
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 5394–5416
December 6-10, 2023 ©2023 Association for Computational Linguistics

Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages

Alexandra Butoi1 Tim Vieira1 Ryan Cotterell1 David Chiang2

1ETH Zürich 2University of Notre Dame
{alexandra.butoi, ryan.cotterell}@inf.ethz.ch

dchiang@nd.edu tim.f.vieira@gmail.com

Abstract

The class of tree-adjoining languages can be
characterized by various two-level formalisms,
consisting of a context-free grammar (CFG)
or pushdown automaton (PDA) controlling an-
other CFG or PDA. These four formalisms are
equivalent to tree-adjoining grammars (TAG),
linear indexed grammars (LIG), pushdown-
adjoining automata (PAA), and embedded push-
down automata (EPDA). We define semiring-
weighted versions of the above two-level for-
malisms, and we design new algorithms for
computing their stringsums (the weight of all
derivations of a string) and allsums (the weight
of all derivations). From these, we also imme-
diately obtain stringsum and allsum algorithms
for TAG, LIG, PAA, and EPDA. For LIG, our
algorithm is more time-efficient by a factor of
O(n|N |) (where n is the string length and |N |
is the size of the nonterminal set) and more
space-efficient by a factor of O(|Γ|) (where
Γ is the size of the stack alphabet) than the
algorithm of Vijay-Shanker and Weir (1989).
For EPDA, our algorithm is both more space-
efficient and time-efficient than the algorithm
of Alonso et al. (2001) by factors of O(|Γ|2)
and O(|Γ|3), respectively. Finally, we give the
first PAA stringsum and allsum algorithms.

1 Introduction

Weir (1992) introduced a hierarchy of formal lan-
guages whose first level (L1) is the class of context-
free languages and second level (L2) is the class of
tree-adjoining languages. Just as context-free lan-
guages can be characterized by both context-free
grammars and pushdown automata, tree-adjoining
languages are characterized by multiple formalisms
as well, including tree-adjoining grammars (TAG;
Joshi et al., 1975), linear indexed grammars (LIG;
Gazdar, 1988), embedded pushdown automata
(EPDA; Vijay-Shanker, 1987), and pushdown-
adjoining automata (PAA; Butoi et al., 2023).

Tree-adjoining languages can further be
characterized through the mechanism of control
(Weir, 1992), which yields various two-level
formalisms. Specifically, we have shown that

controller WCFG

CNF

WLD-CFG

WLD-CFG CNF

Prop. 1

CFG ▷ CFG NF
Fig. 2

(a) Normal form results.

Stringsum Allsum

CFG ▷ CFG NF

CFG ▷ CFGspinal TAG
d-strong equivalence

Fig. 2Fig. 2

Fig. 4a Fig. 4b

(b) Stringsum and allsum results.

Figure 1: Overview of the results presented in this paper.
Solid lines are new results shown in the paper; dashed
lines are old results. An arrow X → Y means “X
can be converted to Y ”; an arrow X ↠ Y means “X
has an algorithm for computing Y ". We only show the
conversions and algorithms for CFG ▷ CFG; the results
for the other three two-level formalisms are analogous.

CFGs controlled by CFGs, CFGs controlled by
PDAs, PDAs controlled by CFGs, and PDAs
controlled by PDAs are equivalent to TAG, LIG,
PAA, and EPDA, respectively, in a strict sense
called d-strong equivalence (Butoi et al., 2023).

When designing statistical parsers for tree-
adjoining formalisms, it is often useful to consider
their semiring-weighted generalizations. In this
paper, we introduce semiring-weighted versions
of the above two-level formalisms, and we give
new, more efficient algorithms for computing
stringsums (the total weight of all derivations of
a string) in these formalisms.

Lang (1974) gives a recognition algorithm for
(what we call) simple PDAs, which can pop and
push at most one stack symbol. We have shown that
this algorithm is suboptimal, and that (what we call)
top-down PDAs, which always pop exactly one
stack symbol, allow computing stringsums more

5394

mailto:alexandra.butoi@inf.ethz.ch
mailto:ryan.cotterell@inf.ethz.ch
mailto:dchiang@nd.edu
mailto:tim.f.vieira@gmail.com

efficiently (Butoi et al., 2022).
Existing definitions of LIG (Vijay-Shanker

and Weir, 1989; Joshi et al., 1991; Kanazawa,
2014) are equivalent to CFGs controlled by simple
PDAs, and existing recognition algorithms (e.g.,
Vijay-Shanker and Weir, 1989) have the same
limitation that makes Lang’s algorithm suboptimal.
By using a top-down PDA as a controller instead,
we obtain a new stringsum algorithm that is more
space-efficient and runs asymptotically faster.
Additionally, we obtain an algorithm for allsums
(the total weight of all derivations) that is more
space-efficient.

All stringsum algorithms that operate directly
on EPDAs that we are aware of (Alonso et al.,
2000, 2001) are designed for specific types of
EPDAs, failing to take advantage of the structure of
computation in top-down PDAs. We design a new
stringsum algorithm for a subclass of EPDA that
is equivalent to a top-down PDA controlled by a
top-down PDA, and we obtain both time and space
improvements over these previous algorithms.
Additionally, we design a more space-efficient
EPDA allsum algorithm.

Our algorithms assume that CFGs are given in
Chomsky normal form, and for PDAs, we define
a new normal form that is exactly analogous to
the Chomsky normal form. We show that applying
these normal forms to controllers and controllees in-
duces, for free, normal forms for the two-level for-
malisms and for TAG, LIG, PAA, and EPDA. The
conversions into the normal forms for all these for-
malisms become simpler than direct conversions,
as they only require CFG or PDA conversions. We
leave extensions of our stringsum and allsum algo-
rithms to general CFGs/PDAs for future work.

The main contributions of this paper are:
• Semiring-weighted versions of the formalisms

CFG ▷ CFG (§3), PDA ▷ CFG, CFG ▷ PDA, and
PDA ▷ PDA (App. B.1).

• Normal forms for these formalisms that arise, for
free, from the normal forms of the controller/-
controllee CFGs/PDAs (§3.2 and App. B.2).

• Stringsum algorithms for CFG ▷ CFG (§4), PDA
▷ CFG, and PDA ▷ PDA (App. C.2) that are
more time-efficient or space-efficient than the
existing algorithms for their equivalent LIG and
EPDA.

• The first stringsum algorithm for CFG ▷ PDA,
and therefore, for PAA (App. C.2).

• Algorithms for computing allsums in these two-

level formalisms (§5 and App. D).

2 Preliminaries

Let [i:j] denote the sequence of integers (i, . . . , j).
If s is a string, we write |s| for the length of s, si
for the ith symbol of s, and s(i:j] for the substring
si+1 · · · sj .

2.1 Semiring-Weighted Languages

Throughout this paper, we assume that W =
(W,⊕,⊗,0,1) is a commutative semiring. We
also sometimes assume that W is ω-continuous,
which makes it possible to take (countably) infi-
nite sums. Please see App. A.1 for definitions of
these terms. Readers not familiar with semirings
may safely assume that W = R≥0 ∪ {∞}, 0 = 0,
1 = 1, and ⊕ and ⊗ are the usual addition and
multiplication operations, respectively.

Definition 1. An alphabet Σ is a non-empty fi-
nite set of symbols. A language over Σ is a
subset of Σ’s Kleene closure Σ∗ def

=
⋃

n≥0Σ
n.

A weighted language over Σ with weights from
W = (W,⊕,⊗,0,1) is a mapping from Σ∗ to W .

This paper considers weighted formalisms,
where the weights are taken from W . Rather than
just producing or recognizing strings from a for-
mal language, these formalisms define a weighting
function over Σ∗. When W is the boolean semiring
({0, 1},∨,∧, 0, 1), we recover the usual notion of
a formal language defined as a set of strings.

2.2 Weighted Context-Free Grammars

Definition 2. A weighted context-free grammar
(WCFG) over a semiring W = (W,⊕,⊗,0,1)
is a tuple G = (N ,Σ,R,w,S), where N , Σ are
finite sets of nonterminal symbols and terminal sym-
bols, respectively, R ⊆ N × (Σ ∪N)∗ is a finite
set of productions, w: R → W is a production-
weighting function, and S ∈ N is the start symbol.

We write a production (X ,α) ∈ R as X → α,
and if w(X → α) = w, we write X

w−→ α.

A WCFG produces strings by starting from the
symbol S and repeatedly replacing the leftmost
nonterminal X with the right-hand side of a produc-
tion X → α until no more nonterminals are left. In
the following definitions, let G = (N ,Σ,R,w,S)
be a WCFG.

Definition 3. If α = β1Xβ2 and α′ = β1γβ2

are sequences of terminals and nonterminals of G,
where β1 ∈ Σ∗ and β2 ∈ (Σ ∪N)∗, and p =

5395

(X
w−→ γ) is a production of G, we write α

p
=⇒

α′ to denote that α derives α′ in one step using
production p.

Definition 4. A partial derivation in G from α0 to
αn is a sequence of steps d = α0

p1
=⇒ · · · pn

=⇒ αn.

We write α0
∗
=⇒ αn to assert that some partial

derivation from α0 to αn exists, or to denote the
set of all such partial derivations. If α0 = S and
αn = s ∈ Σ∗, we call d a derivation of s, or that
G derives s.

The weight of d is the product of its production
weights,

w(d)
def
=

n⊗

i=1

w(pi).

