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Abstract

The ability to actively ground task instructions
from an egocentric view is crucial for AI agents
to accomplish tasks or assist humans. One
important step towards this goal is to local-
ize and track key active objects that undergo
major state change as a consequence of hu-
man actions/interactions in the environment
(e.g., localizing and tracking the ‘sponge‘ in
video from the instruction "Dip the sponge
into the bucket.") without being told exactly
what/where to ground. While existing works
approach this problem from a pure vision per-
spective, we investigate to which extent the
language modality (i.e., task instructions) and
their interaction with visual modality can be
beneficial. Specifically, we propose to improve
phrase grounding models’ (Li* et al., 2022)
ability in localizing the active objects by: (1)
learning the role of objects undergoing change
and accurately extracting them from the instruc-
tions, (2) leveraging pre- and post-conditions
of the objects during actions, and (3) recogniz-
ing the objects more robustly with descriptional
knowledge. We leverage large language models
(LLMs) to extract the aforementioned action-
object knowledge, and design a per-object ag-
gregation masking technique to effectively per-
form joint inference on object phrases with
symbolic knowledge. We evaluate our frame-
work on Ego4D (Grauman et al., 2022) and
Epic-Kitchens (Dunnhofer et al., 2022) datasets.
Extensive experiments demonstrate the effec-
tiveness of our proposed framework, which
leads to > 54% improvements in all standard
metrics on the TREK-150-OPE-Det localiza-
tion + tracking task, > 7% improvements in all
standard metrics on the TREK-150-OPE track-
ing task, and > 3% improvements in average
precision (AP) on the Ego4D SCOD task.

1 Introduction

Recent technological advancements in smart
glasses (and headsets) from industry leaders such

∗The authors contribute equally, alphabetical order.

A fruit with yellow—greenish flesh…

Object Undergoing Change
Tool

Post-Cond:(Cut,Opened)

Pre-Cond:(Ripe,Smooth)

Cut the pawpaw into half with the knife.

Figure 1: Active object grounding is the task of localizing
the active objects undergoing state change (OUC). In this ex-
ample action instruction "cut the pawpaw into half with the
knife", the AI assistant is required to firstly infer the OUC
(pawpaw) and the Tool (knife) from the instruction, and then
localize them in the egocentric visual scenes throughout the
action trajectories. Symbolic knowledge including pre/post
conditions and object descriptions can bring additional infor-
mation to facilitate the grounding.

as Meta, Google, and Apple have attracted growing
research in on-device AI that can provide just-in-
time assistance to human wearers. 1 While giving
(or receiving) instructions during task execution,
the AI assistant should co-observe its wearer’s first-
person (egocentric) viewpoint to comprehend the
visual scenes and provide appropriate assistance.
To accomplish this, it is crucial for AI to first be
able to localize and track the objects that are un-
dergoing significant state change according to the
instruction and/or actions performed. For example
in Figure 1, it can be inferred from the instruction
that the object undergoing change which should be
actively grounded and tracked is the pawpaw.

Existing works have focused on the visual modal-
ity alone for such state change object localization
tasks, including recognizing hand-object interac-

1Code at: https://github.com/PlusLabNLP/ENVISION
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tions (Shan et al., 2020a) and object visual state
changes (Alayrac et al., 2017). However, it remains
under-explored whether the visual modality by it-
self is sufficient for providing signals to enable ro-
bust state change object localizing/tracking without
enhanced signals from the textual modality. While
utilizing a phrase grounding model (Liu et al., 2022,
2023) is presumably a straightforward alternative,
it leaves unanswered questions of which mentioned
objects/entities in the instruction are supposedly
the one(s) that undergo major state changes, e.g.,
the pawpaw in Figure 1 instead of the knife is the
correct target-object. Furthermore, how visual ap-
pearances of the objects can help such multimodal
grounding is yet to be investigated.

In light of this, we tackle the active object
grounding task by first extracting target object
mentionsfrom the instructions using large lan-
guage models (ChatGPT (OpenAI, 2023)) with a
specifically designed prompting pipeline, and then
finetuning an open-vocabulary detection model,
GLIP (Li* et al., 2022), for visual grounding.

We further hypothesize that additional action-
and object-level symbolic knowledge could be help-
ful. As shown in Figure 1, state conditions prior to
(pre-conditions: which indicate pre-action states)
and after (post-conditions: which suggest at past
state changes) the execution of the action are often
considered when locating the objects, especially
when the state changes are more visually signifi-
cant. Furthermore, generic object knowledge in-
cluding visual descriptions (e.g., "yellow-greenish
flesh"), are helpful for uncommon objects.2 Based
on this hypothesis, we prompt the LLM to obtain
pre- and post-conditions on the extracted object
mentions, along with a brief description focusing
on specific object attributes.

To improve the grounding models by effectively
using all the aforementioned action-object knowl-
edge, we design an object-dependent mask to sepa-
rately attribute the symbolic knowledge to its cor-
responding object mentions for training. During in-
ference time, a pre-/post-condition dependent scor-
ing mechanism is devised to aggregate the object
and the corresponding knowledge logit scores to
produce a joint inference prediction.

We evaluate our proposed framework on two

2This should not contradict with the application where an
assistive AI judges if the outcomes of the actions are desirable,
as here we are only using general commonsensical conditions
generated by an LLM, while in reality there can be more subtle
and task-dependent conditions that need to be examined.

Pre-Frame PNR-Frame Post-Frame

Use the spray nozzle(TOOL) to spray the car windshield(OUC).

Figure 2: Ego4D SCOD active grounding: Example object
undergo change (OUC) due to the instructed actions and asso-
ciated Tools, spanning: the pre-condition, point-of-no-return
(PNR) and post-condition frames.

narrated egocentric video datasets, Ego4D (Grau-
man et al., 2022) and Epic-Kitchens (Damen et al.,
2022) and demonstrate strong gains. Our main con-
tributions are two folds: (1) We design a sophisti-
cated prompting pipeline to extract useful symbolic
knowledge for objects undergoing state change dur-
ing an action from instructions. (2) We propose a
joint inference framework with a per-object knowl-
edge aggregation technique to effectively utilize
the extracted knowledge for improving multimodal
grounding models.

