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Abstract

Concept Bottleneck Models (CBMs) (Koh
et al., 2020) assume that training examples (e.g.,
x-ray images) are annotated with high-level
concepts (e.g., types of abnormalities), and per-
form classification by first predicting the con-
cepts, followed by predicting the label relying
on these concepts. The main difficulty in using
CBMs comes from having to choose concepts
that are predictive of the label and then having
to label training examples with these concepts.
In our approach, we adopt a more moderate
assumption and instead use text descriptions
(e.g., radiology reports), accompanying the im-
ages in training, to guide the induction of con-
cepts. Our cross-modal approach treats con-
cepts as discrete latent variables and promotes
concepts that (1) are predictive of the label, and
(2) can be predicted reliably from both the im-
age and text. Through experiments conducted
on datasets ranging from synthetic datasets
(e.g., synthetic images with generated descrip-
tions) to realistic medical imaging datasets, we
demonstrate that cross-modal learning encour-
ages the induction of interpretable concepts
while also facilitating disentanglement. Our
results also suggest that this guidance leads
to increased robustness by suppressing the re-
liance on shortcut features.

1 Introduction

The limited interpretability of modern deep learn-
ing poses a significant barrier, hindering their prac-
tical application in many scenarios. In addition
to enhancing user trust, interpretations can assist
in identifying data and model limitations, as well
as facilitating comprehension of the causes behind
model errors. Explainable ML has become a ma-
jor field, with various methods developed over the
year to offer different types of explanations, such
as input attribution (Sundararajan et al., 2017; Si-
monyan et al., 2014), free-text rationales (Camburu
et al., 2018) or training data attribution (Koh and
Liang, 2017). Moreover, methods pursue diverse

Figure 1: In the XCB framework, during training we
promote agreement between the text and visual mod-
els’ discrete latent representations. Moreover, we intro-
duce sparsity regularizers in the text model to encourage
disentangled and human-interpretable latent representa-
tions. At inference time, only the visual model is used.

objectives, for example, aiming to generate human-
like plausible rationales or extract faithful explana-
tion from the model (Jacovi and Goldberg, 2020;
DeYoung et al., 2020).

In this work, our specific focus is on a line of
research that aims to develop neural models ca-
pable of making predictions via an (semi-) inter-
pretable intermediate layer (Andreas et al., 2016;
Bastings et al., 2019; Rocktäschel and Riedel, 2016;
Koh et al., 2020). This class of models is appeal-
ing because the interpretable component creates
a “bottleneck” in the computation, ensuring that
all the information regarding the input is conveyed
through discrete variables. As a result, these vari-
ables play a causal mediation role in the prediction
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Figure 2: Standard computer vision model w/o interpretability of latent representation f (left), XCB with imposed
agreement in visual latent representation f and textual latent representation c (right). Notations in the image: x —
visual modality, f — latent representation for x, ŷf — prediction of visual component, s — textual modality, c —
latent representation for s, and ŷc — prediction of textual component.

process (Vig et al., 2020). One notable represen-
tative of this model class is Concept Bottleneck
Models (Koh et al., 2020). CBMs, for a given
input image, first predict which high-level con-
cepts are activated, and then infer the class label
based on these concepts. This simple and elegant
paradigm is advantageous from a practical stand-
point as the intermediate layer can be examined,
validated and intervened on by an expert user. For
instance, in medical diagnostics, the concepts could
represent types of abnormalities detected from an
X-ray, which makes the model predictions easier
to scrutinize and verify for a specialist.

Despite their interpretability advantages, CBMs
have several critical limitations. Firstly, they re-
quire manual creation and annotation of a set
of high-level concepts for each training example,
which can be challenging or even unattainable in
real-world scenarios. Secondly, concepts designed
by domain specialists might not possess sufficient
predictive power for classification or could be dif-
ficult to reliably detect from the examples (e.g.,
images).

This work aims to address these shortcomings
of CBMs. It considers concepts as discrete binary
latent variables, eliminating the need for an ex-
pert to predefine the concepts. Rather than relying
on the annotation of examples with concepts our
approach – Cross-Modal Conceptualization in Bot-
tleneck Models (XCBs)1 – makes a weaker and
arguably more realistic assumption that examples

1Released at https://github.com/DanisAlukaev/XCBs

are linked to texts (such as radiology reports) which
serve as guidance for concept induction. Note that
the text is not used at test time in our experiments.