We denote by D(G, s) the set of all derivations
in G of s and by D(G) the set of all derivations
in G.

Definition 5. The stringsum w(G, s) of a string
s under G is the total weight of all derivations in
G for s,

w(G, s)
def
=

⊕

d∈D(G,s)

w(d).

Definition 6. The allsum w(G) of G is the total
weight of all its derivations,

w(G)
def
=

⊕

d∈D(G)

w(d).

3 Semiring-Weighted CFG ▷ CFG

Weir (1992) defined a hierarchy of formal lan-
guages and showed that its second level, which is
commonly known as the class of tree-adjoining lan-
guages, can be obtained through the mechanism of
control, using a CFG (the controllee) whose deriva-
tions are controlled by another CFG (the controller).
In previous work (Butoi et al., 2023), we extended
this mechanism to PDAs, both as controllers and
controllees, and obtained four distinct formalisms
by mixing a controller CFG or PDA with a con-
trollee CFG or PDA. In this paper, we use semiring-
weighted versions of these formalisms. We give a
formal definition of a weighted CFG ▷ CFG here
(see App. B.1 for the other three definitions).

We denote such a grammar by G1 ▷ G2, where
G1 is the controller and G2 is the controllee.
Additionally, we use symbols X ,Y ,Z , . . . and
a, b, c, . . . for nonterminals and terminals of the
controllee, and A,B,C, . . . and a, b, c, . . . for non-
terminals and terminals of the controller.

3.1 Definition

A weighted labeled distinguished CFG (WLD-
CFG) is simply a WCFG where each production
has a label, and its right-hand side has one “dis-
tinguished” occurrence of a nonterminal symbol.
These two extensions allow its derivations to be
controlled by another formalism.

Definition 7. A weighted labeled distinguished
context-free grammar (WLD-CFG) over a semir-
ing W = (W,⊕,⊗,0,1) is a tuple G =
(N ,Σ, L,R,w,S), where

• N , Σ, and L are finite sets of nonterminal
symbols, terminal symbols, and labels, respec-
tively,

• R ⊆ L × N × N × (N ∪ Σ)∗ is a finite set
of productions,

• w: R → W is a production-weighting func-
tion, and

• S ∈ N is the start symbol.

If (ℓ, i, A, β1 · · ·βn) is a production in R, we must
have either i = 0, which we write as

ℓ : A → β1 · · ·βn

or 1 ≤ i ≤ n and βi ∈ N , which we write as

ℓ : A → β1 · · ·βi−1

(

βiβi+1 · · ·βn.

Weir (1992) gave two definitions of a derivation
in an LD-CFG (the controllee) controlled by an-
other CFG (the controller). In his first definition,
the controllee nonterminals keep a record of the
productions used, called a control word (a string in
L∗). At the end of the derivation, each control word
is checked for membership in the language of the
controller. In his second definition, the controllee
nonterminals run a controller derivation. When
the controller generates a label ℓ ∈ L, it causes
the controllee to apply production ℓ. We use the
latter definition, which allows one to think of the
controller and the controllee as a single grammar,
merging their productions into a single set of rules.

For any sets X and Y , we define X [Y] =
{X [Y] | X ∈ X ,Y ∈ Y}, where X [Y] is
just another way of writing the ordered pair of X
and Y . If α = X1 · · ·Xk ∈ X ∗ is a sequence
of nonterminals, we use the notation α[Y] =
X1[Y] · · ·Xk[Y] for any Y ∈ Y .

5396

To make the following definition more readable,
we assume that the controller’s right-hand sides
are either a single label or a string of nonterminals,
and that the controllee right-hand sides are either
a single terminal or a string of nonterminals with
exactly one distinguished position. It would be
possible, but more tedious, to write the definition
for the general case.

Definition 8. Let G1 be a WCFG with nontermi-
nals N 1 and terminals L, called the controller,
and let G2 be a WLD-CFG with nonterminals N 2

and labels L, called the controllee. Then G1 ▷ G2

is a rewriting system with the following rules:

• If (A w−→ β) is a production of G1 where
β ∈ N ∗

1, then G1 ▷ G2 has a rule
X [A ··] w−→ X [β ··] for each X ∈ N 2.

• If (A w1−→ ℓ) is a production of G1

and (ℓ : X
w2−→ α1

(

Yα2) is a produc-
tion of G2, then G1 ▷ G2 has a rule
X [A ··] w1⊗w2−−−−→ α1[S]Y [··]α2[S].

A derivation in G1 ▷ G2 starts with S [S]. If
there is a rule p = (X [A ··] w−→ α1Y [β1 ··]α2),
then for any α0 ∈ Σ∗, β2 ∈ N ∗

2, and α3 ∈
(Σ ∪N 1[N ∗

2])
∗, we write

α0X [Aβ2]α3
p
=⇒ α0α1Y [β1β2]α2α3.

Similarly, if there is a rule p = (X [A] w−→ α), then
for any α0 ∈ Σ∗, and α3 ∈ (Σ ∪N 1[N ∗

2])
∗, we

write

α0X [A]α3
p
=⇒ α0αα3.

We write ∗
=⇒ to denote a derivation with zero or

more steps, as in Def. 4. If S [S]
∗
=⇒ s ∈ Σ∗, we

say that G1 ▷ G2 derives s.

Example 1. Consider the following G1 ▷ G2 that
generates the language {anbncndn | n ∈ N}. The
controller is a WCFG G1 with the start symbol S1
and the set of productions

R1 =

S1
1−→ TL3

T
1−→ L1TL2

T
1−→ ε

Li
1−→ ℓi (i ∈ [1 : 3])

S1
1−→ ℓi (i ∈ [4 : 7])

and the controllee is a WLD-CFG G2 with start
symbol S2 and the set of productions

R2 =

ℓ1 : S2
1−→ A

(

S2D ℓ4 : A
1−→ a

ℓ2 : S2
1−→ B

(

S2C ℓ5 : B
1−→ b

ℓ3 : S2
1−→ ε ℓ6 : C

1−→ c

ℓ7 : D
1−→ d

.

Below is a derivation of the string aabbccdd.

S2[S1] ⇒ S2[TL3]

⇒ S2[L1TL2L3]

⇒ A[S1]S2[TL2L3]D[S1]

⇒ aS2[TL2L3]D[S1]

⇒ aS2[L1TL2L2L3]D[S1]
∗
=⇒ aaS2[L2L2L3]D[S1]D[S1]

⇒ aaB[S1]S2[L2L3]C[S1]D[S1]D[S1]

⇒ aabS2[L2L3]C[S1]D[S1]D[S1]
∗
=⇒ aabbccdd.

Analogous definitions for when the controller is
a WPDA and/or the controllee is a WLD-PDA are
given in App. B.1.

3.2 Normal Form

In this section, we define a normal form for CFG
▷ CFG that will help us design fast stringsum and
allsum algorithms. Interestingly, this normal form
arises naturally from the normal forms of the con-
trollee and the controller. Analogous normal forms
are derived for PDA ▷ CFG, CFG ▷ PDA, and PDA
▷ PDA in App. B.2.3.

Definition 9. A WCFG is in Chomsky normal
form if all of its productions are of one of the follow-
ing types: (1) S → ε, (2) X → a , or (3) X → YZ ,
where S ,X ,Y ,Z ∈ N and a ∈ Σ. Moreover,
S does not appear on the right-hand side of any
production.

A WLD-CFG is in Chomsky normal form if all
of its productions are of type (1) or (2) above, (3a)
X → (

YZ , or (3b) X → Y

(

Z .

Proposition 1. For any WCFG G1 with weights
in an ω-continuous semiring, there is a WCFG
in Chomsky normal form that defines the same
weighted language as G1.

For any WLD-CFG G2 with weights in an
ω-continuous semiring, there is a WLD-CFG in
Chomsky normal form that is equivalent to G2.

5397

G1 G2 G1 ▷ G2 name

S w1−→ ℓ ℓ : S
w2−→ ε S [S]

w1⊗w2−−−−→ ε (epsilon)
A w1−→ ℓ ℓ : X

w2−→ a X [A] w1⊗w2−−−−→ a (terminal)
A w1−→ ℓ ℓ : X

w2−→ (

YZ X [A ··] w1⊗w2−−−−→ Y [··]Z [S] (left pop)
A w1−→ ℓ ℓ : X

w2−→ Y

(

Z X [A ··] w1⊗w2−−−−→ Y [S]Z [··] (right pop)
A w1−→ BC X [A ··] w1−→ X [BC ··] (push)

Figure 2: Normal form of CFG ▷ CFG. Each row shows a rule from G1 (in Chomsky normal form) and possibly a
rule from G2 (in Chomsky normal form) and the resulting normal-form rule of G1 ▷ G2 along with its name.

Proof. See App. B.2.1.

Recall that a CFG ▷ CFG is defined as a LD-CFG
whose derivations are controlled by another CFG.
When we consider only W(LD-)CFGs in Chomsky
normal form, we obtain, for free, a normal form for
CFG ▷ CFG only by mixing their rules, as shown
in Fig. 2. For the epsilon rule, in principle the left-
hand side could be S [A] for any A, but such rules
would never be used.

Due to d-strong equivalence, this normal form
also induces a normal form for TAG. But, in order
to convert a TAG into the normal form, one needs
to first extract the controller and the controllee as
shown by Butoi et al. (2023), then convert these
to the Chomsky normal form, merge their rules,
and convert them back to a TAG, also shown by
Butoi et al. (2023) (see App. E for a complexity
analysis of these transformations). Although these
transformations add some extra complexity, the
conversion into the normal form becomes simpler
as it only requires (LD-)CFG conversions, rather
than a direct TAG conversion. We leave a direct
conversion for future work.