2 Tasks and Terminologies

Active Object Grounding. For both robotics and
assistant in virtual or augmented reality, the AI ob-
serves (or co-observes with the device wearer) the
visual scene in the first-person (egocentric) point
of view, while receiving (or giving) the task in-
structions of what actions to be performed next. To
understand the context of the instructions as well as
engage in assisting the task performer’s actions, it
is crucial to closely follow the key objects/entities
that are involved in the actions undergoing major
state change.3 We term these actively involved ob-
jects as objects undergoing change (OUC), and
what facilitate such state change as Tools.
Tasks. As there is not yet an existing resource
that directly studies such active instruction ground-
ing problem in real-world task-performing situa-
tions, we re-purpose two existing egocentric video
datasets that can be seamlessly transformed into
such a setting: Ego4D (Grauman et al., 2022) and
Epic-Kitchens (Damen et al., 2018). Both come
with per-time-interval annotated narrations tran-
scribing the main actions occurred in the videos.4

Ego4D: SCOD. According to Ego4D’s definition,

3State change can come from objects’ physical properties
such as composition, textures, and functionalities; as well as
attributes such as sizes, shapes, and physical affordances.

4The narrations are paraphrased as imperative instructions.
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object state change can encapsulate both spatial
and temporal aspects. There is a timestamp that the
state change caused by certain actions start to oc-
cur, i.e., the point-of-no-return (PNR). Ego4D’s
state change object detection (SCOD) subtask
then defines, chronologically, three types of frames:
the pre-condition (Pre), the PNR, and the post-
condition (Post) frames, during a performed action.
Pre-frames capture the prior (visual) states where
a particular action is allowed to take place, while
post-frames depict the outcomes caused by the ac-
tion, and hence also record the associated object
state change. Each frame annotated with its cor-
responding frame-type is further annotated with
bounding boxes of the OUC (and Tools, if applica-
ble), that is required to be regressed by the models.
Figure 2 shows an exemplar SCOD data point.

Our re-purposed active grounding task is thus as
follows: Given an instructed action and one of a
Pre/PNR/Post-typed frames, localize (ground) both
the OUC(s) and Tool(s) in the visuals. While the
official SCOD challenge only evaluates the PNR
frame predictions, we consider all (Pre, PNR, and
Post) frames for both training and inference.
Epic-Kitchens: TREK-150. TREK-150 object
tracking challenge (Dunnhofer et al., 2022, 2021)
enriches a subset of 150 videos from the Epic-
Kitchens (Damen et al., 2018, 2022) dataset, with
densely annotated per-frame bounding boxes for
tracking a target object. Since the Epic-Kitchens
also comprises egocentric videos capturing human
performing (specifically kitchen) tasks, the target
objects to track are exactly the OUCs per the termi-
nology defined above. Hence, given an instructed
action, the model is required to ground and track
the OUC in the egocentric visual scenes.5

It is worth noting that some OUCs may occa-
sionally go "in-and-out" of the egocentric point of
view (PoV), resulting in partial occlusion and/or
full occlusion frames where no ground truth anno-
tations for the OUCs are provided. Such frames
are excluded from the final evaluation. And in Sec-
tion 4.2.3 we will show that our proposed model is
very successful in predicting the objects when they
come back due to the robustness of our symbolic
joint inference grounding mechanism.

5 Unlike Ego4D SCOD task, TREK-150 does not contain
any defined Pre/PNR/Post frames. Our proposed model is
trained to perform joint inference and autonomously decide
which of the pre- and post-conditions to weigh more based
on the frame image and instructed action. And hence, in the
TREK-150 task, frame-type information is not required.

Pre-Frame

Dot-Product
Alignment Loss
(Object Scores)

Localization Loss
(BBox Regression)

PNR-Frame
Post-Frame

GLIP-(L) Model

Cut fish fillet(OUC) with a knife(TOOL).

PNR

Post

Pre

Per-Frame Logits

0.3

0.1

Image Encoder

Text Encoder(LLM) Symbolic 
Knowledge

Figure 3: Overview of proposed framework that comprises
a base multimodal phrase grounding model (GLIP), a frame-
type predictor, a knowledge extractor leveraging LLMs (GPT),
and predictions supervised by both bounding box regression
of the objects and their ranked scores.

3 Method

Figure 3 overviews the proposed framework, con-
sisted of: (1) A base multimodal grounding
architecture, where we adopt a strong open
vocabulary object detection module, GLIP (Li*
et al., 2022). (2) A frame-type prediction sub-
component which adds output projection layers on
top of GLIP to utilize both image (frame) and text
features to predict of which frame-type (Pre/PN-
R/Post) is currently observed. (Section 3.2.1) (3)
A prompting pipeline that is engineered to ex-
tract useful action-object knowledge from an LLM
(GPT). (Section 3.2) (4) A per-object knowledge
aggregation technique is applied to GLIP’s word-
region alignment contrastive training. (Section 3.3)

3.1 Adapting GLIP

GLIP (Li* et al., 2022; Zhang* et al., 2022)
achieves open vocabulary object detection by pre-
training on a contrastive phrase grounding objec-
tive. Specifically, GLIP extends the text(caption)-
to-image dot product matching objective from
CLIP (Radford et al., 2021) to a word-region-level
alignment objective. For some (tokenized) words
of the textual description of an image, there are
certain image region(s) that could be grounded to,
while other regions are viewed as the negative sam-
ples for the CLIP-like alignment contrastive learn-
ing. During pretraining, GLIP utilizes both phrase
grounding datasets (Ordonez et al., 2011; Plummer
et al., 2015; Sharma et al., 2018) and object detec-
tion datasets (Krishna et al., 2017; Krasin et al.,
2017; Shao et al., 2019).6

Contrastive Learning. We illustrate the GLIP

6The descriptions of object detection are a simple concate-
nation of all the available object class labels.
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Figure 4: Model architecture (knowledge-enhanced grounding): On the left depicts the word-region alignment (contrastive)
learning of the base GLIP architecture, where the model is trained to align the encoded latent word and image features with
their dot-product logits being supervised by the positive and negative word-region pairs. On the right illustrates the enhanced
object-knowledge grounding. During training we apply an object-type dependent mask to propagate the positive alignment
supervisions; while during inference time the frame-type predictor (offline trained by the encoded textual and image features)
acts as a combinator to fuse dot product-logit scores from both (extracted) object phrases and corresponding knowledge. (Note
that for simplicity we do not fully split some phrases into individual words.)