Specifically, in training, we use an additional
CBM model trained to predict the same target la-
bel, but this time using textual data. A regularizer
is used to encourage prediction of the same set of
concepts in both visual and text CBMs on each
training example. In this way, XCB ensures that
the concepts can be predicted from both text and
images, discouraging the image classifier from re-
lying on features that cannot be expressed through
language and, thus, injecting domain knowledge
from text into the visual model. Furthermore, an
additional regularizer promotes the alignment of
concepts with distinct text fragments, thereby en-
hancing their disentanglement and interpretability.

We conducted experiments involving XCBs on
various datasets, including synthetic text-image
pairs as well as a more realistic medical image
dataset. Our experiments demonstrate that XCB
tends to surpass the alternative in terms of disen-
tanglement and alignment with ground-truth (or
human-annotated) concepts. Additionally, we in-
corporated synthetic shortcuts into the images and
observed that the inclusion of textual guidance re-
duced the model’s tendency to overly rely on these
shortcuts and, thus, made the model more robust.

2 Related Work

Concept Bottleneck Models (CBMs) (Koh and
Liang, 2017) can be regarded as a representative
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of a broader category of self-explainable archi-
tectures (Alvarez Melis and Jaakkola, 2018). In
essence, CBMs incorporate a bottleneck composed
of manually-defined concepts, which provides a
way of understanding ‘reasons’ behind the model
predictions. Examples must be annotated with cor-
responding concepts, thus, facilitating the training
of two distinct segments of the model: the input-to-
concepts and concepts-to-label parts.

While we argued that the bottleneck should be
discrete to limit the amount of information it can
convey, CBMs do not strictly adhere to this prin-
ciple. In CBMs, even though the concepts them-
selves are discrete, their representation within the
bottleneck layer is not. Specifically, each concept
is represented as a logit from a classifier predicting
that concept. This deviation from complete dis-
creteness is non-problematic when the two parts of
CBMs (input-to-concepts and concepts-to-label)
are trained either independently or sequentially.
Under such conditions, the logit would not be in-
centivized to retain input details unrelated to the
concepts. Yet, the problem arises when these model
parts are trained simultaneously (Margeloiu et al.,
2021). Mahinpei et al., 2021 have shown that this
information leakage can be alleviated by adopting
strictly discrete variables and promoting disentan-
glement. These insights drove our modeling deci-
sions, prompting us to employ discrete variables
and use text (as well as specific forms of regular-
ization) to encourage disentanglement.

A recent approach titled label-free CBM
(LCBM) (Oikarinen et al., 2023) focuses on ad-
dressing some of the same challenges we address
with XCBs, specifically CBM’s dependence on pre-
defined concepts and the necessity for manual an-
notation of examples with such concepts. This
study prompts GPT-3 (Radford et al., 2018) to pro-
duce a set of concepts appropriate for the domain.
Following this, the CLIP model (Radford et al.,
2021) is applied to label the images with concepts.
In a parallel development, Yang et al. (2023) intro-
duced a similar framework named Language model
guided concept Bottleneck model (LaBo), which
also incorporates GPT-3 and CLIP as key ingre-
dients. One distinction in their approach is the
employment of submodular optimization to gen-
erate a set of diverse and discriminative concepts.
Although these methods show promise on large vi-
sual benchmarks, it is unclear how effectively they
would work in specialized domains and how to in-

tegrate additional human expertise in such models.
We consider LCBM as an alternative to XCB in our
experiments.

Yuksekgonul et al. (2023) introduced a method
that posthoc transforms any neural classifier into a
Concept-Based Model (CBM). In contrast to their
approach, we leverage text to shape the representa-
tion inside the neural classifier, potentially making
them more disentangled.

In addition to efforts focused on crafting meth-
ods for training CBMs, there is an intriguing branch
of research dedicated to exploring the utilization of
concepts within CBMs to intervene and modify the
models (Shin et al., 2022; Steinmann et al., 2023).
While this strand of research appears somewhat
divergent from our primary interest, it underscores
another significant application of CBMs – extend-
ing beyond mere prediction interpretation.

3 Proposed Framework

In this section we introduce a novel method for
cross-modal conceptualization in bottleneck mod-
els (XCBs). We start with a high-level overview of
the framework and introduce its core components.
Further, we consider models used to process visual
and textual modalities. Finally, we describe tech-
niques that were used to encourage cross-modal
agreement and disentanglement between the con-
cepts.

3.1 Overview

The design of the framework (Fig. 1) encourages
each element of the discrete latent representation
produced by visual encoder to correspond to a sin-
gle high-level abstraction, which can be expressed
by a text span. Accordingly, we use an additional
textual model that identifies concepts expressed
in natural language and determines the correspon-
dences to visual features.