4 Computing Stringsums

In this section, we give a deduction system for com-
puting stringsums of a particular string s in CFG
▷ CFG in normal form. Stringsums of a string s
can be computed analogously in PDA ▷ CFG, CFG
▷ PDA, and PDA ▷ PDA; we show the deduction
systems for these in App. C.2. Due to d-strong
equivalence, these deduction systems can also be
used for spinal TAG, LIG, EPDA, and spinal PAA
by first converting them to their equivalent two-
level formalism. Our algorithms have improved
space requirements and run asymptotically faster
than the best algorithms for LIG and EPDA. More-
over, it is the only stringsum algorithm for PAA

that we are aware of.

4.1 Pop Computations
In order to compute stringsums efficiently, we de-
compose derivations into shareable smaller parts.
Our decomposition is based on a concept that has
been extensively used in the literature (Kuhlmann
et al., 2011; Butoi et al., 2022) for decomposing
runs of pushdown automata, namely pop computa-
tions. In the context of WPDAs, a pop computation
is a partial derivation that has the overall effect of
popping a single stack symbol, leaving the rest of
the stack unchanged (Butoi et al., 2022). We can
define pop computations of CFG ▷ CFG with a
similar interpretation: partial derivations that “pop”
a single leftmost nonterminal symbol, leaving the
rest of the nonterminals unchanged. We define pop
computations of CFG ▷ CFG formally below. The
pop computations of PDA ▷ CFG, CFG ▷ PDA,
and PDA ▷ PDA are defined similarly; we present
these in App. C.1.
Definition 10. Let G1 be a controller WCFG and
G2 be a WLD-CFG, with nonterminal alphabets
N 1 and N 2, respectively. Let s ∈ Σ∗ be a string of
length |s| = n. A pop computation of G1 ▷ G2 of

type

X [A ··]

i l

j k

Y [··] , where 0 ≤ i ≤ j ≤ k ≤ l ≤ n,

X ,Y ∈ N 2, and A ∈ N 1, is a pair of partial
derivations (d1, d2), where

d1 ∈ (X [A] ∗
=⇒ s(i:j]Y [ε]Υ2)

d2 ∈ (Υ2
∗
=⇒ s(k:l]).

The weight of the pop computation is w(d1, d2) =
w(d1)⊗w(d2).

A pop computation of type
X [A]

i j
is a partial

derivation X [A] ∗
=⇒ s(i:j].

5398

In words, a pop computation of a CFG ▷ CFG
pops a single controller symbol and derives a string
possibly with a gap. Fig. 3 shows a visual repre-
sentation of a pop computation of a CFG ▷ CFG.

X [Aα]

si sjsk sl

Y [α]

Figure 3: A pop computation of a CFG ▷ CFG is a par-
tial derivation possibly with a gap (the teal part). First,
X [Aα] derives s(i:k] and Y [α], popping one nontermi-
nal A. Then Y [α] derives the gap (s(k:l]). Finally, the
purple part of the partial derivation resumes, deriving
s(l:j]. The weight of the pop computation is the weight
of the purple part of the partial derivation.

4.2 Deduction System

We compute stringsums of CFG ▷ CFG efficiently
by exploiting the decomposable structure of the pop
computations. We give the stringsum algorithm as
a weighted deduction system (Goodman, 1999),
shown in Fig. 4a.

Items. The deductive system has two types of
items, which correspond to the two types of pop
computations (one with a gap and one without
a gap). The weights of these items are the total
weights of the pop computations of those types.

Deduction rules. We distinguish several types
of pop computations based on their first production
and include a deduction rule for each. The weight
of each pop computation can be derived recursively
from the weights of shorter pop computations. The
weight of each deduction rule is the weight of the
production in the side condition. Notice that the
deduction system only shows how to derive further
items, leaving the order in which these items should
be derived by an algorithm unspecified.

Goal item. The goal item is S [S]

0 n
, which

stands for all derivations from S [S] to s, where
|s| = n. Its weight is the total weight of all such
derivations, which is exactly the stringsum.

4.3 Correctness

We prove the correctness of the deduction system
for CFG ▷ CFG using the following theorem.

Theorem 1. Let G1 be a controller WCFG with
nonterminal alphabet N 1 and start symbol S, and
G2 a WLD-CFG with nonterminal alphabet N 2.
Let s ∈ Σ∗ be a string of length |s| = n.

(a) The weight w of an item
X [A]

i j
, where X ∈

N 2, and 0 ≤ i ≤ j ≤ n, is the total weight of
all pop computations of this type.

(b) The weight of an item

X [A ··]

i l

j k

Y [··] , where

A ∈ N 1, X ,Y ∈ N 2, and 0 ≤ i ≤ j ≤
k ≤ l ≤ n, is the total weight of all pop
computations of this type.

Proof. Define the span of item X [A]

i j
to be j − i,

and that of item

X [A ··]

i l

j k

Y [··] to be j − i+ l − k.

We proceed by induction on the span ℓ.

Base Case. When ℓ = 1, the pop computation
consists of a single step X [A]

p
=⇒ a . The weight of

item X [A]

i − 1 i
is w(p) according to inference rule

(terminal).

Inductive Step. Assume that the statement holds
for pop computations with span at most (ℓ − 1)
and consider pop computations with span ℓ. The
weight of all pop computations of a certain type
is the sum of various cases, distinguished by their
first production.

Starting with left pop rules. Any pop computa-
tion starting with X [A] and a left pop production p

has the form (X [A]
p
=⇒ Y [ε]Z [S],Z [S]

∗
=⇒ s(j:k]).

By the inductive hypothesis, the weight w1 of
item Z [S]

j k
is the total weight of all partial deriva-

tions such that Z [S]
∗
=⇒ s(j:k]. By distributivity, the

total weight of all pop computations of the above
form is w(p) ⊗ w1. This weight is added to the

weight of the item

X [A ··]

i o

k l

Y [··] in inference rule

(left pop).
Since the rules are symmetric, a similar argu-

ment can be used for pop computations that start
with right pop rules.

Starting with push rules. Any pop computation
starting with X [A] and a push production p has the

5399

name (a) stringsum (b) allsum side condition

(epsilon)
S [S]

0 n

n = 0
S [S]

S [S]
w−→ ε

(terminal)
X [A]

i−1 i

si = a
X [A]

X [A] w−→ a

(left pop)

Z [S]

j k

X [A ··]

i k

i j

Y [··]

Z [S]

X [A ··]

Y [··]

X [A ··] w−→ Y [··]Z [S]

(right pop)

Y [S]

i j

X [A ··]

i k

i j

Z [··]

Y [S]

X [A ··]

Z [··]

X [A ··] w−→ Y [S]Z [··]

(push-1)

X [B ··]

i o

j m

Y [··]

Y [C ··]

j m

k l

Z [··]

X [A ··]

i o

k l

Z [··]

X [B ··]

Y [··]

Y [C ··]

Z [··]

X [A ··]

Z [··]

X [A ··] w−→ X [BC ··]

(push-2)

X [B ··]

i l

j k

Y [··] Y [C]

j k

X [A]

i l

X [B ··]

Y [··]
Y [C]

X [A]
X [A ··] w−→ X [BC ··]

Figure 4: Deductive systems for computing stringsums and allsums of CFG ▷ CFG.

form (d1, d2), where

d1 = X [A]
p
=⇒ X [BC]

∗
=⇒ s(i:j]Y [C]Υ2

∗
=⇒ s(i:j]s(j:k]Z [ε]Υ1Υ2,

d2 = Υ1Υ2
∗
=⇒ s(l:m]Υ2

∗
=⇒ s(l:m]s(m:o].

By the inductive hypothesis, the weight w1 of item
X [B ··]

i o

j m

Y [··] is the weight of all pop computa-

tions (X [B]
∗
=⇒ s(i:j]Y [ε]Υ2,Υ2

∗
=⇒ s(m:o]). Sim-

ilarly, the weight w2 of item

Y [C ··]

j m

k l

Z [··] is the

total weight of all pop computations (Y [C]
∗
=⇒

s(j:k]Z [ε]Υ1,Υ1
∗
=⇒ s(l:m]). By distributivity,

the total weight of all such partial derivations is
w(p) ⊗ w1 ⊗ w2. This weight is added to the

weight of the item

X [A ··]

i o

k l

W [··] in inference rule

(push-1).

Any pop computation starting with X [A] and a

5400

push production p has the form

X [A]
p
=⇒ X [BC]

∗
=⇒ s(i:j]Y [C]Υ2

∗
=⇒ s(i:j]s(j:k]Υ2

∗
=⇒ s(i:j]s(j:k]s(k:l].

By the inductive hypothesis, the weight w1 of item
X [B ··]

i l

j k

Y [··] is the weight of all pop computations

(X [B]
∗
=⇒ s(i:j]Y [ε]Υ2,Υ2

∗
=⇒ s(k:l]), while the

weight w2 of item Y [C]

j k
is the weight of all pop

computations Y [C]
∗
=⇒ s(j:k]. By distributivity,

the total weight of all such partial derivations is
w(p)⊗w1⊗w2. This weight is added to the weight

of the item X [A]

i l
in inference rule (push-2).

