tion in math word problem solving. arXiv preprint
arXiv:2209.01352.

Soochan Lee and Gunhee Kim. 2023. Recursion of
thought: Divide and conquer reasoning with language
models.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6162–6167, Florence, Italy.
Association for Computational Linguistics.

448

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.48550/arXiv.2305.04556
https://doi.org/10.48550/arXiv.2305.04556
https://yixuancao.github.io/files/AAAI-2021-MWP.pdf
https://yixuancao.github.io/files/AAAI-2021-MWP.pdf
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1272
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2022.acl-long.410
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://doi.org/10.18653/v1/2020.emnlp-main.308
https://aclanthology.org/N16-1136.pdf
https://aclanthology.org/N16-1136.pdf
https://arxiv.org/pdf/2109.00799.pdf
https://arxiv.org/pdf/2109.00799.pdf
https://arxiv.org/pdf/2109.00799.pdf
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619
https://doi.org/10.18653/v1/P19-1619

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-
tree neural networks for learning structured input-
output translation with applications to semantic pars-
ing and math word problem. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2841–2852, Online. Association for Computa-
tional Linguistics.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2021. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
arXiv preprint arXiv:2110.08464.

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xian-
gliang Zhang. 2021a. Mwp-bert: A strong base-
line for math word problems. arXiv preprint
arXiv:2107.13435.

Zhenwen Liang, Jipeng Zhang, and Xiangliang Zhang.
2022. Analogical math word problems solving with
enhanced problem-solution association. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 9454–9464,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zhenwen Liang et al. 2021b. Solving Math Word Prob-
lems with Teacher Supervision. In Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 3522–3528. Interna-
tional Joint Conferences on Artificial Intelligence
Organization.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167, Vancouver,
Canada. Association for Computational Linguistics.

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for solv-
ing math word problems. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2370–2379, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

OpenAI. 2022. Chatgpt.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021a. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021b. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng
Tang, and Liang Lin. 2021. Neural-symbolic solver
for math word problems with auxiliary tasks. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 5870–
5881, Online. Association for Computational Lin-
guistics.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2269–2279,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yibin Shen, Qianying Liu, Zhuoyuan Mao, Fei Cheng,
and Sadao Kurohashi. 2022a. Textual enhanced con-
trastive learning for solving math word problems.
arXiv preprint arXiv:2211.16022.

Yibin Shen, Qianying Liu, Zhuoyuan Mao, Zhen Wan,
Fei Cheng, and Sadao Kurohashi. 2022b. Seeking
diverse reasoning logic: Controlled equation expres-
sion generation for solving math word problems.
arXiv preprint arXiv:2209.10310.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Minghuan Tan, Lei Wang, Lingxiao Jiang, and Jing
Jiang. 2021. Investigating math word problems using
pretrained multilingual language models.

Shih-hung Tsai, Chao-Chun Liang, Hsin-Min Wang,
and Keh-Yih Su. 2021. Sequence to general tree:
Knowledge-guided geometry word problem solving.
arXiv preprint arXiv:2106.00990.

Bin Wang, Jiangzhou Ju, Yang Fan, Xin-Yu Dai, Shujian
Huang, and Jiajun Chen. 2022a. Structure-unified
m-tree coding solver for mathword problem. arXiv
preprint arXiv:2210.12432.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to an expression tree. arXiv preprint
arXiv:1811.05632.

449

https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://doi.org/10.18653/v1/2020.findings-emnlp.255
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2110.08464
https://arxiv.org/abs/2107.13435
https://arxiv.org/abs/2107.13435
https://aclanthology.org/2022.emnlp-main.643
https://aclanthology.org/2022.emnlp-main.643
https://www.ijcai.org/proceedings/2021/485
https://www.ijcai.org/proceedings/2021/485
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/P17-1015
https://doi.org/10.18653/v1/D19-1241
https://doi.org/10.18653/v1/D19-1241
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.acl-long.456
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://doi.org/10.18653/v1/2021.findings-emnlp.195
https://arxiv.org/abs/2105.08928
https://arxiv.org/abs/2105.08928

Tianduo Wang and Wei Lu. 2023. Learning multi-step
reasoning by solving arithmetic tasks. In Proceed-
ings of ACL.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–854.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–280.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuan-Jing
Huang. 2020a. A knowledge-aware sequence-to-tree
network for math word problem solving. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7137–7146.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. 2021. Math word problem solving with ex-
plicit numerical values. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5859–5869, Online. Association
for Computational Linguistics.