XCB can tentatively be divided into symmet-
ric visual and textual components (Fig. 2, right).
The former consists of a computer vision model
F : x → f (feature extractor) producing latent
representation f for an input image x and predic-
tor Pf : f → ŷf solving the classification task.
Similarly, the textual component includes a natural
language processing model C : s → c (concept
extractor) producing latent representation c for a
sequence of tokens s and predictor Pc : c → ŷc.
The discreteness of latent variables is imposed by
a straight-through version of the Gumbel sigmoid
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Figure 3: Concept extractor based on cross-attention
mechanism. Each query captures semantic of correspon-
dent latent factor in c. Tokens with a highest average
cross-attention score are regarded as concepts.

(Jang et al., 2017) applied to bottlenecks.
To reinforce agreement in feature and concept

extractors at training time latent representations f
and c are tied up using a similarity metric. The
regularizer encourages model to generate a set of
latent factors that could reliably be predicted by
both visual and textual encoders.

3.2 Unsupervised Approach
The standard computer vision model for classifi-
cation (Fig. 2, left) is generally composed of the
feature extractor F and predictor Pf . The latent
representation f is an output of a non-linear ac-
tivation function (e.g., sigmoid). Each factor of
f could, in principle, correspond to a single high-
level abstraction. Thus, latent representation is not
a concept bottleneck per se, but arguably could
emulate such behavior. In our experiments we use

such a model with latent sigmoid bottleneck as a
baseline and do not impose any pressure to make
the representation interpretable or discrete.2

3.3 Textual Model

The concept extractor is an integral part of XCBs
used to process textual descriptions and derive set
of concepts. It has been observed that many heads
in multi-head attention specialize (Voita et al.,
2019), i.e. become receptive to a narrow and unique
set of words. Accordingly, we hope that the at-
tention mechanism will reinforce disentanglement
in the framework and, thus, use it in the concept
extractor C. We will discuss below how we can
further encourage disentanglement by modifying
the attention computation.

Fig. 3 demonstrates the concept extractor adapt-
ing cross-attention mechanism for semantic token
clustering. Token embeddings are augmented with
a sinusoidal positional encoding that provides the
notion of ordering to a model (Vaswani et al., 2017).
The weight matrices WK and W V are used to
transform input embeddings into matrices of keys
K and values V respectively. We compose a train-
able query matrix Q aimed to capture semantics
specific to a correspondent factor in latent represen-
tation c. Averaging matrix of values V with respect
to cross-attention scores yields the contextualized
embeddings ri, which are further used to estimate
elements of c through correspondent predictors Pri .

Since we established one-to-one correspondence
between set of queries and latent factors, the matrix
of cross-attention scores could be considered as a
relevance of each input token to variables in repre-
sentation c. Concept extractor aggregates average
cross-attention scores for each token in vocabulary.
The concept candidates are, thus, selected by an
average attention score for a correspondent latent
factor.

The design of concept extractor also accounts for
two special cases. First, some token t in the input
sequence s might not align with any query (i.e. not
correspond to any concept). Second, the opposite,
some query might not align with any tokens in the
input sequence s. We thus introduce additional
"dummy" query to capture cross-attention scores
from irrelevant tokens, and "dummy" tokens (one

2In our preliminary experiments, an unsupervised model
with a discrete (Gumbel straight-through) layer was not par-
ticularly effective, trailing the continuous version according
to disentanglement metrics. Thus, we opted to utilize the
stronger continuous version as a baseline in our experiments.
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per each query) for the model to indicate that all
tokens from the input sequence are irrelevant.

3.4 Cross-Modal Agreement

To ensure alignment between the visual and tex-
tual components in XCB, we propose the inclusion
of an additional tying loss function that assesses
the similarity between the latent representations,
denoted as f and c. Since these representations
are discrete and stochastic, we employ the Jensen-
Shannon divergence to tie the distributions of the
visual and textual representations. Given that each
representation’s distribution can be factored into
Bernoulli distributions for individual features, the
calculation of the divergence is straightforward.

Because of imposed similarity between represen-
tations f and c the set of concepts retrieved by tex-
tual component tends to also correspond to visual
latent factors, and thereby can be used to explain
the visual part. Otherwise, on unseen data, XCB
is virtually identical to CBMs: for a given sample
x it infers a binary set of human-interpretable at-
tributes f , which is further used to predict the target
variable ŷf . Note that training with cross-modal
agreement yields an additional computational over-
head of 15-25% varying by dataset (App. A).