4.4 Complexity Analysis

Let X1 and X2 be the sets of nonterminals or stack
symbols of the controllers and of the controllees,
respectively. An algorithm based on one of our
deductive systems would would need to store a

weight for each item

X [A ··]

i l

j k

Y [··] and X [A]

i j
, for

all i, j, k, l ∈ [0:n], A ∈ X1, and X ,Y ∈ X2,
giving a space complexity of O(n4|X1||X2|2) and
O(n2|X1||X2|), respectively. Overall we get a
space complexity of O(n4|X1|2|X2|).

Computing the weight of each new item requires
in the worst case inference rule (push-1), iterating
over indices i, j, k, l,m, n ∈ [0:n], and symbols
X ,Y ,Z ∈ X2 and A,B,C ∈ X1. This gives a
runtime of O(n6|X1|3|X2|3).

4.5 Comparison with Existing Algorithms

Vijay-Shanker and Weir (1989) designed a recogni-
tion (which is essentially computing stringsums in
the boolean semiring) algorithm for a type of LIG
that is d-strongly equivalent to a CFG in Chom-
sky normal form controlled by a simple PDA. Our
stringsum algorithm is more space-efficient than
theirs by a factor of |Γ| and more time-efficient
by a factor of n|N |, where n is the string length,
|Γ| is the size of the stack alphabet, and |N | is the
size of the alphabet of nonterminals. Their algo-
rithm could be improved using a trick similar to

the one used by Butoi et al. (2022), resulting in an
algorithm with the same runtime as ours. But, in
order to do so, it is necessary to store additional
items, which increases the space complexity by an-
other factor of |Γ|. Additionally, on the type of LIG
used by Vijay-Shanker and Weir, we get a further
runtime improvementof a factor of O(|Γ|).

For EPDA, our stringsum algorithm is more
space-efficient than the algorithm of Alonso et al.
(2001) by a factor of |Γ|2 and has an improved run-
time by a factor of |Γ|3, where |Γ| is the size of the
stack alphabet. Their algorithm is designed for an
EPDA without finite-state control, which is equiv-
alent to a PDA ▷ PDA where both the controller
and the controllee are single-state. Therefore, we
exclude the states when comparing the two algo-
rithms.

5 Computing Allsums

We reuse the notion of pop computation that we
defined in §4.1 in order to derive a space-efficient
algorithm for computing allsums of CFG ▷ CFG.
Allsums of PDA ▷ CFG, CFG ▷ PDA, and PDA ▷
PDA can be computed similarly (see App. D). We
define a new type of pop computation that will help
us compute the weight of all derivations instead of
derivations of a particular string.

Definition 11. Let G1 be a controller WCFG and
G2 a WLD-CFG, with nonterminal alphabets N 1

and N 2, respectively. Let be a symbol not occur-
ring in the rules of G1 ▷ G2. A pop computation of

type

X [A ··]

Y [··] , where A ∈ N 1 and X ,Y ∈ N 2,

is a pair of partial derivations (d1, d2), where

d1 ∈ (X [A] ∗
=⇒ s1Y [ε]Υ2)

d2 ∈ (Υ2
∗
=⇒ s2)

where s1, s2 ∈ Σ∗ and Υ2 ∈ N 1[N ∗
2]
∗. The

weight of this pop computation is w(d1, d2) =
w(d1)⊗w(d2).

A pop computation of type
X [A]

is a partial

derivation X [A] ∗
=⇒ s, where s ∈ Σ∗.

Fig. 4b shows the deduction system for comput-
ing allsums. Just as for stringsums, we distinguish

two types of items, those of type

X [A ··]

Y [··] and

X [A] .

5401

Theorem 2. Let G1 be a controller WCFG with
nonterminal alphabet N 1 and start symbol S, and
G2 a WLD-CFG with nonterminal alphabet N 2.
Assume that both have weights in an ω-continuous
semiring (App. A.1). Then the allsum of G1 ▷ G2

is the value of the item
S [S]

in the deductive system

of Fig. 4b.

Unlike for stringsums, this deduction system has
cycles. The value of the goal item S [S] can be

found using fixed-point iteration (Goodman, 1999)
or the semiring generalization of Newton’s method
(Esparza et al., 2007).

Since there are various algorithms for computing
item values, we don’t analyze time complexity, but
only space complexity. Let N 1 and N 2 be the sets
of nonterminals or stack symbols of the controller
and the controllee, respectively. As the algorithm

needs to store an item of the form

X [A ··]

Y [··] for

each X ,Y ∈ N 2 and A ∈ N 1, and an item of the
form X [A] for each X ∈ N 2 and A ∈ N 1, it has a

space complexity of O(|N 1||N 2|2). If we were to
compute allsums in LIG using an algorithm based
on Vijay-Shanker and Weir’s (1989) algorithm, we
would have stored O(|N 1|2|N 2|2) items, therefore
we have a space improvement of a factor of |N 1|.
Similarly, we get a space improvement for EPDA of
a factor of |N 1|2 over the allsum algorithm based
on Alonso et al.’s (2001) algorithm.

6 Conclusion

Our work has contributed several new results
and algorithms for L2 formalisms. We intro-
duced semiring-weighted versions of controllable
CFGs and PDAs, which give rise naturally to four
semiring-weighted two-level formalisms when they
are controlled by semiring-weighted CFGs and
PDAs. We also introduced a WPDA normal form
that is completely analogous to the Chomsky nor-
mal form for CFGs and showed that one can derive
normal forms for the two-level formalisms only
from the normal forms of the controller and of
the controllee. These normal forms are also normal
forms for TAG, LIG, PAA, and EPDA, respectively,
and the conversions only require conversions of the
controller and the controllee. Finally, we designed
new stringsum and allsum algorithms for all of
these formalisms, some of which are faster or more
space-efficient than several existing algorithms.

Limitations

Our stringsum algorithms can be used for LIG,
EPDA, spinal TAG, and spinal PAA by first con-
verting them to a two-level formalism, converting
the resulting controller and controllee grammar/au-
tomaton into the normal form, and then merging
their rules into a single set of rules. Similarly, for a
general two-level formalism, the rules of the con-
troller and the controllee would have to be extracted
from the merged rules, converted into the normal
form, and merged back before using the stringsum
or allsum algorithm. Although simpler, requiring
only CFG and PDA conversions, these transforma-
tions add some extra complexity. We leave direct
normal form conversions for future work.

Ethics Statement

The authors foresee no ethical concerns with the
research presented in this paper.

References
Alfred V. Aho and Jeffrey D. Ullman. 1972. The Theory

of Parsing, Translation, and Compiling, volume 1.
Prentice-Hall.

Miguel A. Alonso, Éric Villemonte de la Clergerie, and
Manuel Vilares. 2001. A formal definition of bottom-
up embedded push-down automata and their tabula-
tion technique. In Proceedings of the International
Conference on Logical Aspects of Computational Lin-
guistics (LACL), page 44–61.

Miguel A. Alonso, Éric Villemonte de la Clergerie, and
Manuel Vilares. 2000. A redefinition of embedded
push-down automata. In Proceedings of the Fifth
International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+5), pages 19–26.

Y. Bar-Hillel, M. Perles, and E. Shamir. 1961. On for-
mal properties of simple phrase structure grammars.
14:143–172.

Alexandra Butoi, Ryan Cotterell, and David Chiang.
2023. Convergence and diversity in the control hier-
archy. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7597–7616. Association
for Computational Linguistics.

Alexandra Butoi, Brian DuSell, Tim Vieira, Ryan Cot-
terell, and David Chiang. 2022. Algorithms for
weighted pushdown automata. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Javier Esparza, Stefan Kiefer, and Michael Luttenberger.
2007. On fixed point equations over commutative
semirings. In Proceedings of the Annual Symposium

5402

https://dl.acm.org/doi/book/10.5555/578789
https://dl.acm.org/doi/book/10.5555/578789
https://doi.org/10.1007/3-540-48199-0_3
https://doi.org/10.1007/3-540-48199-0_3
https://doi.org/10.1007/3-540-48199-0_3
https://aclanthology.org/W00-2002
https://aclanthology.org/W00-2002
https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.18653/v1/2023.acl-long.420
https://doi.org/10.18653/v1/2023.acl-long.420
https://aclanthology.org/2022.emnlp-main.656/
https://aclanthology.org/2022.emnlp-main.656/
https://doi.org/10.1007/978-3-540-70918-3_26
https://doi.org/10.1007/978-3-540-70918-3_26

on Theoretical Aspects of Computer Science (STACS),
pages 296–307.

Gerald Gazdar. 1988. Applicability of indexed gram-
mars to natural languages. In Natural Language
Parsing and Linguistic Theories, pages 69–94.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573–606.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edition. Addison-
Wesley Longman Publishing Co.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of Computer
and System Sciences, 10(1):136–163.

Aravind K. Joshi, K. Vijay-Shanker, and David J. Weir.
1991. The convergence of mildly context-sensitive
grammar formalisms. In Foundational Issues in Nat-
ural Language Processing, pages 31–81.

Makoto Kanazawa. 2014. A generalization of linear
indexed grammars equivalent to simple context-free
tree grammars. In Formal Grammar, pages 86–103.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 673–682. Association for Com-
putational Linguistics.

Bernard Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. In ICALP 1974:
Automata, Languages and Programming, pages 255–
269.

Harry R. Lewis and Christos H. Papadimitriou. 1997.
Elements of the Theory of Computation, 2nd edition.
Prentice-Hall.

