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Abstract

Question generation (QG) from a given con-
text can enhance comprehension, engagement,
assessment, and overall efficacy in learning or
conversational environments. Despite recent
advancements in QG, the challenge of enhanc-
ing or measuring the diversity of generated
questions often remains unaddressed. In this
paper, we introduce a multi-question generation
model (mQG), which is capable of generating
multiple, diverse, and answerable questions by
focusing on context and questions. To validate
the answerability of the generated questions,
we employ a SQuAD2.0 fine-tuned question
answering model, classifying the questions as
answerable or not. We train and evaluate mQG
on the FairytaleQA dataset, a well-structured
QA dataset based on storybooks, with narra-
tive questions. We further apply a zero-shot
adaptation on the TellMeWhy and SQuAD1.1
datasets. mQG shows promising results across
various evaluation metrics, among strong base-
lines.1

1 Introduction

Question generation (QG), focusing on the ques-
tions derived from specific text passages or doc-
uments, plays an integral role in a wide array of
domains. It improves question answering (QA)
systems (Sultan et al., 2020), enriches educational
experiences (Yao et al., 2022), and enhances the
engagement factor in chatbots (Laban et al., 2020).
The effectiveness of QG tasks can be significantly
improved by generating multiple questions, ensur-
ing a broader, more comprehensive exploration of
the content.

The importance of generating and evaluating
multiple questions becomes evident when we exam-
ine the creation process of QA datasets (Richardson
et al., 2013; Rajpurkar et al., 2016; Xu et al., 2022).
Traditional QA dataset creation typically involves

1Code: https://github.com/hkyoon95/mQG

instructing annotators to create a pre-determined
number of questions for a given context. Recent
QG research (Wang et al., 2020a; Yao et al., 2022),
however, tends to rely on automatic evaluation of
semantic similarity with golden questions, often
overlooking the potential for diverse aspects of
questions. When generating multiple questions,
diversity is a crucial aspect to consider. The di-
versity of questions can span several dimensions,
including varied aspects of the context, different an-
swer types, and different phrasings for essentially
the same question (Karttunen, 1977). This diver-
sity allows for a more comprehensive exploration
of the context. The diversity of questions can be
broadly measured based on the type of answers
they require; explicit questions with answers that
can be explicitly found in the reading materials, and
implicit questions with answers that require deduc-
tive reasoning. The crafting of multiple questions,
bearing in mind both diversity and alignment with
reading materials, poses a cognitively demanding
and time-consuming task for humans.

One significant application of generating diverse
and multiple questions is education. It has been
observed that children can develop better reading
comprehension skills at an early age by creating
narrative questions themselves and being asked
comprehension-related questions about storybooks
(Francis et al., 2005; Janssen et al., 2009). Reading
comprehension is an essential skill that requires
learners to combine knowledge and reason about
relations, entities, and events across a given context
(Kim, 2017; Mohseni Takaloo and Ahmadi, 2017).
Consequently, a system that can generate diverse
and multiple narrative questions can serve as a valu-
able enhancement to educational resources, aiding
in student engagement and promoting a deeper un-
derstanding of study materials.

Recently, some researchers have attempted to
generate multiple narrative questions. For educa-
tional applications, Yao et al. (2022) proposed to
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generate question-answer pairs with a three-step
pipeline. As they use heuristic-generated answers
to generate narrative questions most of their out-
come is restricted to explicit questions. Also, Zhao
et al. (2022) proposed to generate certain types
of narrative questions and they tried to restrict
the number of generated questions to a number
of ground-truth questions, insisting that knowing
question type distribution for each context is a sub-
skill in education (Paris and Paris, 2003). We set
these two approaches as our main baselines.

To address the above challenges, we introduce a
multi-question generation model (mQG) that gen-
erates diverse and contextually relevant questions
by referencing questions from the same context.
mQG is trained with maximum question similarity
loss LMQS , which is designed to make the repre-
sentation of reference questions and the representa-
tion of a target question similar. Moreover, mQG
employs a recursive generation framework, where
previously generated questions are recursively fed
back into the model as mQG is trained to output
different questions from reference questions. Same
as our two baselines, mQG is trained and evalu-
ated on the FairytaleQA dataset, which focuses
on narrative comprehension of storybooks. This
dataset is designed to provide high-quality narra-
tive QA pairs for students from kindergarten to
eighth grade (ages 4 to 14), and labeled questions
as explicit or implicit. We adopt Self-BLEU (Zhu
et al., 2018) to evaluate the diversity of generated
questions. Beyond diversity, to consider gener-
ated questions relevant to the context, we demon-
strate the answerability evaluation model to assess
whether the generated questions are answerable.
We also evaluate on TellMeWhy (Lal et al., 2021)
and SQuAD1.1 (Rajpurkar et al., 2016) datasets
with zero-shot adaptation to further analyze the
performance of mQG in different settings. Differ-
ing from previous approaches, mQG successfully
generates a substantial number of diverse and an-
swerable narrative questions.

The main contributions of this paper are summa-
rized as follows.

• We expand the scope of the question genera-
tion task by generating a comprehensive set of
questions, regardless of our knowledge of the
answers, and subsequently categorize them
into answerable and non-answerable ques-
tions.

• We introduce mQG, a novel question genera-

tion model that is trained using the maximum
question similarity loss LMQS and employs a
recursive referencing process for generating
a wide array of questions while preserving
semantic correctness.

• We introduce an answerability evaluation
model capable of classifying questions as im-
plicit, explicit, or unanswerable.