3.5 Encouraging Disentanglement

To intensify disentanglement between concepts
we borrow ideas from slot attention (Locatello
et al., 2020). Instead of normalizing cross-attention
scores exclusively along the dimension of tokens,
we firstly normalize them along the concepts, and
only then rescale scores along the tokens. This
method forces concepts (i.e. queries) to compete
for tokens, and thus discourages the same token
from being associated with multiple concepts. This
effect is further amplified by the usage of entmax
(Correia et al., 2019) activation function that pro-
duces sparse distributions of concepts (for each
token).

We also introduce an additional training objec-
tive measuring an average pairwise cosine similar-
ity of contextualized embeddings ri (App. B). This
regularization further encourages concepts in the
textual component to focus on semantically differ-
ent parts of an input sequence and, thereby, capture
separate factors of variation. Since this procedure
is relatively computationally demanding, on each
training step the loss is computed based on a subset
sampled from ri.

Parameter Shapes CUB-200 MIMIC
No. of examples 2,700 11,788 15,000
No. of attributes 6 312 14
No. of labels 9 200 2
Vocabulary size 53 8,983 8,651
No. of tokens, µ 11.2 181.2 63.0
No. of tokens, SD 0.8 26.4 24.8
No. of tokens, max 12 373 378

Table 1: Description of datasets used in research pro-
cess. Captions for Shapes and CUB-200 are rule-based
generated, whereas in MIMIC captions are structured
reports written by radiologists in a free form.

Note that both the promotion of discreteness and
disentanglement have been recognized to decrease
the inclusion of irrelevant information into con-
cepts, known as concept leakage (Mahinpei et al.,
2021). This offers an additional rationale for their
application.

4 Empirical Evaluation

This section describes the datasets, introduces eval-
uation metrics for interpretability, and describes the
procedure used to measure robustness of models.

4.1 Datasets

For our experiments we have used three classifica-
tion datasets (Tab. 1). Each data point takes a form
of (x, s, a, y), where x stands for a visual modality
(e.g., chest x-ray image), s — textual modality
(e.g., structured medical report), a — binary set of
attributes (e.g., types of abnormalities), and y —
label of class (e.g., whether a pathology has been
detected).

Shapes. Primarily for benchmarking we propose
a synthetic dataset of primitive shapes (Fig. 4,
top).3 The image x is a white canvas with random
shape (i.e., square, triangle, circle) of random color
(i.e., red, green, blue), and random size (i.e., small,
medium, large). Caption c is generated from visual
parameters of a shape, its location, and words
sampled from the vocabulary, using a hand-written
grammar. The vector of attributes encodes shape
and color, their combination represents a target
class y.

CUB-200. Similar to CBMs we evaluate XCB
on Caltech-UCSD Birds-200-2011 (CUB-200)
(Wah et al., 2011). Due to incoherent intra-class
attribute labeling we performed a majority

3Released at https://github.com/DanisAlukaev/shapes

5245

https://github.com/DanisAlukaev/shapes


Figure 4: Examples of data points (x — visual modal-
ity, a — set of attributes, s — textual modality) from
datasets used in research process: Shapes with label
"red circle" (top), CUB-200 with label "yellow headed
blackbird" (middle), MIMIC-CXR with label "pathol-
ogy" (bottom).

voting as suggested by Koh et al. (2020). Since
CUB-200 does not contain captions, description
was generated as provided by the vector of
attributes (Fig. 4, middle): each attribute ai
with heading in a form of "has_<s>::<t>"
is represented as "this bird has <t> <s>", e.g.,
"has_beak_shape::dagger" becomes "this bird
has dagger beak shape". The caption for a sample
is thereby accumulated from all descriptions of ac-
tive attributes and tokens sampled from vocabulary.

MIMIC. To assess XCB in realistic environment
we use a subset from MIMIC-CXR (Johnson et al.,
2019). The structured reports are written by ra-
diologists in a free form and without the use of
templates. The set of attributes (Fig. 4, bottom) is
comprised of characteristics used by radiologists
to differentiate pathological cases, which thereby
might be considered as underlying latent factors of
a certain generative process and used to evaluate
latent representations.

4.2 Measuring Interpretability

Quantitative evaluation of model interpretability
is not entirely standardized. The formulation of a
metric highly depends on the specifics of the model
architecture and available annotations. Our frame-
work belongs to a set of concept-based models,
where structural components are guided by a set
of symbolic attributes. In the context of XCBs,
we thus define the level of interpretability through

alignment between the latent representation f and
vector of ground-truth attributes a.