Andreas Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–
201.

K. Vijay-Shanker. 1987. A Study of Tree Adjoining
grammars. Ph.D. thesis, University of Pennsylvania.

K. Vijay-Shanker and David J. Weir. 1989. Recogni-
tion of combinatory categorial grammars and linear
indexed grammars. In Proceedings of the First Inter-
national Workshop on Parsing Technologies (IWPT),
pages 172–181.

David J. Weir. 1992. A geometric hierarchy beyond
context-free languages. Theoretical Computer Sci-
ence, 104(2):235–261.

5403

https://doi.org/10.1007/978-94-009-1337-0_3
https://doi.org/10.1007/978-94-009-1337-0_3
https://aclanthology.org/J99-4004
https://dl.acm.org/doi/book/10.5555/1196416
https://dl.acm.org/doi/book/10.5555/1196416
https://doi.org/https://doi.org/10.1016/S0022-0000(75)80019-5
https://repository.upenn.edu/cis_reports/539/
https://repository.upenn.edu/cis_reports/539/
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/10.1007/978-3-662-44121-3_6
https://doi.org/10.1007/978-3-662-44121-3_6
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://link.springer.com/chapter/10.1007/978-3-662-21545-6_18
https://link.springer.com/chapter/10.1007/978-3-662-21545-6_18
https://dl.acm.org/doi/10.5555/549820
https://aclanthology.org/J95-2002
https://aclanthology.org/J95-2002
https://aclanthology.org/J95-2002
https://repository.upenn.edu/dissertations/AAI8804974/
https://repository.upenn.edu/dissertations/AAI8804974/
https://aclanthology.org/W89-0218
https://aclanthology.org/W89-0218
https://aclanthology.org/W89-0218
https://doi.org/https://doi.org/10.1016/0304-3975(92)90124-X
https://doi.org/https://doi.org/10.1016/0304-3975(92)90124-X

A Additional Preliminaries

A.1 Semirings

Definition 12. A monoid is a tuple (W,⊙, I), where W is a set, ⊙ is an associative binary operation,
and I ∈ W , called the identity element, satisfies I ⊙ a = a⊙ I = a for all a ∈ W . If a⊙ b = b⊙ a for
all a, b, we say that the monoid is commutative.

Definition 13. A semiring is a tuple W = (W,⊕,⊗,0,1) such that (W,⊕,0) is a commutative monoid
and (W,⊗,1) is a monoid. Additionally, ⊗ distributes over ⊕, that is, a⊗ (b⊕ c) = a⊗ b⊕ a⊗ c and
(a⊕ b)⊗ c = a⊗ c⊕ b⊗ c, and 0 is absorbing with respect to ⊗, that is, 0⊗ a = a⊗ 0 = 0. If ⊗ is
commutative, then we say that W is commutative.

The following definitions are from Esparza et al. (2007):

Definition 14. If W = (W,⊕,⊗,0,1) is a semiring, the natural order on W is the relation ≤, defined
such that a ≤ b ⇔ ∃d ∈ W : a ⊕ d = b. If ≤ is a partial order (i.e., reflexive, antisymmetric, and
transitive), then we say that W is naturally ordered.

Definition 15. A naturally ordered semiring W = (W,⊕,⊗,0,1) is ω-continuous if it is additionally
equipped with an infinite summation operator

⊕
such that:

• For any countable sequence (a1, a2, . . .), the sequence
(⊕k

i=1 ai

)
k≥0

has a least upper bound in

W and is equal to
⊕

i

ai.

• Multiplication distributes over infinite sums:

⊕

i

(c⊗ ai) = c⊗
(⊕

i

ai

)

⊕

i

(ai ⊗ c) =
(⊕

i

ai

)
⊗ c.

• For any partition (I1, I2, . . .) of N,

⊕

j

⊕

i∈Ij
ai =

⊕

i

ai.

A.2 Weighted Pushdown Automata

We use a definition of WPDA (Butoi et al., 2022) that is more general than usual and roughly a weighted
version of the extended PDAs of Aho and Ullman (1972, p. 173) and the PDAs of Lewis and Papadimitriou
(1997, p. 131).

Definition 16. A weighted pushdown automaton (WPDA) over a semiring W = W is a tuple P =
(Q,Σ,Γ, δ,w, (qι,γι), (qf ,γf)), where

• Q, Σ, and Γ are finite sets of states, input symbols, and stack symbols, respectively,

• δ ⊆ Q× Γ∗ × (Σ ∪ {ε})×Q× Γ∗ is a finite set of transitions,

• w: δ → W is a transition-weighting function, and

• (qι,γι) and (qf ,γf), where qι, qf ∈ Q,γι,γf ∈ Γ∗, are called the initial and final configurations.

If (p,γ, a, q,γ ′) ∈ δ is a transition, we write it as p,γ a−→ q,γ ′. If w(p,γ a−→ q,γ ′) = w, we use the

notation p,γ
a/w−−→ q,γ ′.

5404

We treat strings in Γ∗ as stacks, with the first symbol being the top of the stack and the last symbol
being the bottom.

A WPDA moves from one configuration to another by following transitions of the form (p,γ
a−→ q,γ ′),

which represents a move from state p to state q, while scanning the symbol a , popping the se-
quence γ from the top of the stack and pushing the sequence γ ′. In the following definitions, let
P = (Q,Σ,Γ, δ,w, (qι,γι), (qf ,γf)) be a WPDA.

Definition 17. A configuration of P is a pair (q,γ), where q ∈ Q is the current state and γ ∈ Γ∗ is the
current contents of the stack. We write C(P) for the set of all configurations of P.

Definition 18. If (p,γα) and (q,γ ′α) are configurations of P and τ = (p,γ
a−→ w, qγ ′) is a transition

of P, we write (p,γα)
τ
=⇒ (q,γ ′α) to denote that configuration (q,γ ′α) can be reached from (p,γα) in

one step using transition τ .

Definition 19. We say that a transition τ is k-pop, l-push if |γ| = k and |γ ′| = l. We say that τ scans a ,
and if a ̸= ε, we call τ scanning; otherwise, we call it non-scanning.

The following type of WPDA is a weighted version of the PDA used by Lang (1974) for his recognition
algorithm.

Definition 20. A WPDA is called simple if each of its transitions is k-pop, l-push for some k ≤ 1 and
l ≤ 1.

The following type of WPDA is a weighted version of the PDA used by (Hopcroft et al., 2006) and
others.

Definition 21. A WPDA is called top-down if all of its transitions are 1-pop, and the initial and final
configurations are (qι,S) and (qf , ε), respectively.

Definition 22. A run of P from (q0,γ0) to (qn,γn) is a sequence of steps π = (q0,γ0)
τ1=⇒ · · · τn==⇒

(qn,γn). We write (q0,γ0)
∗
=⇒ (qn,γn) to assert that a run from (p,γ) to (q,γ ′) exists, or to denote the

set of all such runs. If (q0,γ0) = (qι,γι) and (qn,γn) = (qf ,γf), we call π accepting. If τ i scans ai,
for i ∈ [1:n], then we say that π scans s = a1 · · · an.

The weight of π is the product of its transition weights,

w(π)
def
=

n⊗

i=1

w(τ i).

We denote by Π(P, s) the set all accepting runs of P scanning s, and by Π(P) the set of all accepting
runs of P.

Definition 23. The stringsum w(P, s) of a string s under P is the total weight of all accepting runs
scanning s,

w(P, s)
def
=

⊕

π∈Π(P,s)

w(π).

Definition 24. The allsum w(P) of P is the total weight of all its accepting runs,

w(P)
def
=

⊕

π∈Π(P)

w(π).

B Two-Level Formal Systems

B.1 Definitions
Having defined both WPDA (Def. 16) and WLD-CFG (Def. 7), we can give a definition for weighted
PDA ▷ CFG.

Definition 25. Let P1 be a controller WPDA with states Q, stack alphabet Γ1 and initial configuration
(qι,γι), and let G2 be a controllee WLD-CFG with nonterminals N 2. Then P1 ▷ G2 is a rewriting
system with rules as follows.

5405

(a) If (q,A
ε/w−−→ r,γ) is a transition of P1, then P1 ▷ G2 has a rule for each X ∈ N 2:

X [q,A ··] w−→ X [r,γ ··].

(b) If (r,A
ℓ/w1−−−→ s, ε) is a transition of P1, and (ℓ : X

w2−→ α1

(

Yα2) is a production of G2, then
G1 ▷ G2 has a rule

X [r,A ··] w1⊗w2−−−−→ α1[qι,γι]Y [s, ··]α2[qι,γι].

Next, we define WLD-PDAs by analogy with WLD-CFGs. This definition is a weighted version of our
previous definition (Butoi et al., 2023).

Definition 26. A weighted labeled distinguished pushdown automaton (WLD-PDA) over a semiring
W = (W,⊕,⊗,0,1) is a tuple P = (Q,Σ,Γ, L, δ,w, (qι,S), (qf , ε)), where

• Q, Σ, Γ and L are finite sets of states, input symbols, stack symbols and labels, respectively,

• δ ⊆ L× N×Q× Γ× (Σ ∪ {ε})×Q× Γ∗ is a finite set of transitions,

• w: δ → W is the transition-weighting function, and

• (qι,S) and (qf , ε), where qι, qf ∈ Q,S ∈ Γ, are the initial and final configurations.