training adapted to our task in Figure 4 left half.
Notice that for simplicity we do not fully expand
the tokenized word blocks, e.g., "fish fillet" should
span two words where each word ( fish" and "fil-
let") and its corresponding region is all regarded
as the positive matching samples. The model is
trained to align the encoded latent word and image
features7 with their dot-product logits being su-
pervised by the positive and negative word-region
pairs. The alignment scores will then be used to
score (and rank) the regressed bounding boxes pro-
duced by the image features, and each box will fea-
ture an object-class prediction score. Concretely,
for jth regressed box, its grounding score to a
phrase W = {w}1:T is a mean pooling of the
dot-products between the jth region feature and
all the word features that compose such a phrase:
Sbox
j = 1

T

∑T
i Ij · Wi. In this work, we mainly

focus on the OUC and Tool object classes, i.e.,
each textually-grounded region will further predict
whether it is an OUC or Tool class.

3.2 LLM for Action-Object Knowledge

Pipeline. As illustrated in Figure 5, we implement
an LLM query pipeline to extract active entities and
relevant symbolic knowledge from an instructional
caption. To account for GPT’s verbose tendency,
we forcibly instruct GPT to produce the active ob-
jects (OUC and/or Tool) following a specifically
designed format and then apply heuristic-based

7For details of GLIP’s multimodal fusion technique, we
refer the readers to Li* et al. (2022); Zhang* et al. (2022).

post-processing to further refine the extractions.8

Conditioned on the extracted OUC (and Tool), two
additional queries are made to generate: (1) the
symbolic pre- and post-conditions of such objects
induced by the actions, and (2) brief descriptions
characterizing the objects and their attributes. Inter-
estingly, we empirically find it beneficial to situate
GPT with a role, e.g., "From the first-person view."
GPT Intrinsic Evaluation. In Table 2, we au-
tomatically evaluate the OUC/Tool extraction of
GPT against the labelled ground truth entities in
both datasets. We report both exact (string) match
and word overlapping ratio (as GPT often extracts
complete clauses of entities), to quantify the robust-
ness of our GPT active entity extractions.

Table 3 reports human evaluation results of
GPT symbolic knowledge, including pre-/post-
conditions and descriptions. Evaluation is based
on two binary metrics, namely: (1). Textual Cor-
rectness: "Based on text alone, does the knowledge
make sense?" and (2). Visual Correctness: "Does
the conds./desc. match the image?" Despite impres-
sive performance on both intrinsic evaluations, we
qualitatively analyze in Table 1 some representa-
tive cases where GPT mismatches with annotations
or humans, including cases where GPT’s answer is
actually more reasonable than the annotations.

3.2.1 Incorporating Knowledge

Adding Knowledge. We use the following schema
to enrich the instruction with the obtained knowl-

8More details are in Append. Sec. A.2.
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[OUC]: Spinach [Tool]: Sickle

[Caption]: Slash the portion of spinach with the sickle. 

Localizable Active Entities
▶ OUC: [Identify]: "a portion of spinach"  ➔  [Ground]: "spinach"

▶ Tool: [Identify]: "a sickle"  ➔  [Ground]: "sickle"

▶ OUC: [Desc.]: "Spinach is a leafy green vegetable."
▶ Tool: [Desc]:A sickle is a curved knife with a short handle, used for   
                cutting grain and other crops.

▶ OUC: [Pre-cond]: "fresh, green" + [Post-cond]: "diced, shredded"
▶ Tool: [Pre-cond]: "sharp, metallic" + [Post-cond]: "green, splattered"

Symbolic World Knowledge

OUC

Tool

ToolOUC

OUC

Tool

Targets

Identify OUC & Tool

Precise Semantic Grounding

Entity
Extraction

Instructional CaptionInput

OUC Tool

State Change Forecast

Object Description 

Knowledge
Extraction

Figure 5: The GPT knowledge extraction pipeline. Demonstrated through an example from the Ego4D SCOD Dataset.

Examples Explanations

GPT: Pick up some green papers(OUC) from the table. [No Tool]
Desc.: "Green papers are consultation documents issued by government."

Without visual knowledge input, GPT is not robust to
phrase ambiguity, leading to undesirable definition.

GPT: Cut the fish fillet(OUC) with a knife(TOOL)
OUC: [Pre-cond]: "fresh, raw" [Post-cond]: "sliced, cut"
Tool: [Pre-cond]: "Sharp, metallic" [Post-cond]: "Blunt, distorted"

LLMs may hallucinate exaggerated state changes, in
this case claiming the knife to be "blunt, distorted"
after a single use, which is unreasonable.

GPT: Hold the iron(OUC) on the ironing board with your hand. [No Tool]
Ego4D gt-label: [OUC]: "pants" [Tool]: "iron"

"Pants" is not mentioned in the narration, GPT fails
to capture OUC due to text narration reporting bias.

GPT: Spin the mop(OUC) in the mop bucket spinner(Tool).
Ego4D gt-label: [OUC]: "mop" [Tool]: "mop"

GPT prediction is more reasonable compared to the
Ego4D ground truth label.

Table 1: Qualitative Analysis of GPT Knowledge Extraction: Examples of cases where GPT-extracted symbolic knowledge
are wrong or conflict with Ego4D annotations. Here the GPT-extracted or dataset-annotated knowledge are displayed in GREEN
if they match human analysis and RED otherwise. Explanations for each example are provided on the right.

Object Ego4D SCOD TREK-150
Type EM (%) Overlap. EM (%) Overlap.