Yiquan Wu, Kun Kuang, Yating Zhang, Xiaozhong Liu,
Changlong Sun, Jun Xiao, Yueting Zhuang, Luo Si,
and Fei Wu. 2020b. De-biased court’s view genera-
tion with causality. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 763–780.

Yiquan Wu, Yifei Liu, Weiming Lu, Yating Zhang,
Jun Feng, Changlong Sun, Fei Wu, and Kun Kuang.
2022. Towards interactivity and interpretability: A
rationale-based legal judgment prediction framework.

In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4787–4799.

Yiquan Wu, Weiming Lu, Yating Zhang, Adam Jatowt,
Jun Feng, Changlong Sun, Fei Wu, and Kun Kuang.
2023. Focus-aware response generation in inquiry
conversation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12585–
12599.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In IJCAI, pages 5299–5305.

Jing Xiong, Zhongwei Wan, Xiping Hu, Min Yang,
and Chengming Li. 2022. Self-consistent reason-
ing for solving math word problems. arXiv preprint
arXiv:2210.15373.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, and Xiaodan
Liang. 2022a. Unbiased math word problems bench-
mark for mitigating solving bias. arXiv preprint
arXiv:2205.08108.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, Liang Lin,
and Xiaodan Liang. 2022b. Logicsolver: Towards
interpretable math word problem solving with log-
ical prompt-enhanced learning. arXiv preprint
arXiv:2205.08232.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehension.
arXiv preprint arXiv:1804.09541.

Weijiang Yu, Yingpeng Wen, Fudan Zheng, and Nong
Xiao. 2021. Improving math word problems with
pre-trained knowledge and hierarchical reasoning.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3384–3394, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jiaxin Zhang and Yasha Moshfeghi. 2022. Elastic: nu-
merical reasoning with adaptive symbolic compiler.
arXiv preprint arXiv:2210.10105.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. Asso-
ciation for Computational Linguistics.

Mengxue Zhang, Zichao Wang, Zhichao Yang, Weiqi
Feng, and Andrew Lan. 2023a. Interpretable math
word problem solution generation via step-by-step
planning. arXiv preprint arXiv:2306.00784.

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yuet-
ing Zhuang. 2023b. Data-copilot: Bridging bil-
lions of data and humans with autonomous workflow.
arXiv preprint arXiv:2306.07209.

450

https://aclanthology.org/D17-1088/
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.acl-long.455
https://doi.org/10.18653/v1/2021.acl-long.455
https://www.ijcai.org/proceedings/2019/0736.pdf
https://www.ijcai.org/proceedings/2019/0736.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://doi.org/10.18653/v1/2021.emnlp-main.272
https://aclanthology.org/2020.acl-main.362.pdf
https://aclanthology.org/2020.acl-main.362.pdf

Wenqi Zhang, Yongliang Shen, Yanna Ma, Xiaoxia
Cheng, Zeqi Tan, Qingpeng Nong, and Weiming Lu.
2022a. Multi-view reasoning: Consistent contrastive
learning for math word problem. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 1103–1116, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Wenqi Zhang, Kai Zhao, Peng Li, Xiao Zhu, Yongliang
Shen, Yanna Ma, Yingfeng Chen, and Weiming Lu.
2022b. A closed-loop perception, decision-making
and reasoning mechanism for human-like naviga-
tion. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22,
pages 4717–4724. International Joint Conferences on
Artificial Intelligence Organization. Main Track.

Wenqi Zhang, Kai Zhao, Peng Li, Xiaochun Zhu, Fap-
ing Ye, Wei Jiang, Huiqiao Fu, and Tao Wang. 2021.
Learning to navigate in a vuca environment: Hierar-
chical multi-expert approach. 2021 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS), pages 9254–9261.