2 Related Work

2.1 Question Generation
Based on given contents, question generation aims
to generate natural language questions, where the
generated questions are able to be addressed with
the given contents. After neural approaches took
over a large proportion in QG (Yuan et al., 2017;
Zhou et al., 2017), QG can largely be separated
by target answer aspect into answer-aware QG
and answer-unaware QG. Answer-aware QG, as
its name implies, provides an answer to a model
and prompts it to generate questions based on those
answers. On the other hand, answer-unaware QG
mainly focuses on the context to formulate ques-
tions. The introduction of pre-trained Language
Models (LMs) further accelerated advancements in
QG, and many works have demonstrated significant
improvement in the answer-aware QG task and pre-
sented promising possibilities for QG (Zhang and
Bansal, 2019; Dong et al., 2019; Yan et al., 2020).
This approach inherently favors explicit questions,
which can be directly answered with the provided
context. In answer-unaware QG, only a handful
of studies have been conducted, primarily focus-
ing on strategies such as sentence selection from a
paragraph (Du and Cardie, 2017), employing trans-
former architectures with out-of-vocabulary meth-
ods (Scialom et al., 2019), and generating questions
based on silver summaries (Zhao et al., 2022). In
this paper, we utilize answer-unaware question gen-
eration, giving consideration to both the diversity
and quality of explicit and implicit questions.

2.2 Diversity
In natural language generation (NLG), generating
outputs that are not only correct but also diverse
is essential. In the decoding aspect, diversity has
been researched in areas such as top-k sampling
(Fan et al., 2018), and nucleus sampling (Holtz-
man et al., 2020). These decoding methods tried to
sample tokens from less likely vocabularies. Cer-
tain studies have focused on training models to
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Figure 1: Overview of the training process of mQG. Question(1) to Question(m) refer to ground-truth questions
from the same context (orange), without a ground-truth question (purple) input to BART Decoder. QT and [h]
denote the wh-word corresponding to the target question and overall encoder representation.

yield more diverse outputs (Welleck et al., 2020;
Yao et al., 2022), and on leveraging the combi-
nation of contrastive training and generation (Su
et al., 2022). Recently, Sultan et al. (2020) evalu-
ated the importance of diversity in QG, insisting
that diverse and accurate questions yield better QA
results. Additionally, some researchers explored
diversity in QG based on relevant topic (Hu et al.,
2018), content selectors with question type model-
ing (Wang et al., 2020b), control of question type
(Cao and Wang, 2021), and difficulty level (Cheng
et al., 2021). While these studies have addressed
various aspects of diversity in QG, there is still con-
siderable room for further research in this area. In
this paper, we consider diversity a significant chal-
lenge in the question generation task and propose a
model that can generate a wide range of answerable
questions.

3 Method

In this section, we formalize the multi-question gen-
eration task and introduce our mQG. We first for-
mulate our task and then explain how our model’s
training process incorporates a maximum question
similarity loss LMQS . Finally, we provide a de-
tailed outline of our recursive generation frame-
work.

3.1 Task Formulation

The QG task in this paper aims to generate each
question using a given context, question type, and
the history of questions generated from the same
context with the same question type. We use seven

wh-words (what, when, where, which, who, why,
how) as question types. Mathematically, given the
context C, question type QT , and history of gener-
ated questions Hi = (GQ1, GQ2, ..., GQi−1), this
task can be defined as generating a question, ĜQ,
where:

ĜQ = argmaxGQi
(Prob(GQi|QT,C,Hi)) (1)

For the training process, we extract wh-words from
each question by applying part-of-speech tagging
with the Spacy2 English Model. Due to the absence
of a history of generated questions and an insuffi-
cient number of questions per context per question
type in the FairytaleQA dataset, we utilize ground-
truth questions that only share the context as the
history of questions within the training process.

3.2 Diversity Enhanced Training

mQG is built upon BART (Lewis et al., 2020),
which has demonstrated remarkable performance
in various natural language processing tasks. The
primary pre-training objective of BART is to re-
construct the masked input based on unmasked
input. To further leverage the capabilities of the
pre-trained BART, we introduce a maximum ques-
tion similarity loss LMQS . This loss is designed to
promote similar representations for different ques-
tions from the encoder and decoder.

As shown in Figure 1, the encoder takes in three
inputs: the question type, which signifies the type
of question to be generated; the context, which pro-

2https://spacy.io/
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vides the necessary information for question gen-
eration; and ground-truth questions from the same
context, serving as reference questions. These three
inputs are concatenated, with a [SEP] token in-
serted between them. The encoder processes the
input sequence and produces its corresponding rep-
resentations. Subsequently, the decoder generates
the representation for the target question. To calcu-
late the maximum question similarity loss LMQS ,
we use mean pooling layers to convert question
representations into sentence-level representations.
The maximum question similarity loss LMQS is
calculated between the sentence-level representa-
tion of the reference questions and the sentence-
level representation of a generated question. By
encouraging the representation of different ques-
tions to be similar, we promote the generation of
diverse questions that differ from reference ques-
tions.

Given a set of reference questions sentence-
level representation as Q = {Q1, ..., Qm} and a
sentence-level representation of the target ques-
tion as TQ, the maximum question similarity loss
LMQS is computed as follows:

LMQS =
1

m

m∑

i=1

max(0, 1− s(Qi, TQ)) (2)

where s(Qi, TQ) is a cosine similarity calculation
between representations. By optimizing the model
parameters to maximize the sentence-level simi-
larity between these different representations, we
guide mQG to generate diverse questions within
the range of semantic correctness. This is achieved
by ensuring that all the representations, which are
the ground truth questions, are semantically cor-
rect. In doing so, we maintain a balance between
diversity and accuracy in the generated questions.
The overall training objective L is defined as

L = LCE + LMQS (3)

LCE refers to the cross-entropy loss from a target
question. As cross-entropy loss is calculated at the
token level, the use of cross-entropy loss enhances
mQG to generate syntactically correct questions.

3.3 Recursive Generation Framework

Figure 2 illustrates the generation process of mQG.
First, the encoder takes question type, and context
as input. The decoder then generates a question
based on the information provided by the encoder.