OUC 77.8 88.6 76.0 94.3
Tool 60.3 88.5 — —

Table 2: Automatic evaluation of GPT entity extraction.
Abbreviations: EM: exact string matching; Overlap: The ra-
tio of GPT extractions fully covering the ground truth phrases

Knowledge Ego4D SCOD TREK-150
Type Textual Visual Textual Visual

Pre-Cond. 86.5 81.6 83.0 79.9
Post-Cond. 75.2 70.3 76.6 73.5

Desc. 98.9 91.4 99.2 95.3

Table 3: Human evaluation of GPT symbolic knowledge
extraction. Abbreviations: Textual: i.e. "textual correctness"
"Based on text alone, does the GPT conds./desc. make sense?";
Visual: i.e. "visual correctness": "Does the GPT conds./desc.
match what is shown in the image?"

edge: "{instr.} [SEP] object/tool (pre/post)-state is
{conds.} [SEP] object/tool description is {desc.}",
where [SEP] is the separation special token;
{conds.} and {desc.} are the pre-/post-condition and
object definition knowledge to be filled-in. Empiri-
cally, we find diffusing the post-condition knowl-

edge to PNR frame yield better results. As Fig-
ure 4 illustrates (omitting some prefixes for sim-
plicity), we propagate the positive matching labels
to object/tool’s corresponding knowledge. In the
same training mini-batch, we encourage the con-
trastiveness to focus on more detailed visual appear-
ance changes grounded to the symbolic condition
statements and/or descriptions, by sampling frames
from the same video clips with higher probability.

Frame-Type Prediction. Using both the encoded
textual and image features, we learn an additional
layer to predict the types of frames conditioned on
the associated language instruction. Note that the
frame-type definition proposed in Ego4D should be
generalizable outside of the specific task, i.e., these
frame types could be defined on any kinds of ac-
tion videos. In addition to the annotated frames in
SCOD, we randomly sub-sample nearby frames
within 0.2 seconds (roughly 5-6 frames) to ex-
pand the training data. The frame-type prediction
achieves a 64.38% accuracy on our SCOD test-set,
which is then directly applied to the TREK-150 task
for deciding the amount of pre- and post-condition
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knowledge to use given the multimodal inputs.

3.3 Object-Centric Joint Inference

Masking. As illustrated in Figure 4, a straight-
forward way to assign symbolic knowledge to its
corresponding object type respectively is to con-
struct a per-object-type mask. For example, an
OUC mask MOUC will have 1s spanning the posi-
tions of the words from condition (e.g., "fresh,raw"
of the OUC "fish fillet" in Figure 4) and descrip-
tive knowledge, and 0s everywhere else. We omit
the knowledge prefixes in Section 3.2.1 (e.g., the
phrase "object state is") so that the models can
concentrate on grounding the meaningful words.
Such mask for each object type can be determin-
istically constructed to serve as additional word-
region alignment supervisions, and can general-
ize to object types outside of OUC and Tool (be-
yond the scope of this work) as the GPT extraction
can clearly indicate the object-to-knowledge corre-
spondences. In other words, we enrich the GLIP’s
phrase grounding to additionally consider symbolic
knowledge during the contrastive training. Note
that the mask is frame-type dependent, e.g., MPre

OUC

and MPost
OUC will focus on their corresponding con-

ditional knowledge.
Aggregation. During the inference time, we com-
bine the frame-type prediction scores Sfr with the
per-object mask to aggregate the dot-product logit
scores for ranking the regressed boxes. Specifically,
we have Sbox

OUC =
∑

fr Sfr ∗ Mfr
OUC , where S is a

3-way logit and fr ∈ {Pre,PNR,Post}.

4 Experiments and Analysis

We adopt the GLIP-L variant (and its pretrained
weights) for all of our experiments, where its visual
encoder uses the Swin-L transformer (Liu et al.,
2021). We train the GLIP-L with our framework
primarily on the SCOD dataset, and perform a zero-
shot transfer to the TREK-150 task.

4.1 Ego4D SCOD

4.1.1 Experimental Setups
Data Splits. We split the official SCOD train set
following a 90-10 train-validation ratio and use the
official validation set as our primary test set.9

Evaluation Metrics. Following the original SCOD
task’s main settings, we adopt average precision

9The official test-set only concerns the PNR frame, and
deliberately excluded narrations to make a vision only local-
ization task, which is not exactly suitable for our framework.

(AP) as the main evaluation metric, and utilize the
COCO API (Lin et al., 2014) for metric compu-
tation. Specifically, we report AP, AP50, (AP at
IOU≥ 0.5) and AP75 (AP at IOU≥ 0.75).

4.1.2 Baselines

We evaluate three categories of baselines: (1) Pure
object detection models, where the language in-
structions are not utilized. (2) (Pseudo) referential
grounding, where certain linguistic heuristics are
used to propose the key OUCs. (3) GPT with sym-
bolic knowledge, where GPT is used to extract
both the OUCs and Tools, with additional symbolic
knowledge available to utilize.

Pure Object Detection (OD). We finetune the
state-of-the-art model of the SCOD task from Chen
et al. (2022) (VidIntern) on all types of frames
(Pre, PNR, and Post) to serve as the pure object de-
tection model baseline, which learns to localize the
OUC from a strong hand-object-interaction prior in
the training distribution. We also train an OD ver-
sion of GLIP providing a generic instruction, "Find
the object of change.", to quantify its ability to fit
the training distribution of plausible OUCs.

Pseudo Grounding (GT/SRL). We experiment
four types of models utilizing the instructions and
certain linguistic patterns as heuristics: (1) We ex-
tract all the nouns using Spacy NLP tool (Honnibal
and Montani, 2017) and randomly assign OUC to
one of which (Random Entity). (2) A simple yet
strong baseline is to ground the full sentence of the
instruction if the only object class to be predicted
is the OUC type (Full-Instr.). (3) Following (2),
we hypothesize that the first argument type (ARG1)
of the semantic-role-labelling (SRL) parses (Shi
and Lin, 2019; Gardner et al., 2017) of most simple
instructions is likely regarded as the OUC ((SRL-
ARG1)). (4) Lastly, to quantify a possible upper
bound of simple grounding methods, we utilize
the annotated ground truth object class labels from
SCOD task and perform a simple pattern matching
to extract the OUCs and Tools. For those ground
truth words are not easily matched, we adopt the
ARG1 method from (3) (GT-SRL-ARG1).
GPT-based. For our main methods leveraging
LLMs (GPT) and its generated action-object sym-
bolic knowledge, we consider four types of com-
binations: (1) GPT with its extracted OUCs and
Tools. (2) The model from (1) with additional uti-
lization of object definitions (GPT+Desc.). (3)
Similar to (2) but condition on generated pre- and
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Base Type Method Objects Pre-Frame↑ PNR-Frame↑ Post-Frame↑
AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

VidIntern OD — OUC 32.73 49.17 34.05 37.49 57.04 38.59 29.68 44.43 30.94
Tool 16.39 23.43 17.25 16.53 24.51 17.14 14.03 21.70 14.44

GLIP-L

OD — OUC 26.91 42.83 27.86 29.74 47.70 30.47 24.13 38.74 24.71

Instr.