Yi Zhang, Guangyou Zhou, Zhiwen Xie, and Jimmy Xi-
angji Huang. 2022c. Hgen: Learning hierarchical het-
erogeneous graph encoding for math word problem
solving. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:816–828.

Zihao Zhou, Maizhen Ning, Qiufeng Wang, Jie Yao,
Wei Wang, Xiaowei Huang, and Kaizhu Huang.
2023. Learning by analogy: Diverse questions
generation in math word problem. arXiv preprint
arXiv:2306.09064.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Ruyi Gan, Jiaxing Zhang, and Yujiu Yang. 2022.
Solving math word problem via cooperative rea-
soning induced language models. arXiv preprint
arXiv:2210.16257.

451

https://aclanthology.org/2022.findings-emnlp.79
https://aclanthology.org/2022.findings-emnlp.79
https://doi.org/10.24963/ijcai.2022/654
https://doi.org/10.24963/ijcai.2022/654
https://doi.org/10.24963/ijcai.2022/654
https://api.semanticscholar.org/CorpusID:244130381
https://api.semanticscholar.org/CorpusID:244130381
https://doi.org/10.1109/TASLP.2022.3145314
https://doi.org/10.1109/TASLP.2022.3145314
https://doi.org/10.1109/TASLP.2022.3145314

A Appendix

A.1 Baselines
In recent years, the MWP task has garnered
widespread attention (Zhou et al., 2023; Xiong
et al., 2022; Lan et al., 2022; Yang et al., 2022a;
Cobbe et al., 2021; Tsai et al., 2021; Huang
et al., 2021). We divide the prior baselines into
two categories: Seq2Seq/Tree and Seq2Exp. In
Seq2Seq/Tree, Li et al. (2019) (GroupAttn) ap-
plied a multi-head attention approach using a
seq2seq model. Xie and Sun (2019) proposed a
seq2tree generation (GTS). Zhang et al. (2020)
(G2T) introduced a graph encoder. Patel et al.
(2021b); Liang et al. (2021a) added a PLMs
encoder to GTS and G2T (PLM-GTS, BERT-
T). Tan et al. (2021) proposed a multilingual
model (mBERT). Lan et al. (2021) utilized Trans-
former for generation (BERTGen). Shen et al.
(2021) proposed a multi-task method (Rank). Qin
et al. (2021) introduced a neural symbolic method
(Symbol-Dec). Yu et al. (2021) extracted hierarchi-
cal features for encoder (H-Reasoner). Yang et al.
(2022b) designed logical rules to guide decoding
(Logic-Dec). Li et al. (2021) proposed a prototype
learning (Prototype). Liang et al. (2021b) adopted
a teacher model for discrimination (T-Dis). Shen
et al. (2022a) distinguished examples with similar
semantics but different logics (Textual-CL). Liang
et al. (2022) adopted an analogy identification to
improve the generalization (Ana-CL).

In Seq2Exp, Cao et al. (2021) used a bottom-up
DAG construction method (DAG). Jie et al. (2022)
introduced a relation extraction method (RE-Ext).
Wang et al. (2022a) treated MWP as tagging an-
notation by M-Tree coding (M-Tree). Bin et al.
(2023) introduced a unified tree structure using
a non-autoregressive model (MWP-NAS). Zhang
et al. (2022a) aligned the representation of dif-
ferent traversal order for consistency (M-View).
ELASTIC (Zhang and Moshfeghi, 2022) designs
a computer synthesis process to handle numerical
reasoning. We also compare our results with the
gpt-3.5-turbo in the few-shot setting. We design
a prompt consisting of both directive instructions
and a demonstration to guide gpt-3.5 step-by-step
reasoning.