If (ℓ, i, q,A, a, r,B1 · · ·Bn) is a transition in δ, we must have either i = 0, which we write as
q,A a−→ r,B1 · · ·Bn, or 1 ≤ i ≤ n, which we write as q,A a−→ r,B1 · · ·Bi−1

(

BiBi+1 · · ·Bn.

A WLD-PDA behaves similarly to a WPDA, but its runs are controlled by either a controller CFG or
PDA. As in §3, the rules of the controller and of the controllee can be merged into a single system.

Definition 27. Let G1 be a controller CFG with nonterminals N and start symbol S, and let P2 be a
WLD-PDA with stack alphabet Γ and states Q. Then G1 ▷ P2 is a rewriting system with rules as follows.

(a) If (A w−→ β) is a production of G1, where β ∈ N ∗, then G ▷ P2 has a transition for each X ∈ Γ
and q ∈ Q:

q,X [A ··] ε/w−−→ q,X [β ··].

(b) If (A w1−→ ℓ) is a production of G1, and ℓ : q,X
a/w2−−−→ r,α1

(

Yα2 is a transition of P2, then G ▷ P2

has a transition
q,X [A ··] a/w1⊗w2−−−−−−→ r,α1[S]Y [··]α2[S].

Definition 28. Let P1 be a controller PDA with stack alphabet Γ1 and start configuration (qι,γι), and
let P2 be a WLD-PDA with stack alphabet Γ2 and states Q2. Then P1 ▷ P2 is a rewriting system with
rules as follows.

(a) If (q,A
ε/w−−→ r,γ) is a transition of P1, then P1 ▷ P2 has a transition for each X ∈ N 2 and

p ∈ Q2:

p,X [q,A ··] ε/w−−→ p,X [r,γ ··].

(b) If (r,A
ℓ/w1−−−→ s, ε) is a transition of P1, and ℓ : p,X

a/w2−−−→ q,α1

(

Yα2 is a transition of P2, then
G ▷ P2 has a transition

p,X [r,A ··] a/w1⊗w2−−−−−−→ q,α1[qι,γι]Y [s, ··]α2[qι,γι].

The terms scanning/non-scanning transitions and (accepting) runs are defined analogously to those for
WPDAs.

5406

B.2 Normal Forms
B.2.1 WCFG normal form
Proposition 1. For any WCFG G1 with weights in an ω-continuous semiring, there is a WCFG in
Chomsky normal form that defines the same weighted language as G1.

For any WLD-CFG G2 with weights in an ω-continuous semiring, there is a WLD-CFG in Chomsky
normal form that is equivalent to G2.

Proof. The proof for WCFGs is a generalization of the standard conversion for unweighted grammars
(Hopcroft et al., 2006), and is related to the Earley-style algorithm of Stolcke (1995).

1. If S is the old start symbol, add a new nonterminal S′, a production S′ 1−→ S, and make S′ the new
start symbol.

2. For every terminal a, create a production Ta
1−→ a, where Ta is a fresh nonterminal, and replace every

right-hand side occurrence of a with Ta.

3. Replace every production X
w−→ Y1 · · ·Yk, where k > 2, with the productions

X
w−→ Y1Z1

Z1
1−→ Y2Z2

...

Zk−2
1−→ Yk−1Yk

where Z1, . . . , Zk−2 are fresh nonterminals.

4. For each nonterminal X , compute the weight of all partial derivations X ∗
=⇒ ε using the deductive

system

A
∗
=⇒ε

A
w−→ ε

B
∗
=⇒ε

A
∗
=⇒ε

A
w−→ B

B
∗
=⇒ε C

∗
=⇒ε

A
∗
=⇒ε

A
w−→ BC

Then for every production X
w−→ Y Z with w(Y

∗
=⇒ ε) = wY and w(Z

∗
=⇒ ε) = wZ , add productions

X
w1⊗wY−−−−−→ Z and X

w1⊗wZ−−−−−→ Y . Finally, for all X , remove all productions X → ε.

5. For all nonterminals X and Y , compute the weight of all partial derivations X
∗
=⇒ Y using the

deductive system

A
∗
=⇒A

A
∗
=⇒B

A
∗
=⇒C

B
w−→ C

Then for every production X
w2−→ Y Z and nonterminal W ̸= X , with w(W

∗
=⇒ X) = w1, add

production W
w1⊗w2−−−−→ Y Z. Finally, for all X , Y , remove all productions X → Y .

Now we give a similar construction for WLD-CFGs. Let G be a WLD-CFG and F a controller WCFG
or WPDA, both with weights from an ω-continuous semiring. Then there exists a WLD-CFG in normal
form G′ and a controller F′ such that F′ ▷ G′ defines the same weighted language as F ▷ G. We assume
for simplicity that F is a controller WCFG; a similar construction can be given when it is a WPDA.

5407

Converting a CFG ▷ CFG to normal form requires an allsum algorithm that works on any binarized
CFG ▷ CFG, not necessarily in normal form. We must use the rules shown in Fig. 5 in addition to those
from Fig. 4b when computing allsums.

(nullary)
X [A]

X [A] w−→ ε

(controllee unary)
X [A ··]

Y [··]

X [A ··] w−→ Y [··]

(controller unary)

X [B ··]

Y [··]

X [A ··]

Y [··]

X [A ··] w−→ X [B ··]

Figure 5: Additional deduction rules for computing allsums in binarized CFG ▷ CFG.

Root–foot transform The nullary and unary removal steps below are analogous to nullary and unary
removal in a WCFG. However, sometimes, when we remove nullary/unary rules, we need information
from both the controller and controllee to compute their lost weight. To facilitate this, we define the
following transformation, which copies information from the controllee to the controller.

Let N 1 and N 2 be the controller and controllee nonterminal alphabet, respectively.

1. For every controllee rule ℓ : X → α where α has no distinguished symbol, relabel the rule as ℓX⊥ .

2. For every controllee rule ℓ : X → α

(

Yβ, relabel the rule as ℓXY .

3. Perform the construction of Bar-Hillel et al. (1961) on the controller, using controllee nonterminals
instead of states. That is, relabel every controller nonterminal A as AX

⊥ or AX
Y for all X ,Y ∈ N 2,

making as many copies of rules as needed, subject to the constraints that (i) if the lhs is AX
Y (where

Y could be ⊥) then the first rhs symbol must be AX
Y ′ and the last rhs symbol must be AX ′

Y ; (ii) if AX
Y

is an rhs nonterminal then its successor (if any) must be BY
Z .

4. Add a new controller start symbol S′ with rules S′ → SX
⊥ for all X ∈ N 2.

Controllee binarization In the controllee, replace every production ℓ : X
w−→ Y1 · · ·

(

Yd · · ·Yk, where
k > 2, with the productions

ℓ1 : X
w−→ Y1

(

Z1

ℓ2 : Z1
1−→ Y2

(

Z2

...

ℓd−1 : Zd−2
1−→ Yd−1

(

Zd

ℓd : Zd
1−→ (

Zd+1Yk

ℓd+1 : Zd+1
1−→ (

Zd+2Yk−1

...

ℓk−1 : Zk−1
1−→ (

YdYd+1

5408

where Z1, . . . ,Zk−2 are fresh controllee nonterminals.
Accordingly, in the controller, replace every rhs occurrence of ℓ with ℓ1 · · · ℓk−1.

Controllee nullary removal Like the standard nullary removal algorithm (Hopcroft et al., 2006), nullary
removal in an WLD-CFG has three steps: partitioning, precomputation, and removal. However, removing
nullary rules from the controllee also sometimes requires modifications to the controller.

1. Partition: Replace every controllee nonterminal X with two nonterminals Xε and X̸ε. Every rule
with k rhs nonterminals becomes 2k rules with all possible combination of rhs nonterminals, and the
lhs annotated ε iff the rhs is empty or all the rhs symbols are annotated ε. The start symbol is S̸ε.

2. Precompute: Compute the allsum w

(
Xε[A]

)
for all A ∈ N 1,Xε ∈ N 2.

3. Remove (non-distinguished): For every non-distinguished occurrence of Xε in the rhs of a controllee

rule π, delete the occurrence and multiply the weight of π by w

(
Xε[S]

)
.

4. Remove (distinguished): The distinguished occurrences of Xε cannot be removed in the same way,
because we don’t know what weight to multiply in. Instead, perform the root–foot transform. Then,
for every occurrence of AXε

⊥ on the rhs of a controller rule π, delete the occurrence and multiply the

weight of π by w

(
Xε[A]

)
.

5. Remove (start): Add controller rule S′ 1−→ ℓ and controllee rule ℓ : S̸ ε w−→ ε, where w = w

(
Sε[S]

)
.

6. Remove every controller rule S′ → ε.

7. Remove every controller rule with lhs AXε
⊥ and every controllee rule with lhs Xε.

Controllee unary removal

1. Partition: Replace every controller nonterminal A with two nonterminals AU and A ̸U. Every rule with
k rhs nonterminals becomes 2k rules. A rule’s lhs is annotated U iff all of its rhs symbols are either
labels of controllee unary rules or annotated U. The controller temporarily has two start symbols, SU

and S ̸U.

2. Precompute: Compute the allsum w

X [AU ··]

Y [··]

 for all AU ∈ N 1, X, Y ∈ N 2.

3. Remove (controller): Perform the root–foot transform. Then, for every occurrence of AU
X
Y on the

rhs of rule π, delete the occurrence and multiply the weight of π by w

AU[X ··]

Y [··]

. Remove all

rules with lhs XAU
Y .