Zero-Shot on GTs OUC 20.18 32.97 20.63 19.51 32.34 19.39 19.34 31.07 19.88
Random Entity OUC 25.90 42.17 26.20 26.85 44.21 26.80 24.45 39.17 25.10

Full-Instr. OUC 32.45 51.62 33.34 33.78 54.44 34.49 31.30 49.23 32.42
SRL-ARG1 OUC 36.41 54.93 37.65 38.32 58.07 39.41 33.59 49.99 34.90

GT-SRL-ARG1 OUC 37.87 56.35 39.55 39.64 59.41 40.73 34.97 51.34 36.69
Tool 45.53 71.22 46.27 43.70 68.96 44.54 43.76 69.56 44.04

GPT OUC 37.46 56.05 38.96 39.07 59.17 40.13 34.77 51.34 36.35
Tool 38.41 60.66 39.33 37.64 60.26 39.29 37.67 59.73 38.24

GPT+Desc. OUC 36.97 56.16 38.35 38.49 59.38 39.41 34.09 51.18 35.56
Tool 42.26 64.37 44.59 41.30 64.46 43.53 40.20 63.92 41.60

GPT+Conds. OUC 38.65 57.55 40.16 40.19 60.39 41.56 35.40 52.15 37.11
Tool 43.48 65.78 45.58 42.37 64.97 44.77 41.08 63.26 42.07

w/o obj.-mask OUC 37.59 56.28 39.19 39.09 59.31 40.58 33.93 50.80 35.38

GPT+Conds.+Desc. OUC 38.27 57.79 39.65 39.96 60.91 41.35 35.37 52.82 36.95
Tool 44.00 66.49 46.12 42.77 66.06 44.82 42.12 65.44 42.45

Table 4: Model performance on Ego4D SCOD. OD: pure object detection. Instr: grounding with instructions. We highlight
best OUC performance in RED for and best Tool performance in GREEN.

post-conditions of the objects (GPT+Conds.). (4)
Combining both (2) and (3) (GPT+Conds.+Desc.).

4.1.3 Results

Table 4 summarizes the overall model performance
on Ego4D SCOD task. Even using the ground truth
phrases, GLIP’s zero-shot performance is signif-
icantly worse than pure OD baselines, implying
that many of the SCOD objects are uncommon
to its original training distribution. Generally, the
instruction grounded performance (Instr.) are all
better than the pure OD baselines, even with using
the whole instruction sentence as the grounding
phrase. The significant performance gaps between
our models and the VidIntern baseline verifies that
visual-only models can be much benefit from in-
corporation of textual information (should they be
available) for the active object grounding task.

Particularly for OUC, with vanilla GPT extrac-
tions we can almost match the performance using
the ground truth phrases, where the both the condi-
tional and definition symbolic knowledge further
improve the performance. Notice that condition
knowledge by itself is more useful than the defini-
tion, and would perform better when combined. We
also ablate a row excluding the per-object aggrega-
tion mechanism so that the conditional knowledge
is simply utilized as a contextualized suffix for an
instruction, which indeed performs worse, espe-
cially for the post-frames. As implied in Table 4
, best performance on Tool is achieved using the
ground truth phrases, leaving room for improve-

ment on more accurate extractions and search of
better suited symbolic knowledge.

Method Top-K Post-Frame↑ OD Metric
AP AP50 AP75

Track from GT PNR 1 20.36 41.15 17.78
Track from Pred. PNR 1 10.21 21.27 8.63

GPT+Conds.+Desc. 1 29.85 43.53 31.45

Table 5: PNR to Post OUC tracking ablation study. Since
tracking module only produce a single box for each frame,
we report the top-1 performance of our grounding model.
(Normally COCO API reports max 100 detection boxes.)

However, one may raise a natural question: if
the OUC/Tool can be more robustly localized in
the PNR frame, would a tracker improve the post-
frame performance over our grounding framework?
We thus conduct an ablation study using the tracker
in Section 4.2 to track from PNR-frames using ei-
ther the ground truth box and our model grounded
box to the post-frames. Results in Table 5 contra-
dicts this hypothesis, where we find that, due to
viewpoint variations and appearance differences
induced by the state change, our grounding model
is significantly more robust than using tracking.

4.1.4 Qualitative Inspections

Figure 6 shows six different examples for in-depth
qualitative inspections. It mainly shows that, gen-
erally, when the models grounding with the sym-
bolic knowledge outperforms the ones without, the
provided symbolic knowledge, especially the con-
ditional knowledge, plays an important role
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FPV OD BBox Rank. Method OPE-Det↑ OPE↑ Std. OD Metric↑
SS NPS SS NPS AP AP50 AP75

HiC MDNet LTMU-H 0.267 0.261 0.505 0.520 — — —
HiC MDNet TbyD-H 0.047 0.018 0.433 0.455 — — —

Swin-L + DINO VidIntern — 0.341 0.340 0.526 0.541 29.49 41.47 30.85

GLIP-L GLIP-L

Full-Instr. 0.355 0.361 0.521 0.537 38.51 60.06 40.17
SRL-ARG1 0.373 0.377 0.528 0.544 40.00 60.52 40.96

GT-SRL-ARG1 0.383 0.390 0.531 0.548 42.35 61.41 44.27
GPT 0.379 0.389 0.529 0.545 41.85 61.89 43.46

GPT+Desc. 0.402 0.409 0.528 0.543 41.40 60.70 43.17
GPT+Conds. 0.412 0.422 0.541 0.557 45.90 67.26 47.94

GPT+Desc.+Conds. 0.413 0.424 0.539 0.557 43.49 64.34 45.43

Table 6: Model performance on TREK-150. OPE denotes One-Pass Evaluation (Dunnhofer et al., 2022) and OPE-Det is a
variant to OPE where each tracker is initialized with its corresponding object detector prediction on the first frame. Success
Score (SS) and Normalized Precision Score (NPS) are standard tracking metrics.