The relationship between latent representation
and underlying factors of variation can be quanti-
fied in terms of disentanglement, completeness, and
informativeness (DCI) (Eastwood and Williams,
2018). Disentanglement indicates degree to which
a latent factor captures at most one attribute, com-
pleteness reflects degree to which each attribute is
captured by a single latent factor, and informative-
ness accounts for amount of information captured
by latent representation. For each attribute k, East-
wood and Williams (2018) suggest training linear
regressor Rk : f → ak with associated feature
importance scores Rw

k . Disentanglement and com-
pleteness are entropic measures derived from Rw

k ,
whereas informativeness is a normalized root mean
squared error of Rk computed on the testing subset.

One downside of the DCI metric is the require-
ment of annotated attributes, which are typically
available only for benchmark datasets. Conse-
quently, in a real-world scenario, quality of in-
terpretations could be assessed based on human
evaluation. Namely, we provide human experts
with a set of images and pieces of text represent-
ing underlying concept in the framework. One of
the text pieces is sampled from a different con-
cept. The goal of a domain expert is to determine
which option is irrelevant. For instance, interpreta-
tions of XCB on MIMIC-CXR were evaluated by
a practicing radiologist through a set of ten ques-
tions. A sample question consists of five X-ray
images, with which our framework associated to-
kens "pneumothorax", "effusions", and "atelecta-
sis" (corresponding scaled confidence scores ψi

were left unknown to the expert). As an additional
option, we add "pneumonia" and set its confidence
score to ψi = 0. For a selected option j we further
define a metric XScore = 1−ψj . Higher values of
XScore indicate that model interpretation with the
least confidence score is more relevant to provided
studies than the random one.

4.3 Exploring Robustness

Models often learn to rely on non-robust (i.e. spuri-
ous) features, which are easy to identify in training
but which will not be present or will be misleading
at usage time (Ilyas et al., 2019). For example, in
the medical domain training data is typically col-
lected from both regular and emergency hospitals.
Since most such machines put their serial number
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Modification ∆ F1-score ↑ ∆ Disent. ↑ ∆ Compl. ↑ ∆ Inform. ↓
Sigmoid → Gumbel Sigmoid -0.04 ± 0.01 0.14 ± 0.02 0.06 ± 0.02 0.01 ± 0.00
Softmax → Entmax -0.16 ± 0.03 -0.04 ± 0.00 0.05 ± 0.01 0.01 ± 0.00
Regular norm. → Slot attention norm. -0.18 ± 0.04 -0.07 ± 0.01 -0.03 ± 0.00 0.01 ± 0.00
w/o "dummy" query & tokens → w/ -0.03 ± 0.00 0.03 ± 0.00 0.08 ± 0.02 -0.02 ± 0.00
Reg. via pairwise similarities of ri -0.01 ± 0.00 -0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00
DJS(f

′||c′)→DKL(f
′||c′) -0.31 ± 0.05 -0.11 ± 0.02 -0.03 ± 0.00 -0.02 ± 0.00

DJS(f
′||c′)→DKL(c

′||f ′) -0.27 ± 0.04 -0.09 ± 0.02 -0.02 ± 0.00 -0.02 ± 0.00

Table 2: Ablation study of XCB on Shapes Dataset.

in the corner of the image and emergency hospi-
tals tend to handle harder cases, this ID number
becomes a distinctive yet spurious feature (Ribeiro
et al., 2016). Reliance of such features is clearly
highly undesirable.

To explore the robustness of the XCB model
we incorporate a non-robust feature in all training
subsets. As a shortcut, we use numerical class label
located in the upper left corner of the image. The
performance and interpretability of standard and
proposed models are further evaluated on samples
without distractors. The higher the value of the
metric is, the higher robustness is expected.

5 Results and Discussion

In this work, we compare the proposed models
with the standard ‘black-box’ model, as well as
CBMs and LCBMs (Oikarinen et al., 2023). Due
to similarity of LCBM and LaBo (Yang et al., 2023)
models, we include in comparison only the former
(see Section 2 for their discussion). The experi-
ments were conducted using synthetic and public
datasets highlighted in Section 3.1 of the paper.
The obtained results are discussed with respect to
their performance, interpretability, and robustness.