A.2 Training Details
Following most previous works (Zhang et al.,
2022a; Jie et al., 2022), we adopt Roberta-base
and Chinese-BERT as encoder from HuggingFace

Two Variant Models

Transformer Layer 1

Transformer Layer 2

Transformer Layer 3

Multiple Query

Transformer Layer 1

Transformer Layer 2

Transformer Layer N

Multiple Query

Exp1 … ExpKExp2

Exp1 … ExpKExp2

Exp1 … ExpKExp2

Transformer Layer 1

Transformer Layer 2

Transformer Layer N

Exp1 … ExpKExp2

Parameter
Shared

Exp1 … ExpKExp2

Transformer Layer 4

Transformer Layer N

…

…
…

Figure A1: Except for using a standard decoder for
layer-wise decoding (Left), we also explore an alternate
model (Right), in which parallel decoding is performed
at every N transformer layer, but each decoding step
shares the parameter of these N layers. The left model
is more accurate, and the right has fewer parameters.

(Wolf et al., 2020) for multilingual datasets. We
consider five mathematical operators, containing
Addition, Subtraction, Multiplication, Division, Ex-
ponentiation, and various constants ({π, 1, 0, · · · })
as previously. Our query decoder is a transformer
decoder with multiple layers, each having 768 hid-
den units. In our experiments, we perform parallel
decoding once at each transformer layer. We use an
AdamW optimizer with a 5e-5 learning rate, batch
size of 32 for MathQA and 26 for Math23K. We
set the maximum layer number as 8. The other
parameters are set as previous works (Zhang et al.,
2022a; Jie et al., 2022). All experiments were set
up on an NVIDIA RTX A6000.

A.3 MWP Dataset Statistics

The statistics of the dataset are shown in Table A1.

Dataset #Train/#Valid/#Test #Avg.
Token

#Avg.
Exp

#Max.
Exp

MathQA 16191 /2415/1606 39.6 4.17 12
Math23K 21162/1000/1000 26.6 2.26 20
MAWPS 1589/199/199 30.3 1.42 7

Table A1: Statistics for three standard datasets.

452

Query 1 2 4 5 6 7 8 10 15 20 30

Acc.(MathQA) % 79.9 80.6 81.4 81.4 81.5 81.3 81.1 80.8 80.2 79.8 79.1
Compared to #1 0 +0.7 +1.5 +1.5 +1.6 +1.4 +1.2 +0.9 +0.3 -0.1 -0.8

Acc.(Math23K) % 85.2 85.8 86.2 86.0 86.2 85.9 85.6 85.2 84.8 83.5 83.3
Compared to #1 0 +0.6 +1 +0.8 +1 +0.7 +0.4 0 -0.4 -1.7 -1.9

Table A2: The impact of query number on our parallel decoding performance.

Method MathQA Math23K

w/ parallel decoding 81.5 86.2
w/o parallel decoding 79.9 85.2
E-pointer 73.5 78.7
M-View 79.5 85.6
RE-Ext 78.6 85.4
Elastic 80.3 84.8

Table A3: The ablation study on parallel decoding.

A.4 Ablating on Parallel Decoding
Parallel decoding is the key to constructing expres-
sion trees. We provide a more detailed comparison
of our parallel decoding strategy. The detailed re-
sults are as shown in Table A3. When we ablate
parallel decoding from our framework, i.e., adopt
only one query per layer, our performance drops
from 81.5% to 79.9% (-1.6%) on MathQA. A sim-
ilar trend is seen on Math23K (-1.0%). Besides,
without the parallel decoding strategy, our perfor-
mance is similar to the Seq2Exp baselines (e.g.,
E-pointer, M-View, RE-Ext, Elastic, etc.), which
generate one expression at each step. Compared to
them, parallel decoding brings noticeable and con-
sistent improvements (E-pointer: +8%, M-View:
+2%, RE-Ext: +2.9%, Elastic: +1.2%).

453

Label Equation:
(50 × 5) + 60 ×(4 + 7)

Label Set

Prefix Order:
+ × 50 5 × 60 + 4 7

Step1: Set (var1 = 50 × 5, var2 = 4+ 7)

Step2: Set (var3 = 60 × var2)

Step3: Set (var1 + var3)

× ×

+

50 5 +60

4 7

×

+

var1

var260

var3

+

var1

Label Equation:
(10 + 4) × 5 + 60 × (10 + 2) − 10 ÷ (10 + 7)

Prefix Order:
− + × + 10 4 5 × 60 + 10 2 ÷ 10 + 10 7

+ ÷

−

× × +10

10 7+ 5

10 4

+60

10 2

+ ÷

−

× × var310

var1 5 var260

+ var6

−

var4 var5

Step1: Set (var1 = 10 + 4, var2 = 10 + 2, var3 = 10 + 7, None, ….)