4.2 TREK-150

4.2.1 Experimental Setups
Protocols. TREK-150’s official evaluation pro-
tocol is One-Pass Evaluation (OPE), where the
tracker is initialized with the ground-truth bound-
ing box of the target in the first frame; and then
ran on every subsequent frame until the end of the
video. Tracking predictions and the ground-truth
bounding boxes are compared based on IOU and
distance of box centers. However, as the premise
of having ground-truth bounding box initialization
can be generally impractical, a variant of OPE-Det
is additionally conducted, where the first-frame
bounding box is directly predicted by our trained
grounding model (grounded to the instructions).
Evaluation Metrics. Following Dunnhofer et al.
(2022), we use common tracking metrics, i.e., Suc-
cess Score (SS) and Normalized Precision Score
(NSP), as the primary evaluation metrics. In ad-
dition, we also report standard OD metric (APs)
simply viewing each frame to be tracked as the
localization task, as an alternative reference.

4.2.2 Baselines.
We adopt the best performing framework, the
LTMU-H, in the original TREK-150 paper as the
major baseline. LTMU-H integrates an fpv (first-
person-view) object detector (HiC (Shan et al.,
2020b)) into a generic object tracker (LTMU (Dai
et al., 2020)), which is able to re-focus the tracker
on the active objects after the (tracked) focus is lost
(i.e., identified by low tracker confidence scores).

Following the convention of utilizing object de-
tection models to improve tracking (Feichtenhofer
et al., 2017), we focus on improving object tracking
performance by replacing the HiC-detector with
our knowlede-enhanced GLIP models. We substi-

tute the HiC-detector for all 8 GLIP-based models
and the VideoIntern baseline trained on the SCOD
task and perform a zero-shot knowledge transfer
(directly from Ego4D SCOD).10

4.2.3 Results
Table 6 summarizes the performance on TREK-150.
Our best GLIP model trained using GPT-extracted
objects and symbolic knowledge outperforms the
best HiC baseline by over 54% relative gains in
the SS metric and over 62% relative gains in the
NPS scores for the OPE-D task. It also outperforms
the VideoIntern baseline by 16-18% relative gains
in SS/NPS and even the GLIP-(GT-SRL-ARG1)
model by 7-9% relative gains on both metrics.
This demonstrates the transferability of our OUC
grounding model in fpv-tracking. For the OPE task
with ground-truth initializations, the gains provided
by our GLIP-GPT models over LTMU-H narrow to
7-8% relative gains across both metrics while still
maintaining a lead over all other methods. This
shows that the model is still able to better help the
tracker re-focus on the OUCs although the overall
tracking performance is more empirically bounded
by the tracking module.

5 Related Works

Egocentric Vision. Egocentric vision has recently
attracted research attentions thanks to advance-
ments in smart wearable devices and robotics.
Datasets used in this work, Ego4D (Grauman et al.,
2022) and Epic-Kitchens (Damen et al., 2022,
2018; Dunnhofer et al., 2022) are two represen-
tative large-scale collections of egocentric videos

10Mainly because: (1) The general bounding box annota-
tions in Epic-Kitchens videos are machine annotated, and (2)
we believe model learned from Ego4D’s more general visual
domains should transfer well to kitchen activities.
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Pour water on the trouser(OUC) from the jug(TOOL).

Post-Frame(A)

Post-Cond:(Wet,Soaked)

A pair of pants covering the lower half of the body…

Post-Cond:(Wet,Dripping)

A container with a narrow neck and a handle…

Sew the material(OUC) with the sewing
machine(TOOL) on the table.

Post-Frame(B)

Post-Cond:(Stitched,Textured)

A flexible material made by weaving or knitting…

Post-Cond:(Operational,Threaded)

A device used to stitch fabric or other materials…

Cut the cardboard(OUC) with the cutter(TOOL).

Pre/PNR-Frame(C)

Pre-Cond:(Smooth,Flat)

A stiff paper-based material used for packaging…

Pre-Cond:(Sharp,Metalic)

A tool used for cutting or trimming…

Close the car boot door(OUC).

Pre-Frame(D)

Pre-Cond:(Open,Wide)

The rear hatch or trunk lid that allows access to…

Plaster the cement(TOOL) on the wire
gauze(OUC) on the wall.

PNR/Post-Frame(E)

Post-Cond:(Cemented,Gray)

A thin metal mesh or grid used to support glassware.

Post-Cond:(Hardened,Solid)

A binding substance used in construction to bond…

Pick the hose(OUC) from the shelf(TOOL) with hand.

Pre-Frame(F)

Pre-Cond:(Neat,Coiled)

A flexible tube typically used for conveying water…

Pre-Cond:(Neat,Organized)

Horizontal surface used for storing or displaying…

Figure 6: Qualitative inspections, mainly on the effectiveness of the GPT generated symbolic knowledge. Bounding box color
code: Ground truth boxes, Models with uses of symbolic knowledge (MD-1), i.e.the GPT+Conds.+Desc.; Models without uses
of symbolic knowledge (MD-2), i.e., the vanilla GPT.

recording tasks performed by the camera wearers.
Other existing works have also investigated ego-
centric vision in audio-visual learning (Kazakos
et al., 2019), object detection with EgoNet (Berta-
sius et al., 2017; Furnari et al., 2017), object seg-
mentation with eye-gazes (Kirillov et al., 2023) and
videos (Darkhalil et al., 2022).