The ratios between training, validation, and test
splits are 75%, 15% and 10%, respectively. For all
datasets image size was set to 299 with a batch size
of 64. At each epoch, images were normalized and
the batches were randomly shuffled. The CUB-200
follows data processing pipeline described in Cui
et al. (2018) with additional augmentations such
as horizontal flip, random cropping, and color jit-
tering. The hyperparameters were optimized using
Tree-structured Parzen Estimator sampling algo-
rithm (Bergstra et al., 2011).

To concentrate on expressivity of concept ex-
tractor C, we restricted our feature extractor F to
be fine-tuned InceptionV3 model (Szegedy et al.,
2016) pre-trained on the ImageNet dataset (Deng
et al., 2009), with multi-layered perceptron of depth
of one for Pf and Pc. The baseline model was com-

posed of feature extractor F followed by sigmoid
function and predictor Pf . The size of latent rep-
resentations was set to 10, 320, and 20 for Shapes,
CUB-200, and MIMIC-CXR datasets respectively
(Tab. 1). Textual embeddings were randomly ini-
tialized as trainable parameters of length 50. The
CBM size of bottleneck matched the number of
attributes in a dataset (Tab. 1). To run experiments
with CBM4 and LCBM5 the official implementa-
tions were used. Weights of all models were initial-
ized using Xavier uniform distribution.

The feature extractor F and predictor Pf

were optimized jointly using AdaDelta optimizer
(Zeiler, 2012) with learning rate 0.25 and rho
0.95. The concept extractor C and predictor Pc

were optimized jointly via AdamW optimizer
(Loshchilov and Hutter, 2019) with learning rate
0.001, betas of 0.9 and 0.999, and weight decay
0.01. The learning rates in AdamW and AdaDelta
were adjusted using OneCycleLR scheduler (Smith
and Topin, 2019) with maximal learning rates
set to 0.001 and 0.25, respectively. Temperature
of the Gumbel sigmoid followed the exponential
schedule (Jang et al., 2017). The experiments
were conducted using early stopping policy on
validation loss with patience of 5 epochs. Five
random seeds were used: 42, 0, 17, 9, and 3. Mean
and standard deviation for the obtained results
were computed over five training runs.

Ablation study. Components introduced in
XCB that aim to improve interpretability and
disentanglement of representation cause drop
in performance (Tab. 2). Nevertheless, dis-
entanglement and completeness metrics were
substantially improved by discretization of latent
representations via Gumbel sigmoid and using
"dummy" tokens in slot normalisation respectively.
Remarkably, using Kullback-Leibler divergence

4Available online at https://github.com/yewsiang/
ConceptBottleneck

5Available online at https://github.com/Trustworthy-ML-
Lab/Label-free-CBM
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Dataset Model F1 ↑ Disent. ↑ Compl. ↑ Inform. ↓

Shapes

Standard 1.00 ± .00 .60 ± .05 .64 ± .10 .07 ± .01
CBM 1.00 ± .00 .50 ± .07 .47 ± .07 .10 ± .01
LCBM .97 ± .01 .55 ± .04 .49 ± .02 .08 ± .01
XCB .96 ± .01 .78 ± .03 .74 ± .12 .07 ± .02

CUB-200

Standard .80 ± .01 .18 ± .02 .17 ± .02 .81 ± .01
CBM .78 ± .01 .16 ± .03 .16 ± .02 .82 ± .03
LCBM .74 ± .02 .19 ± .02 .15 ± .01 .84 ± .02
XCB .75 ± .01 .21 ± .02 .20 ± .02 .78 ± .01

MIMIC

Standard .77 ± .01 .03 ± .01 .01 ± .00 1.00 ± .00
CBM .75 ± .01 .02 ± .00 .01 ± .00 1.00 ± .00
LCBM .73 ± .00 .01 ± .00 .01 ± .00 1.00 ± .00
XCB .74 ± .00 .04 ± .00 .03 ± .00 1.00 ± .00

Table 3: Evaluation results on Shapes, CUB-200 and MIMIC-CXR datasets. XCB model outperforms standard
model, CBM, LCBM in terms of interpretability (DCI metrics) maintaining a comparable level of performance.

as a tie loss worsens both performance and DCI,
which could indicate that neither modality fully
guides induction of implicit high-level abstractions.

Performance. The standard model outperforms
CBMs on all datasets (Tab. 3), which can be
attributed to a trade-off between performance and
level of interpretability. Another possible reason
is that manually derived set of attributes might
not be predictive enough for classification. On
the medical dataset LCBM is inferior to other
models indicating current limitations in the domain
knowledge of large language models. XCB
achieves comparable to other variations of CBMs
performance.