Figure 2: The Recursive Generation Framework of
mQG. This framework involves an iterative process,
using previously generated questions as input for sub-
sequent steps, thereby creating a recursive cycle. Each
iteration maintains the use of the same question type.

For the subsequent generation steps, the previously
generated questions are recursively fed back into
the model. Specifically, the previous questions
are concatenated with the same question type and
context, separated by a [SEP] token. This concate-
nated sequence is then used as input for the next
generation step. This recursive generation process
continues until the desired number of questions per
context per question type is achieved.

The use of this recursive generation process al-
lows mQG to generate multiple questions while
considering the previously generated questions.
Following the training process of mQG, this gener-
ation process enables mQG to build upon its own
previous outputs and generate different questions
from previous outputs. We use beam search for the
decoding method and return multiple sequences to
exclude pre-generated questions. By leveraging a
recursive framework, mQG demonstrates its capa-
bility to generate a variety of diverse questions that
are contextually relevant and coherent.

4 Experiments

4.1 Dataset

FairytaleQA (Xu et al., 2022). We train mQG
with the FairytaleQA dataset, which is constructed
for educational purposes. Each book is split into
sections and annotators were instructed to create
on average 2-3 narrative question-answer pairs per
section. All question-answer pairs are annotated
based on seven question types that capture nar-
rative elements/relations. Questions are labeled
as explicit or implicit questions based on whether
or not the answer source can be directly found
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in the context. The original FairytaleQA dataset
is constructed in a train/validation/test set with
232/23/23 books and 8,548/1,025/1,007 QA pairs.
From the entire dataset, a small portion of questions
(985 out of 10,580) spans multiple paragraphs. As
mQG and baselines are fit for one paragraph we
remove those questions. To cross-validate, we ran-
domly shuffled the dataset and split it by books
in train/validation/test set with roughly matching
80/10/10 (%).

4.2 Baselines

In the experiments, we compare mQG with four
baselines; an end-to-end model initialized with
BART-large, and methods proposed in Su et al.
(2022), Yao et al. (2022), Zhao et al. (2022)
denoted as CB, QAG, and EQG. The last two
baselines are designed for multiple question
generation purposes.

E2E. As the FairytaleQA dataset consists of
multiple questions in one context, we concat
all questions and train the BART-large model
to generate questions based on each context.
To match the number of generated questions,
we set the maximal target length to 280 tokens
which roughly matches the number of generated
questions setting of mQG.

CB (Contrastive Baseline). We construct
this baseline following the framework in Su et al.
(2022), which tackles the problem of diversity in
open-ended text generation. This framework first
trains the language model using contrastive loss
and decodes it with a contrastive search method.
Since the contrastive baseline is proven for diverse
text generation we apply it to GPT2 (denoted as
CB (GPT2)), and BART (denoted as CB (BART))
and set it as our baseline. During generation, the
maximal target length is set to 280 tokens.

QAG. This baseline follows a question-answer
generation architecture by Yao et al. (2022). This
architecture first generates answers based on a
heuristic-based answer generation module, which
generates multiple answers per context. With the
generated answers, BART generates corresponding
questions. And, to verify the quality of the
generated questions, DistilBERT ranking module
ranks each QA pair and chooses the top questions.
As our task is to generate multiple questions, we

denote architecture without a ranking module as
QAG and the top 10 questions per context chosen
by the ranking module as QAG (top 10).

EQG. EQG model (Zhao et al., 2022) gen-
erates questions based on silver summaries. Silver
summary is a method proposed by Demszky et al.
(2018), which inserts answers into the semantic
parsed questions with a rule-based method. EQG
consists of three steps: 1) generate question
type distribution for each context with BERT;
2) generate silver summary with BART, using
question type, question type ordering from a
question type distribution module, and context;
3) generate question based on silver summary,
question type, and question ordering with BART.
Without a question type distribution module, EQG
is able to generate multiple questions. Since
our approach is to generate multiple questions
we set the EQG baseline without question type
distribution module.

4.3 Automatic Evaluation
4.3.1 Evaluation Metrics
In evaluating question generation, both the quality
and diversity of the generated questions are crit-
ical components. Thus, we evaluate each aspect
with separate automatic evaluation metrics. We use
Rouge-L score (Lin, 2004), BERTScore (Zhang
et al., 2020), and BLEURT (Sellam et al., 2020) to
measure the quality of generated questions. Similar
to Yao et al. (2022), for each ground-truth question,
we find the highest semantic similarity score on
generated questions from the same context than
average overall semantic similarity scores. And,
with multiple questions generated from the same
context, we recognize the necessity to measure di-
versity automatically. For diversity measurement,
we use Self-BLEU score (Zhu et al., 2018) which
was introduced to evaluate just a variety of sen-
tences. The Self-BLEU score, which uses each
generated sentence as a hypothesis and others as
references, is employed to evaluate the diversity
of questions generated from the same context. A
lower Self-BLEU score represents greater diver-
sity. All metrics ranges are between 0 to 1 except
Rouge-L score (0 to 100).