4. Remove (controllee): Remove all unary rules, and for each rule ℓ : Y
w−→ α, and all X ∈ N 2, make

a copy ℓ : X
w−→ α.

5409

B.2.2 WPDA normal form
We first define a WPDA normal form that is analogous to Chomsky normal form for WCFGs.

Definition 29. A WPDA is in normal form if all of its transitions are of one of the following types: (1)

qι,S
ε/w−−→ qf , ε, (2) scanning and 0-push, or (3) non-scanning and 2-push. Moreover, S is not pushed by

any transition.

A WLD-PDA is in normal form if all of its transitions are of type (1) or (2) above, (3a) q,X
ε/w−−→ r,

(

YZ ,

or (3b) q,X
ε/w−−→ r,Y

(
Z .

Proposition 2. Let P be a WPDA with weights from an ω-continuous semiring. Then there is a WPDA in
normal form that defines the same weighted language as P.

For any WLD-PDA P2 with weights in an ω-continuous semiring, there is a WLD-PDA in Chomsky
normal form that is equivalent to P2.

Proof. In previous work (Butoi et al., 2022), we gave a conversion from arbitrary WPDAs to a normal
form that is close to Def. 29, but allows transitions that are scanning but are 1-push or 2-push. We can
modify the conversion using the following preparatory steps:

1. If (qι,γι) is the old start configuration, add a new state qι
′, a new stack symbol S′, and a transition

qι
′, S′ 1−→ qι,γι, and make (qι

′, S′) the new start configuration.

2. For every terminal a, add a fresh stack symbol Ta. Replace every scanning transition (q,X
a/w−−→ r, γ)

with (q,X
ϵ/w−−→ r, Taγ), and add transitions (q, Ta

a/1−−→ q, ε) for every state q.

3. Remove all nullary transitions (Butoi et al., 2022, §3.2).

4. Remove all unary transitions (Butoi et al., 2022, §3.3).

A WLD-PDA can always be converted into an equivalent WLD-CFG (Butoi et al., 2023), converted
into the normal form, then converted back into into a WLD-PDA.

To convert a WLD-PDA to normal form, we use the construction above, modified by analogy with
Prop. 1. In the root–foot transform, each nonterminal includes two or four states (just as allsum items
do). The nullary removal procedure for WPDAs is more complex than for WCFGs, but the required
modification is analogous: we remove non-distinguished stack symbols Xε as usual, but when removing a
distinguished stack symbol Xε, we must multiply its weight in the controller rather than the controllee.

B.2.3 Two-level normal forms
Fig. 6 shows how the normal forms of PDA ▷ CFG, CFG ▷ PDA and PDA ▷ PDA are obtained from the
normal forms of the controllees and the controllers. For the epsilon rules, as noted in §3.2, in principle
there could be rules with other left-hand sides, but such rules would never be used.

C Computing Stringsums

C.1 Pop Computations
Definition 30. Let P be a controller WPDA with states Q, and stack alphabet Γ, and let G be a WLD-CFG
with nonterminals N . Let s ∈ Σ∗ be a string of length |s| = n. A pop computation of P ▷ G of type

X [p, A ··]

i l

j k

Y [q, ··] , where 0 ≤ i ≤ j ≤ k ≤ l ≤ n, p, q ∈ Q, X ,Y ∈ N , and A ∈ Γ, is a pair of partial

derivations (d1, d2), where

d1 ∈ (X [p,A] ∗
=⇒ s(i:j]Y [q, ε]Υ2)

d2 ∈ (Υ2
∗
=⇒ s(k:l]).

5410

P1 G2 P1 ▷ G2 name

qι,S
ℓ/w1−−−→ qf , ε ℓ : S

w2−→ ε S [qι,S]
w1⊗w2−−−−→ ε (epsilon)

p,A
ℓ/w1−−−→ qf , ε ℓ : X

w2−→ a X [p,A] w1⊗w2−−−−→ a (terminal)

p,A
ℓ/w1−−−→ q, ε ℓ : X

w2−→ (
YZ X [p,A ··] w1⊗w2−−−−→ Y [q, ··]Z [qι,S] (left pop)

p,A
ℓ/w1−−−→ q, ε ℓ : X

w2−→ Y
(

Z X [p,A ··] w1⊗w2−−−−→ Y [qι,S]Z [q, ··] (right pop)

p,A
ε/w1−−−→ q,BC X [q,A ··] w1−→ X [q,BC ··] (push)

(a) PDA ▷ CFG.

G1 P2 G1 ▷ P2 name

S w1−→ ℓ ℓ : qι,S
ε/w2−−−→ qf , ε qι,S [S]

ε/w1⊗w2−−−−−−→ qf , ε (epsilon)

A w1−→ ℓ ℓ : q,X
a/w2−−−→ r, ε q,X [A]

a/w1⊗w2−−−−−−→ r, ε (terminal)

A w1−→ ℓ ℓ : q,X
ε/w2−−−→ r,

(

YZ q,X [A ··] ε/w1⊗w2−−−−−−→ r,Y [··]Z [S] (left pop)

A w1−→ ℓ ℓ : q,X
ε/w2−−−→ r,Y

(

Z q,X [A ··] ε/w1⊗w2−−−−−−→ r,Y [S]Z [··] (right pop)

A w1−→ BC q,X [A ··] ε/w1−−−→ q,X [BC ··] (push)

(b) CFG ▷ PDA.

P1 P2 P1 ▷ P2 name

q1ι ,S
ℓ/w1−−−→ q1f , ε ℓ : q2ι ,S

ε/w2−−−→ q2f , ε q2ι ,S [q
1
ι ,S]

ε/w1⊗w2−−−−−−→ q2f , ε (epsilon)

p,A
ℓ/w1−−−→ q1f , ε ℓ : r,X

a/w2−−−→ s, ε r,X [p,A]
a/w1⊗w2−−−−−−→ s, ε (terminal)

p,A
ℓ/w1−−−→ q, ε ℓ : r,X

ε/w2−−−→ s,

(

YZ r,X [p,A ··] ε/w1⊗w2−−−−−−→ s,Y [q, ··]Z [q1ι ,S] (left pop)

p,A
ℓ/w1−−−→ q, ε ℓ : r,X

ε/w2−−−→ s,Y

(

Z r,X [p,A ··] ε/w1⊗w2−−−−−−→ s,Y [q1ι ,S]Z [q, ··] (right pop)

p,A
ε/w1−−−→ q,BC r,X [p,A ··] ε/w1−−−→ r,X [q,BC ··] (push)

(c) PDA ▷ PDA. States q1ι and q2ι are the initial states of P1 and P2, respectively, and similarly for q1f and q2f .

Figure 6: Normal forms of PDA ▷ CFG, CFG ▷ PDA, PDA ▷ PDA resulting from normal forms of their controllers
and controllees.

5411

A pop computation of type
X [p, A]

i j
is a partial derivation X [p,A] ∗

=⇒ s(i:j].

Definition 31. Let G be a controller WCFG with nonterminals N , and let P be a WLD-PDA with states
Q and stack alphabet Γ. Let s ∈ Σ∗ be an input string of length |s| = n. A pop computation of G ▷ P of

type

X [A ··]

i, p l, s

j, q k, r

Y [··] , where 0 ≤ i ≤ j ≤ k ≤ l ≤ n, p, q, r, s ∈ Q, X ,Y ∈ Γ, and A ∈ N , is a pair of

runs (π1,π2), where

π1 ∈ ((p,X [A]) ∗
=⇒ (q,Y [ε]Υ2)) and scans s(i:j]

π2 ∈ ((r,Υ2)
∗
=⇒ (s, ε)) and scans s(k:l].

A pop computation of type
X [A]

i, p j, q
is a run (p,X [A]) ∗

=⇒ (q, ε) scanning s(i:j].

Definition 32. Let P1 be a controller WPDA and P2 be a WLD-PDA, with states and stack alphabets Q1

and Γ1, and Q2 and Γ2, respectively. Let s ∈ Σ∗ be an input string of length |s| = n. A pop computation

of P1 ▷ P2 of type

X [e, A ··]

i, p l, s

j, q k, r

Y [f, ··] , where 0 ≤ i ≤ j ≤ k ≤ l ≤ n, p, q, r, s ∈ Q2, e, f ∈ Q1,

X ,Y ∈ Γ2, and A ∈ Γ1, is a pair of runs (π1,π2), where

π1 ∈ ((p,X [e,A]) ∗
=⇒ (q,Y [f, ε]Υ2)) and scans s(i:j]

π2 ∈ ((r,Υ2)
∗
=⇒ (s, ε)) and scans s(k:l].

A pop computation of type
X [e, A]

i, p j, q
is a run (p,X [e,A]) ∗

=⇒ (q, ε) scanning s(i:j].

C.2 Deduction Systems

Figures 7 to 9, in the columns labeled “stringsum,” show deduction systems for computing stringsums
of PDA ▷ CFG, CFG ▷ PDA, and PDA ▷ PDA. The controller and controllee PDAs are assumed to be
single-state.

The goal items for PDA ▷ CFG, CFG ▷ PDA, and PDA ▷ PDA are, in order, S [qι, S]

0 n
, S [S]

0, qι n, qf
, and

S [q1ι , S]

0, q2ι n, qf
, where n is the length of the input string.