Interpretability. The highest DCI scores (see Sec-
tion 3.2 of the paper) were achieved with the pro-
posed XCB model that could be attributed to do-
main knowledge transferred to the model (Tab. 3).
High values of both disentanglement and complete-
ness indicate that alignment of latent representation
and set of attributes tends towards bijective. Al-
though absolute values of DCI on medical dataset
are modest, out survey indicates that XCB possess

Figure 5: Interpretations for the fourth latent factor on
Shapes dataset. Concept candidates for the latent factor
(left) describe variance of observed values of logits on
bottleneck (right).

a better quality of interpretations in terms of XS-
core compared to LCBM: 0.72 vs. 0.66.

The framework associates each factor in
latent representation f with a set of textual
interpretations (Fig. 5). For example, the images
corresponding to the fourth neuron activations
cluster in terms of shape, i.e., larger value of logit
correspond to squares, whereas smaller represent
triangles. Explanations of our model are indeed
referring to the shape of a figure: highest relevance
is achieved by tokens "triangular" and "quadratic".

Robustness. Following the procedure presented
in Section 3.3 of the paper, the performance and
interpretability on non-robust Shapes Dataset were
measured. Performance of the standard model on
testing subset is lower than for XCB on all datasets
(Tab. 4). The DCI of the proposed framework
are also superior compared to the standard model.
Method of integrated gradients reveals that the base-
line mainly focuses on non-robust feature, whereas
the proposed framework has higher attribution to
the shape of the object (Fig. 6). We speculate that
such an increase in robustness can be associated
with a textual component of the framework, which
regularizes implicit visual abstractions.

Note that while we encourage textual and vi-
sual components to align, it is not a hard constraint
but rather a soft regularizer, which is used only in

Metric ∆ Shapes CUB-200 MIMIC
F1 ↑ .04 ± .00 .01 ± .00 .02 ± .00
Disent. ↑ .02 ± .00 .02 ± .00 .01 ± .00
Compl. ↑ .02 ± .00 .02 ± .00 .02 ± .00
Inform. ↓ .03 ± .00 .04 ± .00 .01 ± .00

Table 4: Difference in F1-score and DCI of XCB model
compared to standard model on test subset w/o non-
robust feature.
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Figure 6: Sample with non-robust feature (left), inte-
grated gradients for standard model (middle), integrated
gradients for XCB model (right). XCB shows higher
attribution to the shape of an object (robust feature).

training. Still, systematic errors (e.g., vital con-
cepts consistently omitted in text) could be detri-
mental. However, a moderate amount of random
noise might be less problematic. We tested this
hypothesis on the Shapes dataset by taking 10%
of the training examples and replacing their text
descriptions with random ones. The performance
did not change significantly (Tab. 5) confirming our
hypothesis.

Conclusion

The objective of this study is to enhance the prac-
ticality of Concept Bottleneck Models by elimi-
nating the need for predefined concepts provided
by experts and annotating each training example.
Instead, our approach utilizes textual descriptions
to guide the induction of interpretable concepts.
Through experiments, we demonstrate the advan-
tages of using textual guidance compared in terms
of interpretability in a range of set-ups. We be-
lieve there are numerous ways to expand on this
work, particularly by incorporating a large lan-
guage model into the textual component. We con-
tend that the broader exploration of leveraging guid-
ance from text or language models to shape abstrac-
tions in models for various domains remains largely
unexplored. This direction holds great promise
for enhancing the transparency and robustness of
models utilized in decision-making applications.
Our study serves as an illustration of one potential
method for providing such guidance.

Limitations

Information leakage. A concept has the potential
to reveal additional information about the input,
which may not be immediately evident upon
inspecting the concept itself. To address this
concern, we employ discrete representations
and promote disentanglement between concepts,
drawing on conclusions from a prior investigation

Metric Shapes Noisy (10 %)
F1 ↑ .96 ± .01 .94 ± .01
Disent. ↑ .78 ± .03 .75 ± .03
Compl. ↑ .74 ± .12 .76 ± .12
Inform. ↓ .07 ± .02 .09 ± .02

Table 5: Performance of XCB on Shapes vs. Shapes
with 10% of text descriptions replaced by random ones.

on information leakage (see section 4 in Mahinpei
et al. (2021)).

Domain dependence. Intepretation of neurons is
known to not generalize across domains (Sajjad
et al., 2022): the same neuron may encode different
phenomena in two different domains. It is likely to
be the case for latent concepts. Our studies were
restricted to fairly narrow domains.