Step2: Set (var4 = var1 × 5, var5 = 60 × var2, var6 = 10 ÷ var3, None, ….)

Step3: Set (var7 = var4 + var5, None, ….)

Step4: Set (var7 + var6, None, ….)

var7 var6

−

Result

Padding

Set (50 × 5, 4+ 7, None, None …..)

Set (60 × var2 , None, None …..)

Set (var1 + var3, None, None …..)

Result

Layer 1

Layer 2

Layer 3

50×54+7

v2×60

v1 + v3

Expression Tree
Decoding

Layer 1

Layer 2

Layer 3

10+210+4

v1×5

v4 + v6

Expression Tree
Decoding

Layer 4

v7 + v6

10+7

60×v2 10÷ v3

Figure A2: Two cases for Label Set and Expression Tree decoding processes.

454

Several Ablation Design

Label Set 50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4Predict Set

Bipartite Matching

Loss for operatorLoss for operand

Loss1 Loss2 Loss6Loss4 Loss5Loss3

Label Set 50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4Predict Set

Sequence Matching

Loss1 Loss2
Loss3 Loss4

Loss5 Loss6

Label Set

Predict Set

Without Operator None Loss

Label Set 50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4Predict Set

With Operand None Loss

50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4

Loss1 Loss2

Label Set 50 × 5 60 × 4 𝑁𝑜𝑛𝑒𝑁𝑜𝑛𝑒 𝑁𝑜𝑛𝑒 None

50 × 5 60 × 450 + 60 5 + 450 𝑁𝑜𝑛𝑒 4 50+ 4Predict Set

Bipartite Matching Process

Y0 Y4Y3Y2Y1 Y5

!𝑌0 !𝑌1 !𝑌2 !𝑌3 !𝑌4 !𝑌5

Permutation
Index

0 4 1 2 3 5

Y0: 50 × 5

'𝑌0: 50 × 5

Loss
Y1: 60 × 4

!𝑌4: 60 × 4

Y2: None

!𝑌1: 50𝑁𝑜𝑛𝑒 4 Loss = Loss1 + Loss2 + … + Loss6

…….

Figure A3: Up: The process of the Bipartite Matching. Down: Several ablation designs.

455

0.125

-0.075

Layer 1: Exp1= 600 ÷ 1000 by # query 6

Problem: maxwell leaves his home and walks toward brad ‘ s house . one hour later , brad leaves his home and
runs toward maxwell ’ s house . if the distance between their homes is 14 kilometers , maxwell ‘ s walking
speed is 4 km / h , and brad ’ s running speed is 6 km / h . what is the total time it takes maxwell before he
meets up with brad ?
Label : (14+6) / (4+6) Our Parallel Prediction: (14 + 6) ÷ (4 + 6)

Problem: if a truck is traveling at a constant rate of 180 kilometers per hour , how many hours will it take the
truck to travel a distance of 600 meters ? (1 kilometer = 1000 meters)
Label: 600 / 1000 / 180 Our Prediction: 600 / 1000 / 180

#
Q
ue
ry
Id

1
2
3
4
5
6

#
Q
ue
ry
Id

1
2
3
4
5
6

Layer 2 : Exp1 ÷ 108 by # query 6

Layer 1: Exp1 = 14 + 6 by # query 1 Exp2 = 4 + 6 by # query 2

1

3

5
4

6

2

Layer 2: Exp1 ÷ Exp2 by # query 6

1

3

5
4

6

2

Figure A4: We visualize the expression tree decoding process at each layer. We calculate the cosine similarity
between query vectors and problem representations for each layer. In the first case, the prediction expressions are
output by a query. In the second case, the first and second queries are activated for two expressions in parallel.

456