Action-Object Knowledge. The knowledge of ob-
jects are often at the center of understanding human
actions. Prior works in both NLP and vision com-
munities, have studied problems such as tracking
visual object state changes (Alayrac et al., 2017;
Isola et al., 2015; Yang et al., 2022), understanding
object manipulations and affordances (Shan et al.,
2020a; Fang et al., 2018), tracking textual entity
state changes (Branavan et al., 2012; Bosselut et al.,
2018; Mishra et al., 2018; Tandon et al., 2020), and
understanding textual pre-/post-conditions from ac-
tion instructions (Wu et al., 2023). While hand-
object interactions (Shan et al., 2020a; Fu et al.,
2022) are perhaps one of the most common ob-
ject manipulation schemes, the objects undergoing
change may not be directly in contact with the
hands (see Figure 2). Here additional textual in-
formation can aid disambiguating the active object
during localization and tracking. In this spirit, our
work marries the merits from both modalities to
tackle the active object grounding problem accord-
ing to specific task instructions, and utilize action-
object knowledge to further improve the models.

Multimodal Grounding. In this work, we adopt
the GLIP model (Li* et al., 2022; Zhang* et al.,
2022) for its compatibility with our settings and the
joint inference framework, which indeed demon-
strate significant improvements for the active object
grounding task. There are many related works for
multimodal grounding and/or leveraging language
(LLMs) to help with vision tasks, including (but
not limited to) Grounding-DINO (Liu et al., 2023),
DQ-DETR (Liu et al., 2022), ELEVATER (Li*
et al., 2022), phrase segmentation (Zou* et al.,
2022), visually-enhanced grounding (Yang et al.,
2023), video-to-text grounding (Zhou et al., 2023),
LLM-enhanced zero-shot novel object classifica-
tion (Naeem et al., 2023), and multimodal object
description generations (Li et al., 2022, 2023).

6 Conclusions
In this work, we approach the active object ground-
ing task leveraging two narrated egocentric video
datasets, Ego4D and Epic-Kitchens. We propose
a carefully designed prompting scheme to obtain
useful action-object knowledge from LLMs (GPT),
with specific focuses on object pre-/post-conditions
during an action and its attributional descriptions.
Enriching the GLIP model with the aforemen-
tioned knowledge as well as the proposed per-
object knowledge aggregation technique, our mod-
els outperforms various strong baselines in both
active object localization and tracking tasks.
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7 Limitations

We hereby discuss the potential limitations of our
work:

(1) While we make our best endeavours to engi-
neer comprehensive and appropriate prompts for
obtaining essential symbolic action-object knowl-
edge from large language models (LLMs) such as
GPT, there are still few cases where the extracted
objects are not ideal (see Table 1). Hence, our
model performance could potentially be bounded
by such limitation inherited from the LLM ability
to fully and accurately comprehend the provided in-
structions. Future works can explore whether more
sophisticated in-context learning (by providing ex-
amples that could be tricky to the LLM) would
be able to alleviate this issue. Alternatively, we
may utilize LLM-self-constructed datasets to fine-
tune another strong language models (such as Al-
paca (Taori et al., 2023)) for the object extraction
task. On the other hand, incorporating high-level
descriptions of the visual contexts using off-the-
shelf captioning models could also be explored to
make the LLM more situated to further improve
the efficacy of the extracted knowledge.

(2) As this work focuses on action frames
in first-person egocentric videos (from both
Ego4D (Grauman et al., 2022) and Epic-Kitchens
dataset (Damen et al., 2018; Dunnhofer et al., 2022)
datasets), the underlying learned model would obvi-
ously perform better on visual observations/scenes
from first-person viewpoints. While we hypothe-
size that, unless heavy occlusion and drastic do-
main shifts (of the performed tasks and/or ob-
jects involved) occur, the learned models in this
work should be able to transfer to third-person
viewpoints, we have not fully tested and verified
such hypothesis. However, if applied properly,
the overall framework as well as the utilization
of LLMs for action-object knowledge should be
well-generalizable regardless of the viewpoints.

(3) There is more object- and action-relevant
knowledge that could be obtained from LLMs, such
as spatial relations among the objects, size differ-
ence between the objects, and other subtle geomet-
rical transitions of the objects. During experiments,
we attempted to incorporate spatial and size in-
formation to our models. However, experimental
results on the given datasets did not show signifi-
cant improvement. Thus we omitted them from this
work. We hope to inspire future relevant research
along this line to further exploit other potentially

useful knowledge.

8 Ethics and Broader Impacts

We hereby acknowledge that all of the co-authors
of this work are aware of the provided ACL Code
of Ethics and honor the code of conduct. This work
is mainly about understanding and localizing the
key objects undergoing major state changes during
human performing an instructed or guided action,
which is a crucial step for application such as on-
device AI assistant for AR or VR devices/glasses.

Datasets. We mainly use the state-change-
object-detection (SCOD) subtask provided by
Ego4D (Grauman et al., 2022) grand challenge
for training and (testing on their own tasks),
and transfer the learned knowledge to TREK-
150 (Dunnhofer et al., 2022) from Epic-Kitchens
dataset (Damen et al., 2018). These datasets is
not created to have intended biases towards any
population where the videos are collected span-
ning across multiple regions around the world. The
main knowledge learned from the dataset is mainly
physical knowledge, which should be generally
applicable to any social groups when conducting
daily tasks.

Techniques. We propose to leverage both the
symbolic knowledge from large-language mod-
els (LLMs) such as GPT to guide the multimodal
grounding model and the visual appearances and
relations among objects for localizing the object
undergo changes. The technique should be gener-
ally transferable to similar tasks even outside of the
domain concerned in this work, and unless misused
intentionally to harmful data (or trained on), should
not contain harmful information for its predictions
and usages.
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A GPT Prompt Engineering Details

A.1 GPT Prompts

Below are the prompts used in the GPT entity
and symbolic knowledge extraction pipeline as de-
scribed in Figure 5.
# GPT Prompt Set

# Identify OUC & Tool:
GPT Prompt 1 = "From the action [{}],

please extract the follow objects
exactly as they are written: (a) The
single object being manipulated (b)
The one single tool used to

manipulate (a). Please do not
explain anything in you answer.
Please only output one object for
each part. If you cannot find either
(a) or (b), please simply output [

None] for that field and print
nothing else."