User studies. The most reliable way to guarantee
the interpretability and usefulness of representa-
tions is through user studies. However, conducting
these studies for evaluating interpretability can be
costly and challenging to design. In this work,
we primarily focused on automatic metrics instead.
Nevertheless, it is important to note that these met-
rics are not flawless and constrained us to datasets
where ground-truth semantic concepts are avail-
able.

Ethics Statement

Like any other machine learning models, the po-
tential for misuse of XCB technology should not
be overlooked. Users of XCB, along with other
interpretability technologies, need to be aware that
it lacks guarantees of faithfulness. Moreover, being
a new model architecture, it runs the risk of intro-
ducing harmful biases that are not present in more
established architectures. Consequently, its appli-
cation in practical settings necessitates thorough
user studies and scrutiny.

Although our experiments employ a public med-
ical dataset, and we hope that this line of research
will ultimately yield systems capable of effectively
supporting decision-making in healthcare, it is cru-
cial to emphasize that, at the current stage of de-
velopment, such unproven technology cannot be
employed in any critical application.
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A Computational Requirements

The primary source of computational overhead in
XCB (compared to standard models) tends to be the
cross-modal agreement of latent representations on
training time, which in turn is majorly influenced
by the size of bottleneck. Keeping bottlenecks of
reasonable size (approximately equal to the number
of factors of underlying generative process) results
in 15-25% increase in training time (Tab. 6). Note
that another possible source of computational com-
plexity could be an average pairwise cosine simi-
larity of contextualised embeddings ri. Although,
in practice it was applied to a random subset of 5%
of training examples and did not affect the runtime
substantially.

B Optimization

Training objective for XCB models is generally
consists of four terms:

• classification loss functions for visual and tex-
tual components of XCB, e.g, for all our se-
tups we used regular cross-entropy loss;

• tying loss that ensures cross-modal alignment
of two latent representations c and f activated
by sigmoid function, e.g., Jensen–Shannon
divergence (1);
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• sparsity regularizer for contextualised embed-
dings ri, e.g., pairwise cosine similarity (2).

lossreg(r) =
1

n2

n∑

i=0

n∑

j=0

ri · rj
|ri||rj |

(2)

In practice, visual modality often tends to be
more complicated than textual, which makes model
favor updating visual component rather than tex-
tual one. Empirically, we found that there are two
straightforward ways to improve convergence: (a)

Dataset Standard XCB
Shapes 30.5 ± 0.0 35.1 ± 0.1
CUB-200 85.2 ± 0.3 106.4 ± 0.4
MIMIC 134.5 ± 0.4 162.4 ± 0.5

Table 6: Training time averaged over five training runs
for Standard vs. XCB models in seconds on Tesla-V100
16Gb.

pre-train visual component and with a decrease in
its learning rate gradually add gradients from tex-
tual component, (b) associate each block of the
model with a particular frequency of weights up-
dating so that fvisual < ftextual.

C Examples

Shapes (Fig. 7, top): retrieved concepts include
description of color ("crimson", "red") and shape
("three", "angles"). Note that concept "circular"
corresponds to a negative logit in f , so we can
speculate that model regards object in the image as
the opposite to a "circular" one.

CUB-200 (Fig. 7, middle): retrieved concepts in-
clude description of plumage texture ("buff", "eyer-
ing"), beak shape ("hooked", "seabird"), and color
of upperparts ("grey").

Figure 7: Interpretations of logits in latent representa-
tion f on inference time for Shapes dataset (top), CUB-
200 (middle), and MIMIC-CXR (bottom) datasets.
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MIMIC-CXR (Fig. 7, bottom): retrieved concepts
include name of observed pathologies ("pneumoth-
orax", "edema"), and some indirect factors ("focal",
"volume", "low") used in similar context.

D Textual Redundancy

One of the possible applications for XCB models
could be medical imaging, where structured reports
produced by radiologists often possess redundant
data, e.g., in impression and findings sections. To
examine how effectively the model could handle
and process such data we simulated redundancy
by concatenating paraphrased description to the
descriptions in the Shapes dataset. We observed
no discernible difference in results (Tab. 7) and
attribute it to the fact that our sparsity regularizer
ensures each text fragment corresponds to a single
concept, but does not penalize a concept being
inferred from multiple text segments.

Metric Original Redundant
F1 ↑ .96 ± .01 .95 ± .01
Disent. ↑ .78 ± .03 .79 ± .05
Compl. ↑ .74 ± .12 .80 ± .05
Inform. ↓ .07 ± .02 .07 ± .02

Table 7: Performance of XCB on original Shapes vs.
Shapes with redundant text descriptions.
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