4.3.2 Answerability Evaluation Model
In order to evaluate whether the generated ques-
tions correspond to the context, we leverage
SQuAD2.0 dataset (Rajpurkar et al., 2018) to build
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FairytaleQA

Architecture

# Generated
Questions

Per Section

# Answerable
Questions

Per Section ↑
Rouge-L

F1 ↑
BERTScore

F1 ↑ BLEURT ↑ Self-BLEU ↓

M SE M SE M SE M SE M SE M SE

E2E 1.58 0.07 1.45 0.12 36.05 0.35 0.8960 0.0062 0.4064 0.0104 - -
CB (BART) 1.60 0.03 1.49 0.04 36.89 0.68 0.9074 0.0017 0.4045 0.0072 - -
CB (GPT2) 3.28 0.43 0.96 0.56 26.47 1.27 0.8937 0.0020 0.3328 0.0077 0.8906 0.0120
EQG 28.00 0.00 3.80 0.76 41.05 1.61 0.9136 0.0034 0.4293 0.0118 0.9864 0.0043
QAG (top10) 9.95 0.14 6.57 0.39 45.44 0.81 0.9208 0.0006 0.4444 0.0076 0.7608 0.0078
QAG 26.97 0.50 15.95 1.24 53.77 1.03 0.9323 0.0009 0.5140 0.0115 0.8874 0.0030
mQG 28.00 0.00 23.08 0.36 58.90 0.37 0.9394 0.0005 0.5698 0.0033 0.6389 0.0079

Table 1: Three cross-validation results on the FairytaleQA dataset. # Answerable Questions Per Section is based on
the answerability evaluation model, as described in section 4.3.1. ↑ means higher is better, ↓ means lower is better.
Due to a low number of questions, Self-BLEU which cannot be measured is marked with a hyphen. M, SE denotes
mean and standard error. mQG generates the highest number of answerable questions with greater diversity.

an evaluation model. SQuAD2.0 is a question-
answering dataset with 100K answerable questions
and 50K unanswerable questions. This dataset is
used to enhance the evaluation model by classify-
ing whether the questions are answerable or not.
We use DeBERTa-base (He et al., 2021) as the
backbone model.

To achieve our goal, we train the evaluation
model on the QA task following implementation in
Devlin et al. (2019). We construct two dense layers
above the encoder; one for the answer start position
and the other for the answer end position. And, as
unanswerable questions and implicit questions do
not have an answer span, for these questions [CLS]
token is assigned as the answer start position and
the answer end position. For implicit questions in
the FairytaleQA dataset, we add a special token
[IMP] and assign it as an answer start span and
answer end span. First, we train the evaluation
model with the SQuAD2.0 dataset on the QA task.
For the second step, we train the evaluation model
again with the FairytaleQA dataset. By utilizing a
two-step training, the evaluation model is able to
classify generated questions as explicit, implicit,
or unanswerable. The number of answerable ques-
tions per section in Table 1 are based on classified
results by the evaluation model. If the evaluation
model classifies generated questions as implicit or
explicit, then we count them as answerable. (An-
swerability evaluation model details are given in
Appendix A.)

4.3.3 Results
Table 1 presents evaluation results on the Fairy-
taleQA test set. ‘# Generated Questions Per Sec-
tion’ refers to the number of questions generated

for each section. In ‘# Answerable Questions Per
Section’, as duplicate questions within the same
context are not needed, we leave only one question
from duplicate questions. Even though mQG is
able to generate multiple questions within the max-
imum token length of BART, we roughly match the
number of questions to QAG for fair comparison in
Rouge-L F1, setting mQG to generate 4 questions
per section per question type, totaling 28 questions
per section. The same setting is applied to EQG,
as EQG does not have limitations in generating
multiple questions.

General baselines (E2E and CB) that generate
multiple questions in one iteration show significant
underperformance in the Rouge-L F1 score and in
the number of generated questions, compared to
strong baselines (QAG and EQG), and the mQG.
This indicates that to generate multiple questions,
a specific model is needed. Across all evaluation
metrics, mQG consistently outperforms the base-
lines.

4.4 Human Evaluation

We evaluate the diversity and quality of generated
questions on the FairytaleQA dataset with human
judges. We hire five annotators, proficient in
English as their first foreign language, to further
evaluate the diversity and quality of the generated
questions. We follow the human evaluation
procedure described by Cao and Wang (2021) and
compare mQG, with two robust baselines, EQG
and QAG.

Question Diversity. In the question diver-
sity study, we randomly sample 5 books from the
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Architecture Type (%) Syntax (%) Content (%)

EQG 22.0 18.0 23.5
QAG 33.0 22.0 34.5
mQG 77.0 70.5 60.0

Table 2: Human evaluation on diversity. The percent-
age of samples ranked first among other models. Krip-
pendorf’s alphas are 0.69, 0.51, and 0.38 for the three
dimensions. Ties are allowed. mQG demonstrates the
most diversity in all dimensions.

original test set; and for each book, we randomly
sample 8 sections, totaling 40 sections. For each
section, we randomly sample three questions as a
question set from each model, and provide only
the question sets for annotation. For each question
set, the annotators rank the three models on a
scale of 1 (highest) to 3 (lowest) based on three
dimensions of diversity: type–whether the three
selected questions have different question types;
syntax–whether the three selected questions use
different syntax; and content–whether the three
selected questions need to be addressed with
diverse answers.

As shown in Table 2, on all dimensions, human
annotators rate mQG as generating the most
diverse questions compared to the other mod-
els, with each question requiring a different answer.

Question Quality. In the question quality
study, we again randomly sample 5 books from the
original test set. For each book, we select a random
sample of 8 sections. Each section contains four
questions, each randomly sampled from three
models and ground-truth, totaling 160 questions.
Two dimensions are rated from 1 (worst) to 5
(best): appropriateness–whether the question is
semantically correct; answerability–whether the
question can be addressed by a given section.

As shown in Table 3, all models, when compared
to the ground-truth, generate semantically correct
questions. Given that mQG can generate a broad
diversity of questions, these results confirm that
mQG fulfills our goal of generating multiple ques-
tions while maintaining semantic correctness and
relevance to the context.

4.5 Zero-shot Performance Evaluation

We conduct a zero-shot evaluation on two distinct
datasets, to test mQG more in various real-world
scenarios, where contexts and desired questions
can differ. Zero-shot evaluation is essential for

Architecture Appro. Ans.

EQG 4.85 4.46
QAG 4.60 4.43
mQG 4.79 4.47
Ground-truth 4.71 4.76

Table 3: Human evaluation on appropriateness (Appro.)
and answerability (Ans.). The Krippendorf’s alphas are
0.14 and 0.27 for the two dimensions. Ties are allowed.
In all models, not much difference is observed compared
to ground truth questions.

assessing model performance as it illuminates the
model’s ability to generalize beyond the specific
examples it was trained on.