# Precise Semantic Grounding (for both
OUC and Tool):

GPT Prompt 2 = "Please output an exact
subpart of the sentence [{}] where
the object [{}] is referred to.
Please remove leading verbs in your
answer. Please output only the exact
sentence subpart and nothing else.

Please make sure that you answer can
be exactly found in the sentence

[{}]. If question is not valid ,
please simply output [None] and
nothing else. Please do not output
any explaination of your answer. "

# State Change Forcast
GPT Prompt 3 = "From the first person

view of the action [{}], would the
object [{}] undergo significant
change in its visual appearance? If
so , please output [yes] in the first
line and If not , please output [no]
in the first line. If the answer is
yes , then on the second line ,

please simply print one or two
visually recognizable adjectives to
describe the appearance of the
object before the state change , on
the third line , please simply print
a few (<7) words that visually
describe the object after the state
change"

# Object Description
GPT Prompt 4 = "In one sentence , please

define the object [{}] visually"

A.2 GPT Pipeline

The GPT prompts are used in the order above. First,
we plug in the instructional caption to GPT Prompt
1 and generate a tentative OUC-Tool pair. If either
entity is not found, GPT would return None and

future queries will ignore that entity.
Due to GPT’s tendency to paraphrase and pro-

vide unwanted chain-of-thought explanations, we
further pass GPT outputs for OUC and/or tool
through an additional query aimed to produce ex-
act grounding if it is not contained in the caption.
Emperically this query has a very high chance of
producing a caption-groundable answer if exist.
In the unlikely event that no groundable OUC is
found after running GPT Prompt 2, we resort to
using SRL [ARG1] as the OUC. On the other hand,
if no groundable Tool is found after running GPT
Prompt 2, we set the Tool to None.

At this point, we run GPT Prompts 3 and 4 on
the OUC and Tool (if exist). GPT results are parsed
and stored if following the designated formats.

A.3 GPT Situated Role

For a small randomly selected subset of Ego4d
prompts (220 samples) in the human evaluation
of GPT generated answers for pre/post conditions
(Table 2), we evaluated results both with and with-
out the situated role specification "From the first-
person view." in Table 7.

Prompt Style Pre Cond. Post Cond.
Textual Visual Textual Visual

wo/ Situated Role 70.9 75.0 61.4 64.5
w/ Situated Role 86.4 82.3 75.5 71.8

Table 7: GPT prompt comparison on Ego4D sub-
set. Here "Textual" refers to ”textual correctness”: i.e.
"based on text and common sense alone, does the GPT
conds./desc. make sense?"; whereas "Visual" refers to
”visual correctness”: i.e. “does the GPT conds./desc.
match what is shown in the image?"

We observed that when provided with additional
situated viewpoint specification, GPT results dis-
played a significant increase in alignment with hu-
man judgment, thus it was incorporated into our
final prompt.

B Details of Modeling & Learning

B.1 Narration Processing

Ego4D. Ego4D’s original annotated narrations are
of third-person descriptive tone, e.g., "#C cuts the
vegetables with the knife.", where the symbol of
#C indicates the camera wearer. Since this pattern
is universally applicable to all the available nar-
rations of the videos, we perform a deterministic
string transformation stripping these special indi-
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cators of camera wearers or other human charac-
ters, followed by a simple conversion to change the
third-person singular verb to first-person verb. The
rest of the pronouns are also deterministically con-
verted, so that the narration becomes a first-person
imperative tone. Although we did not empirically
find such a transformation make any significant im-
pacts to the model performance, we conduct this
transformation for GPT to more easily grasp the
situated roles (given to it) as well as conform to the
main motivation of this work better.

Epic-Kitchens. For TREK-150 where its videos
basically belong to Epic-Kitchens, the original re-
leased narrations are already in an imperative in-
structional tone. In light of this, we simply adopt
them as the task instructions seamlessly without
needing to perform any modifications.

B.2 Training & Implementation Details
Training Details. For GLIP series of models, we
simply truncate the textual inputs (the action in-
struction texts) at maximum 256 tokens, ensuring
all of the textual inputs are below such maximum
length even with additional symbolic knowledge is
incorporated. The hyperparameters are manually
tuned against an Ego4D SCOD validation set, and
the checkpoints used for testing are selected by the
best performing ones on such set.

All the models in this work are trained on 2-
4 Nvidia A100/A6000 GPUs1112 on a Ubuntu
20.04.2 operating system. The hyperparameters
for each model are manually tuned against the de-
velopment datasets, and the checkpoints used for
testing are selected by the best performing ones on
such held-out development sets.

Implementation Details. The implementations of
the transformer-based models are extended from
the HuggingFace13 code base (Wolf et al., 2020),
and our entire code-base is implemented in Py-
Torch.14

B.3 Hyperparameters
We train our models until performance convergence
is observed on the held-out development set (split
from the original train set from Ego4D SCOD sub-
task). The training time is roughly 12-14 hours,
spanning 10-15 training epochs. We list all the

11https://www.nvidia.com/en-us/data-center/a100/
12https://www.nvidia.com/en-us/design-visualization/rtx-

a6000/
13https://github.com/huggingface/transformers
14https://pytorch.org/

hyperparameters used in Table 8. The basic hyper-
parameters such as learning rate, batch size, and
gradient accumulation steps, are kept consistent for
models based off the same architecture (for base-
lines and our GLIP-L model series). All of our
models adopt the same search bounds and ranges
of trials as in Table 9.
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Models Batch Size Initial LR # Training Epochs Gradient Accu- # Paramsmulation Steps

VideoIntern Baselines 8 1× 10−3 10 1 218M
GLIP-L Series 4 1× 10−3 10 1 429M

Table 8: Hyperparameters in this work: Initial LR denotes the initial learning rate. All the models are trained with Adam
optimizers (Kingma and Ba, 2015). We include number of learnable parameters of each model in the column of # params.

Type Batch Size Initial LR # Training Epochs Gradient Accumulation Steps

Bound (lower–upper) 2–8 1× 10−3–1× 10−5 5–15 1

Number of Trials 2–4 2–3 2–4 1

Table 9: Search bounds for the hyperparameters of all the models.
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