D Computing Allsums

Definition 33. Let P be a controller WPDA with states Q and stack alphabet Γ, and let G be a WLD-CFG

with nonterminal alphabet N . A pop computation of P ▷ G of type

X [p, A ··]

Y [q, ··] , where X ,Y ∈ N ,

p, q ∈ Q, and A ∈ Γ, is a pair of partial derivations (d1, d2), where

d1 ∈ (X [p,A] ∗
=⇒ s1Y [q, ε]Υ2)

d2 ∈ (Υ2
∗
=⇒ s2)

and s1, s2 ∈ Σ∗, Υ2 ∈ N [Γ∗]∗. The weight of this pop computation is w(d1, d2) = w(d1)⊗w(d2).

A pop computation of type
X [p, A]

is a partial derivation X [p,A] ∗
=⇒ s, where s ∈ Σ∗.

5412

name stringsum allsum side condition

(epsilon)
S [qι, S]

0 n

n = 0
S [qι, S]

S [qι,S]
w−→ ε

(terminal)
X [p, A]

i − 1 i

si = a
X [p, A]

X [p,A] w−→ a

(left pop)

Z [qι, S]

j k

X [p, A ··]

i k

i j

Y [q, ··]

Z [qι, S]

X [p, A ··]

Y [q, ··]

X [p,A ··] w−→ Y [q, ··]Z [qι,S]

(right pop)

Y [qι, S]

i j

X [p, A ··]

i k

i j

Z [q, ··]

Y [qι, S]

X [p, A ··]

Z [q, ··]

X [p,A ··] w−→ Y [qι,S]Z [q, ··]

(push-1)

X [q, B ··]

i o

j m

Y [r, ··]

Y [r, C ··]

j m

k l

Z [s, ··]

X [p, A ··]

i o

k l

Z [s, ··]

X [q, B ··]

Y [r, ··]

Y [r, C ··]

Z [s, ··]

X [p, A ··]

Z [s, ··]

X [p,A ··] w−→ X [q,BC ··]

(push-2)

X [q, B ··]

i l

j k

Y [r, ··] Y [r, C]

j k

X [p, A]

i l

X [q, B ··]

Y [r, ··] Y [r, C]

X [p, A]
X [p,A ··] w−→ X [q,BC ··]

Figure 7: Deductive systems for computing stringsums and allsums of PDA ▷ CFG. State qι is the initial state of the
controller.

5413

name stringsum allsum side condition

(epsilon)
S [S]

0, qι n, qf

n = 0
S [S]

qι qf

qι,S [S]
ε/w−−→ qf , ε

(terminal)
X [A]

i − 1, p i, q

si = a
X [A]

p q

p,S [A]
a/w−−→ q, ε

(left pop)

Z [S]

j, r k, s

X [A ··]

i, p k, s

i, q j, r

Y [··]

Z [S]

r s

X [A ··]

p s

q r

Y [··]

p,X [A ··] ε/w−−→ q,Y [··]Z [S]

(right pop)

Y [S]

i, q j, r

X [A ··]

i, p k, s

i, q j, r

Z [··]

Y [S]

q r

X [A ··]

p s

q r

Z [··]

p,X [A ··] ε/w−−→ q,Y [S]Z [··]

(push-1)

X [B ··]

i, q o, v

j, r m, u

Y [··]

Y [C ··]

j, r m, u

k, s l, t

Z [··]

X [A ··]

i, p o, v

k, s l, t

Z [··]

X [B ··]

q v

r u

Y [··]

Y [C ··]

r u

s t

Z [··]

X [A ··]

p v

s t

Z [··]

p,X [A ··] ε/w−−→ q,X [BC ··]

(push-2)

X [B ··]

i, q l, t

j, r k, s

Y [··] Y [C]

j, r k, s

X [A]

i, p l, t

X [B ··]

q t

r s

Y [··] Y [C]

r s

X [A]

p t

p,X [A ··] ε/w−−→ q,X [BC ··]

Figure 8: Deductive systems for computing stringsums and allsums of CFG ▷ PDA. States qι and qf are the
controllee’s initial and final states, respectively.

5414

name stringsum allsum side condition

(epsilon)
S [q1ι , S]

0, q2ι n, qf

n = 0
S [q1ι , S]

q2ι qf

q2ι ,S [q
1
ι ,S]

ε/w−−→ qf , ε

(terminal)
X [e, A]

i − 1, p i, q

si = a
X [e, A]

p q

p,X [e,A]
a/w−−→ q, ε

(left pop)

Z [q1ι , S]

j, r k, s

X [e, A ··]

i, p k, s

i, q j, r

Y [f, ··]

Z [q1ι , S]

r s

X [e, A ··]

p s

q r

Y [f, ··]

p,X [e,A ··] ε/w−−→ q,Y [f, ··]Z [q,S]

(right pop)

Y [q1ι , S]

i, q j, r

X [e, A ··]

i, p k, s

i, q j, r

Z [f, ··]

Y [q1ι , S]

q r

X [e, A ··]

p s

q r

Z [f, ··]

p,X [e,A ··] ε/w−−→ q,Y [f,S]Z [q, ··]

(push-1)

X [f, B ··]

i, q o, v

j, r m, u

Y [g, ··]

Y [g, C ··]

j, r m, u

k, s l, t

Z [h, ··]

X [e, A ··]

i, p o, v

k, s l, t

Z [h, ··]

X [f, B ··]

q v

r u

Y [g, ··]

Y [g, C ··]

r u

s t

Z [h, ··]

X [e, A ··]

p v

s t

Z [h, ··]

p,X [e,A ··] ε/w−−→ q,X [f,BC ··]

(push-2)

X [f, B ··]

i, q l, t

j, r k, s

Y [g, ··] Y [g, C]

j, r k, s

X [e, A]

i, p l, t

X [f, B ··]

q t

r s

Y [g, ··] Y [g, C]

r s

X [e, A]

p t

p,X [e,A ··] ε/w−−→ q,X [f,BC ··]

Figure 9: Deductive systems for computing stringsums and allsums of PDA ▷ PDA. States q1ι and q2ι are the initial
states of P1 and P2, respectively. State qf is the final state of P2.

5415

Definition 34. Let G be a controller CFG with nonterminal alphabet N , and let P be a WLD-PDA with

states Q and stack alphabet Γ. A pop computation of G ▷ P of type

X [A ··]

p s

q r

Y [··] , where X ,Y ∈ Γ,

p, q, r, s ∈ Q, and A ∈ N , is a pair of runs (π1,π2), where

π1 ∈ ((p,X [A]) ∗
=⇒ (q,Y [ε]Υ2)) and scans s1

π2 ∈ ((r,Υ2)
∗
=⇒ (s, ε)) and scans s2

and s1, s2 ∈ Σ∗, Υ2 ∈ Γ[N ∗]∗. The weight of this pop computation is w(π1,π2) = w(π1)⊗w(π2).

A pop computation of type
X [A]

p q
is a run (p,X [A]) ∗

=⇒ (q, ε) scanning some s ∈ Σ∗.

Definition 35. Let P1 be a controller WPDA and P2 a WLD-PDA. Additionally, let Q1 and Γ1, and Q2

and Γ2 be the states and stack alphabets of P1 and P2, respectively. A pop computation of P1 ▷ P2

of type

X [e, A ··]

p s

q r

Y [f, ··] , where p, q, r, s ∈ Q2, e, f ∈ Q1, X ,Y ∈ Γ2 and A ∈ Γ1, is is a pair of runs

(π1,π2), where

π1 ∈ ((p,X [e,A]) ∗
=⇒ (q,Y [f, ε]Υ2)) and scans s1

π2 ∈ ((r,Υ2)
∗
=⇒ (s, ε)) and scans s2

and s1, s2 ∈ Σ∗, Υ2 ∈ Γ2[Γ
∗
1]
∗. The weight of this pop computation is w(π1,π2) = w(π1)⊗w(π2).

A pop computation of type
X [e, A]

p q
is a run (p,X [e,A]) ∗

=⇒ (q, ε) scanning some s ∈ Σ∗.

Figures 7 to 9, in the columns labeled “allsum”, show deductive systems for computing allsums of
PDA ▷ CFG, CFG ▷ PDA, and PDA ▷ PDA. As in §5, the value of the goal item can be computed by
fixed-point iteration or the semiring generalization of Newton’s method.

E Complexity Analysis of Conversions

Our stringsum and allsum algorithms, although designed for the two-level formalisms, can also be used
for TAG, LIG, PAA, and EPDA. However, we must apply a series of conversions in order to do this. For
instance, we must apply the following transformations to a WLIG with sets of nonterminals N and stack
symbols Γ before feeding it into the stringsum algorithm:

1. The controller WPDA and the controllee WCFG have to be extracted from the WLIG, resulting in a
WCFG with O(|N |) nonterminals and a WPDA with O(|Γ|) stack symbols.

2. The controllee WCFG must be converted into Chomsky normal form. If the productions have at most
k symbols on the right-hand side, then the output WCFG has O(k × |R|) nonterminals. Similarly,
the controller WPDA must be converted into the normal form. If the WPDA has transitions that push
at most k symbols, the resulting WPDA has O(k × |δ|) states.

3. The rules of the controller and of the controllee need to be merged back into a set of WLIG rules.
This construction outputs a WLIG with O(|N |×|Q|) nonterminals and O(|Γ|) stack symbols, where
N is the set of nonterminals of the input controllee, and Q and Γ are the sets of states and stack
symbols of the input controller.

5416