4.5.1 Dataset
TellMeWhy (Lal et al., 2021). TellMeWhy
dataset comprises free-form why-questions related
to events in short sections. The dataset was
created using template-based transformations
to generate questions, with crowdsourcing to
gather answers. Sections were sourced from
ROCStories (Mostafazadeh et al., 2016), a similar
domain to the training dataset (FairytaleQA).
TellMeWhy contains a mixture of explicit and
implicit questions. Approximately 28.82% of
questions in the dataset are implicit. We evaluate
with 1,134 sections and 10,689 questions from the
test split.

SQuAD1.1 (Rajpurkar et al., 2016). Squad1.1
dataset is a comprehensive benchmark that focuses
on machine comprehension, question generation,
and question answering tasks. It consists of a large
collection of articles from Wikipedia, covering a
wide range of topics, which is a different source
from the training dataset (FairytaleQA). Each
article is accompanied by a set of only explicit
questions. We evaluate with 2,429 sections, and
12,010 questions from the SQuAD1.1 test split
created by Du et al. (2017).

4.5.2 Zero-shot Results
In zero-shot evaluation, we compare mQG with
two strong baselines, EQG and QAG. Initially, we
examine the performance on the Tellmewhy dataset
in Table 4. Given that the TellMeWhy dataset only
contains why-questions, we select why-questions
from the generated questions for evaluation. mQG
achieved the highest semantic similarity scores and
outperformed baseline models in terms of the num-
ber of answerable questions and exhibited better

471



TellMeWhy

Architecture
# Generated

Questions
Per Section

# Answerable
Questions

Per Section ↑
Rouge-L

F1 ↑
BERTScore

F1 ↑ BLEURT ↑ Self-BLEU ↓

EQG 4.00 0.63 35.91 0.9129 0.4126 0.9425
QAG 1.53 0.45 30.35 0.9231 0.4360 -
mQG 4.00 2.10 56.17 0.9361 0.5475 0.3191

Table 4: Zero-shot evaluation result on TellMeWhy dataset. Due to a low number of questions, Self-BLEU which
cannot be measured is marked with a hyphen. mQG shows the highest semantic similarity scores with more diversity
and generates the largest number of answerable questions.

SQuAD1.1

Architecture
# Generated

Questions
Per Section

# Answerable
Questions

Per Section ↑
Rouge-L

F1 ↑
BERTScore

F1 ↑ BLEURT ↑ Self-BLEU ↓

EQG 28.00 3.74 30.31 0.8977 0.4219 0.9695
QAG 29.77 14.40 46.75 0.9203 0.5265 0.7172
mQG 28.00 20.15 45.38 0.9211 0.5508 0.6157

Table 5: Zero-shot evaluation result on SQuAD1.1 dataset. mQG generates the most answerable questions with
more diversity.

diversity. Zero-shot evaluation on the Tellmewhy
dataset, which contains a mix of explicit and im-
plicit questions, demonstrates the ability of mQG to
generate different question styles based on answers
effectively.

Table 5 shows evaluation results on the
SQuAD1.1 dataset. Even with an out-of-domain
dataset, mQG still demonstrates notable perfor-
mance. mQG outperforms in generating diverse
questions and producing a greater number of an-
swerable questions compared to other baselines.
However, in the Rouge-L F1 score, mQG is slightly
lower than QAG. This can be attributed to the ex-
clusive focus of the SQuAD dataset on explicit
questions, and the answer-aware question genera-
tion method used by QAG, which is renowned for
its effectiveness in generating explicit questions.
Yet, when employing embedding-based evaluation
methods such as BERTScore and BLEURT, mQG
outperforms the baseline models, particularly in the
case of BLEURT. The fact that mQG still demon-
strates decent performance on the SQuAD dataset,
despite the limitation of the dataset to explicit ques-
tions and its status as an out-of-domain dataset,
further emphasizes the effectiveness of mQG.

Through these two different settings, we see
promising results of mQG. It shows the adaptability
of mQG to diverse question styles and domains, fur-
ther validating the robustness and utility of mQG.

Figure 3: Results of different question number settings
on the original FairytaleQA test set. Self-BLEU is pre-
sented here in a reversed format to allow for a more
intuitive visual comparison. Intersections of the curves
represent the optimal trade-off between two metrics.

5 Ablation Study

5.1 Setting of Question Number

Given that mQG can be set with the number of
questions to generate, we conduct an experiment
on various settings of question number per section
per question type to generate. In Figure 3, the eval-
uation result is based on the original FairytaleQA
test set. As the quantity of generated questions in-
creases, the Rouge-L F1 score provides satisfactory
results, though diversity decreases. This indicates
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FairytaleQA

Architecture

# Generated
Questions

Per Section

# Answerable
Questions

Per Section ↑
Rouge-L

F1 ↑
BERTScore

F1 ↑ BLEURT ↑ Self-BLEU ↓

M SE M SE M SE M SE M SE M SE

mQG 28.00 0.00 23.08 0.36 58.90 0.37 0.9394 0.0005 0.5698 0.0033 0.6389 0.0079
- LMQS 28.00 0.00 22.67 0.28 58.66 0.08 0.9394 0.0003 0.5703 0.0019 0.7006 0.0045
- LMQS & reference questions 28.00 0.00 22.65 0.41 54.76 0.22 0.9353 0.0005 0.5428 0.0011 0.7529 0.0032

Table 6: The comparison results of mQG with and without maximum question similarity loss and reference
questions.

that a significant increase in the number of gener-
ated questions tends to produce similar questions
with different phrasings. Setting the number of gen-
erated questions at 4 shows the optimal trade-off
between the Rouge-L F1 and the Self-BLEU.

5.2 Analysis of Maximum Question Similarity
Loss and Recursive Framework

As discussed in section 5.2, mQG aims to increase
diversity within questions while maintaining se-
mantic correctness. mQG w/o LMQS refers to the
mQG model only trained with LCE . For mQG w/o
LMQS and reference questions, we give only ques-
tion type and context as input while training, and
no recursive framework is used in inference. Table
6 shows that the mQG model with maximum ques-
tion similarity loss LMQS and reference questions
hugely increase diversity. Additionally, the number
of answerable questions has also improved. This
could be attributed to the fact that all ground-truth
questions are answerable, and mQG maximizes the
similarity between these questions and continually
references the most probable question during infer-
ence. These results indicate that each framework
of mQG effectively enhances the probability of
generating a diverse set of possible questions.

6 Conclusion

In this work, we extend the scope of answer-
unaware question generation to generate multiple
diverse questions. We propose a novel framework
that applies a maximum question similarity loss
during training to promote question diversity, fol-
lowed by a recursive generation process for further
refinement. Additionally, an evaluation model is
introduced to verify the answerability of the gen-
erated questions. Recognizing the essential role
of narrative questions in education, we train and
evaluate mQG accordingly. Comprehensive experi-
ments validate the efficacy of mQG across a variety

of datasets, highlighting its potential utility in envi-
ronments that demand diverse narrative questions.

Limitations

mQG framework utilizes a recursive feedback
mechanism for generating questions during the in-
ference stage. However, the quality of these gen-
erated questions remains uncertain. If the quality
of previously generated questions is poor, this may
adversely impact the quality of subsequent ques-
tions produced by mQG. Moreover, the quantity of
questions that can be generated is limited by a max-
imum token threshold. Another limitation is the
potential risk of misclassification by the evaluation
model, which could lead to the categorization of
unanswerable questions as answerable. Despite our
efforts to mitigate this risk, the evaluation model
is still at a level of uncertainty in accurately classi-
fying the generated questions. Even with the fact
that reliability scores can be low in NLP tasks, in
the quality human evaluation, the reliability scores
are relatively low. This can lead to uncertainty in
the results.
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Appendix

A Further Analysis on Evaluation Model

A.1 Preprocessing Dataset
To evaluate each cross-validation set with an an-
swerability evaluation model, we train the evalu-
ation model with different FairytaleQA trainsets.
One is an originally constructed trainset and the
others are randomly split by books. From the Fairy-
taleQA dataset, some explicit questions were not
able to be found in the section and some questions

Figure 4: Overview of Answerability Evaluation Model.

Explicit Implicit Total

# questions 5,376 1,963 7,309

Table 7: The number of questions of the FairytaleQA
dataset after annotation mistakes were removed.

Figure 5: The answerable ratio of val+test set by differ-
ent threshold settings.

with cross-annotated answers had different aspects
of answers (explicit, implicit). We removed those
questions and a number of total questions after pre-
processing is described in Table 7.

A.2 Evaluation Model Postprocessing
In terms of post-processing, we take a similar ap-
proach by Devlin et al. (2019). Classified results
yc of each question are formulated as:

yc =





No Answer,
if CLSse > ase + τ

and CLSse > IMPse + τ

Implicit, else if IMPse > ase

Explicit, otherwise.
(4)

CLSse denotes score of [CLS] token as answer
start span and answer end span. IMPse denotes
score of [IMP] token as answer start span and an-
swer end span. ase denotes the best score of answer
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F1 Accuracy

M SE M SE

Explicit 78.72 0.52 88.26 0.17
Implicit 64.76 2.05 64.76 2.05
Total 75.28 1.01 82.49 0.81

Table 8: Ground-truth val+test set results on the eval-
uation model. Each model is trained with each cross-
validation trainset.

FairytaleQA

Ground-truth QAG (top10) QAG EQG mQG
Explicit 74.10% 79.05% 71.69% 54.42% 60.65%
Implicit 21.22% 2.50% 5.08% 33.95% 22.38%
No Ans. 4.68% 18.45% 23.23% 11.63% 16.97%

Total 919 2,835 7,534 1,402 8,820

Table 9: The FairyTaleQA test set analysis of questions
by answer types, classified by evaluation model. Total
denotes the number of questions after duplicates from
the same context are removed. Each answer type is
denoted with a proportion in each model.

start span and answer end span without [CLS] and
[IMP]. Additionally, if an answer end span indice
is lower than an answer start span indice we clas-
sify it as no answer. Threshold τ is selected on
the ground-truth set to maximize the performance.
This threshold is set differently for each evaluation
model. Figure 5 shows the answerable ratio per-
centage by different threshold settings. We also
train three evaluation models with each train set
for cross-validation in the main results. We select
each threshold before a significant drop in the an-
swerable ratio is observed. -12, -10, and -11 are
each threshold for experiment1, experiment2, and
experiment3.

A.3 Evaluation Model Results

We perform cross-validation to measure the perfor-
mance of the main results in Table 1, and as a result,
we train each evaluation model with each trainset.
Since our goal is to classify questions as explicit,
implicit, or unanswerable, we count explicit ques-
tions as accurate if at least one of the predicted
answer tokens is found in the ground-truth answer.
This is denoted as "Accuracy" in Table 8. The F1
measurement follows the implementation by De-
vlin et al. (2019). The evaluation model classifies
explicit questions more accurately than implicit
questions.

Self-BLEU Example Questions

0.3150

Why did the Dragon King want to capture a monkey?
Why couldn’t the Dragon King’s servants capture a monkey?
Why did the Dragon King consult his chief steward?
Why was the Dragon King greatly puzzled?

0.6362

Why did the Dragon King want to capture a monkey?
Why couldn’t the Dragon King’s servants capture a monkey?
Why did the Dragon King consult his chief steward?
How did the Dragon King consult his chief steward?

0.7830

Why did the Dragon King consult his chief?
Why did the Dragon King consult steward?
Why did the Dragon King consult his chief steward?
How did the King consult his chief steward?

0.9014

Why did the Dragon King consult his chief steward?
Why did the Dragon King consult his chief?
Why did the Dragon King consult his chief steward?
How did the Dragon King consult his chief steward?

Table 10: Examples on Self-BLEU scores with 4 ques-
tions each.

A.4 Classified Questions Analysis
We analyze the ratio of questions classified into dif-
ferent answer types by the answerability evaluation
model. Even though the ground-truth questions
do not contain unanswerable questions, the evalu-
ation model classifies approximately 4.5% of the
questions as unanswerable, as shown in Table 5.
The problem of answer-aware question generation
is well-known. QAG uses the answer as an input
in the question generation process, and our results
show that QAG is not fit for generating implicit
questions, as only about 5.1% of questions are clas-
sified as implicit. The EQG baseline generates
both explicit and implicit questions but only has
a small number of total questions after removing
duplicates. On the other hand, the mQG still has
a large number of questions even after removing
duplicates, totaling 8,820, with explicit and im-
plicit questions roughly in a 3-to-1 ratio. These
results show that the mQG generates both types of
multiple questions better than other baselines.

B Diversity Exploration

For diversity evaluation, we calculate the Self-
BLEU score among generated questions from the
same context. Self-BLEU score is based on BLEU
evaluation method (Papineni et al., 2002). The
BLEU evaluation method has many criticisms for
evaluating sentence-level corpus. If a higher-order
n-gram precision goes to 0, the total BLEU score
goes to 0. As an outcome, many variations ap-
plying the smoothing method for the BLEU score
have shown (Chen and Cherry, 2014). We apply
’smoothing 1’ described in Chen and Cherry (2014)
since all the generated questions are sentence-level.
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FairytaleQA

Architecture Decdoing Method
# Answerable

Questions
Per Section ↑

Rouge-L
F1 ↑ Self-BLEU ↓

mQG-T5 b=5 17.89 30.59 0.5476
mQG-BART b=5 23.35 58.24 0.6243

p=0.1 16.89 53.45 0.7826
p=0.5 18.01 53.54 0.7622
p=0.75 19.12 54.45 0.7321
p=0.95 20.06 54.90 0.7135

Table 11: Performance of mQG with different back-
bone models and decoding methods on the original
test set. b=5 denotes beam search with beam size
set to 5. p denotes nucleus sampling (NS@p; p ∈
0.1, 0.5, 0.75, 0.95). All models are set to generate 28
questions per section.

Examples of Self-BLEU scores are shown in table
10. When the Self-BLEU score goes up to 0.7830,
almost all questions can be addressed by the same
answers.

C Decoding Method and Model Selection

Moreover, in addition to the main results, we com-
pare the performance of mQG between different
backbone models and decoding methods. In Table
11, T5-based mQG exhibits the best Self-BLEU
score but significantly lags behind BART-based
mQG in terms of # Answerable Questions Per Sec-
tion and Rouge-L score. This suggests that T5-
based mQG struggles to generate semantically cor-
rect questions. When comparing decoding meth-
ods, beam search outperforms nucleus sampling in
all dimensions. This is due to the decoding pro-
cess of mQG, which returns multiple sequences
to exclude pre-generated questions. Beam search
utilizes a tree search algorithm, whereas nucleus
sampling does not. As a result, nucleus sampling
tends to generate duplicate questions.

D Weighting Factor Impact on
Performance

To determine how MQS loss affects training, we
conduct experiments with the mQG model using
different settings for the weighting factor β. The
overall training objective L is defined as

L = LCE + β ∗ LMQS (5)

In Table 12, Self-BLEU is calculated between ques-
tions that share context and question type. The
optimal point of diversity is achieved when β is
set to 0.4. As β increases, the Self-BLEU score
decreases, while the number of answerable ques-
tions increases. This outcome aligns with our goal

FairytaleQA

β
# Answerable

Questions
Per Section ↑

Rouge-L
F1 ↑ Self-BLEU ↓

0.0 22.89 58.49 0.4747
0.2 23.16 59.40 0.4117
0.4 23.23 59.54 0.4052
0.6 23.26 58.44 0.4261
0.8 23.34 59.29 0.4288
1.0 23.35 58.24 0.4210
2.0 23.28 58.28 0.4297
3.0 23.34 58.42 0.4478
5.0 23.50 58.15 0.4527

Table 12: mQG results on different β settings on the
original test set. 0.0 equals to mQG w/o maximum
question similarity loss LMQS . All models are set to
generate 28 questions per section.

Architecture Rouge-L (ori) Rouge-L (alt) Diff

FairytaleQA

EQG 41.05 39.35 1.70
QAG 53.77 53.13 0.64
mQG 58.90 58.36 0.54

TellMeWhy

EQG 35.91 15.08 20.83
QAG 30.35 23.93 6.42
mQG 56.17 51.57 4.60

SQuAD1.1

EQG 30.31 25.84 4.47
QAG 46.75 44.85 1.90
mQG 45.38 43.20 2.18

Table 13: Comparison results on Rouge-L calculation.
FairytaleQA results are the mean value of 3 cross-
validation results. Rouge-L (alt) denotes one-to-one
match calculation. Diff denotes the difference between
Rouge-L (ori) and Rouge-L (alt).

of implementing MQS loss to enhance diversity
within the bounds of semantic correctness.

E Another Rouge-L Calculation

As mentioned in Section 4.3, we calculate the
Rouge-L score only to find the highest score
for each ground-truth question. This calculation
method may lead to the one-to-many matching
problem. To determine if the problem has occurred,
we compare the results with another Rouge-L cal-
culation Rouge-L (alt). This calculation excludes
previously matched generated questions, allowing
for only one-to-one matches. In Table 13, most
Rouge-L (alt) results exhibit slightly lower scores
in comparison to Rouge-L (ori), suggesting that
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one-to-many problems have occurred, although the
impact is relatively minor as the ground-truth ques-
tions are a unique set of questions. The signifi-
cant difference in the TellMeWhy dataset can be
attributed to the limited number of ’why’ questions
generated.

F Implementation Details

For the mQG model, we use the MQS loss of the
validation set as the selecting criteria. For the mQG
models without MQS loss, we use MLE loss as the
selecting criteria. Total training time was about 3
hours with 1 RTX A6000 GPU. We initialize the
mQG model with pretrained BART-large, which
has 406M parameters. Hyperparameters are follow:
learning rate = 5e-6; batch size = 8; epoch = 15

We use RoBERTa-large model for BERTScore
and BLEURT-20 model for BLEURT. For the
evaluation model, we load SQuAD 2.0 finetuned
DeBERTa-base model 3, which has 86M param-
eters, to further finetune. Total training time
was about an hour with 1 RTX A6000 GPU.
Hyperparameters are follow: learning rate = 5e-6;
batch size = 16; epoch = 8

G Examples of Generated Questions

Tables 14 and 15 show the generated examples of
the mQG, EQG, QAG, and ground truth questions
with the according section and classified results
with the answerability evaluation model. Even with
different settings for generating multiple questions,
EQG still generated duplicate questions because
it guided the model only with special tokens to
generate multiple questions. QAG has generated
different questions but with less diversity. In all
questions, the evaluation model accurately classi-
fied the questions. Given the sufficient number of
questions generated by each model, we selected
four questions as representative examples. Given
the sufficient number of questions generated by
each model, we selected 4 questions as representa-
tive examples.

3https://huggingface.co/deepset/
deberta-v3-base-squad2
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Section
But his brother complained of being weary, and at length they decided to remain there for the night.
When Andrew awoke he found himself alone; and he saw neither brother nor boat, until he came to the
highest point of the island. Then he discovered him far out, darting for land like a sea-gull. Andrew did
not understand the whole affair. There were still provisions there, as well as a dish of curd, his gun and
various other things. So Andrew wasted but little time in thought. "He will come back this evening,"
said he. "Only a fool loses heart so long as he can eat." But in the evening there was no brother to
be seen, and Andrew waited day by day, and week by week; until at last, he realized that his brother
had marooned him on this barren island in order to be able to keep their inheritance for himself, and
not have to divide it. And such was the case, for when John Nicholas came in sight of land on his
homeward trip, he had capsized the boat, and declared that Lucky Andrew had been drowned.
Ground-truth Questions
What was John Nicholas doing when Andrew saw him? (Explicit)
Why did John Nicholas capsize the boat when he reached land? (Implicit)
Why did Andrew want the inheritance to himself? (Implicit)
How did Andrew feel when he saw his brother and boat far out? (Implicit)
mQG
What did John Nicholas declare when he came in sight of land? (Explicit)
Why did John Nicholas marooned his brother on a barren island? (Explicit)
Why did the brother want to keep their inheritance for himself? (Implicit)
Why did John Nicholas declare that Lucky Andrew had been drowned? (Implicit)
QAG
what did andrew find on the island? (Explicit)
what did andrew find on the island? (Explicit)
who did andrew see after he woke up? (No Answer)
when andrew awoke he found himself alone? (No Answer)
EQG
What happened after John Nicholas came in sight of land on his homeward trip? (Explicit)
What happened after John Nicholas came in sight of land on his homeward trip? (Explicit)
Why did the brother complain of being weary? (Implicit)
Why did the brother complain of being weary? (Implicit)

Table 14: Example of generated questions of mQG, EQG, and QAG for a given context. On the right of each
question, classified results by the answerability evaluation model are shown in parentheses. Generated questions of
mQG have the most diverse syntax questions considering question types and still, semantically correspond to the
given section.
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Section
At any rate, his poor young wife was sorely to be pitied, for she was left with a little baby-boy to bring
up, and, as times were bad, she had not much to live on. But she loved her baby dearly, and worked all
day amongst her cows, and pigs, and hens, in order to earn enough money to buy food and clothes for
both herself and him. Now, on the morning of which I am speaking, she rose very early and went out
to feed her pigs, for rent-day was coming on, and she intended to take one of them, a great, big, fat
creature, to the market that very day, as she thought that the price that it would fetch would go a long
way towards paying her rent. And because she thought so, her heart was light, and she hummed a little
song to herself as she crossed the yard with her bucket on one arm and her baby-boy on the other.
Ground-truth Questions
What did the widowed Mistress do to earn enough money? (Explicit)
Why did the widowed Mistress want to sell her pig? (Explicit)
How did the widowed Mistress feel while she thought of selling the pig? (Implicit)
mQG
What did the young woman do because rent-day was coming on? (Explicit)
Why did the young wife want to buy a great, big, fat creature? (Explicit)
Where did the young woman intend to take one of the pigs? (Explicit)
How did the young wife feel to bring up her baby? (Implicit)
EQG
Why did the wife go out to feed her pigs? (Explicit)
Why did the wife go out to feed her pigs? (Explicit)
How did the wife feel when she saw the pig? (Implicit)
How did the wife feel when she saw the pig? (Implicit)
QAG
how did the wife earn money? (Explicit)
what day was it? (Implicit)
what did the wife feed her pigs? (No Answer)
how many pigs did the wife plan to buy? (No Answer)

Table 15: Another example of generated questions of mQG, EQG, and QAG for a given context. On the right of
each question, classified results by the answerability evaluation model are shown in parentheses. mQG model has
generated questions most answerable questions with diversity.
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Figure 6: The question sheet for diversity human evalu-
ation.

Figure 7: The question sheet for quality human evalua-
tion.
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