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Abstract

Large language models (LLMs) such as GPT-3
have demonstrated a strong capability to gen-
erate coherent and contextually relevant text.
However, amidst their successes, a crucial issue
persists: their generated outputs still lack com-
monsense at times. Yet fine-tuning the entire
LLM towards more commonsensical outputs is
computationally expensive if not infeasible. In
this paper, we present a computation-efficient
framework that steers a frozen Pre-Trained Lan-
guage Model (PTLM) towards more common-
sensical generation (i.e., producing a meaning-
ful and plausible output that incorporates a list
of concepts).

Specifically, we first construct a reference-free
evaluator that assigns a sentence with a com-
monsensical score by grounding the sentence
to a dynamic commonsense knowledge base
from four different relational aspects. We then
use the scorer as the oracle for commonsense
knowledge, and extend the controllable genera-
tion method called NADO to train an auxiliary
head that guides a fixed PTLM to better satisfy
the oracle. We test our framework on a series of
GPT-2-, FLAN-T5- and Alpaca-based language
models (LMs) on two constrained concept-to-
sentence benchmarks. Human evaluation re-
sults demonstrate that our method consistently
leads to the most commonsensical outputs.1

1 Introduction

Recent years have witnessed remarkable progress
in massively Pre-Trained Language Models such as
GPT-3 (Brown et al., 2020), Llama (Touvron et al.,
2023) and instruction following models such as
Flan-T5 (Chung et al., 2022), ChatGPT (OpenAI,
2022), and Alpaca (Taori et al., 2023). However,
one significant drawback is the lack of common-
sense knowledge in their generated texts. There
have been criticisms around their commonsense

1Source code will be available at https://github.com/
PlusLabNLP/BOOST_EMNLP23

(b) Concepts wear, sunglasses, at night

🤖 GPT-2 A young woman wearing a long dress 
and sunglasses at night.                   🤧

🤖 Alpaca We wore our sunglasses at night and 
enjoyed the stars.                             🤧

🤖🧊+⚙
Ours

Someone wears sunglasses at night to 
avoid the bright lights of the 
approaching car. 

(c) Concepts food, customer, watch, employee, prepare

🤖 GPT-2 Two employees watch as customers 
prepare food in the store.                 🤧

🤖 GPT-3 
Davinci-003

The employee watched as the customer 
prepared their food.                         🤧

🤖🧊+⚙
Ours

Several employees are preparing food 
while a customer waits and watches.😁

😁

(a) Concepts open, hand, oyster, glove

🤖 GPT-2 A woman is opening an oyster and then 
she puts the oyster in her glove. 🤧

🤖 Alpaca She opened her hand to reveal an 
oyster glove. 🤧

🤖🧊+⚙
Ours

A woman in a yellow raincoat and latex 
gloves opens an oyster with hand.  😁

Figure 1: LMs such as GPT-2 finetuned, Alpaca-7b
fewshot, and GPT-3 Davinci-003 fail to incorporate
the concepts in a commonsensical way. We highlight
the insensible phrases in purple. (c) illustrates that they
are also vulnerable to perturbations of the input prompt
as simple as the swap of two concept positions. Our
system which uses an auxiliary model to steer a frozen
PTLM generates the most commonsensical outputs.

impotence (Marcus, 2020; Elazar et al., 2021; Ma-
howald et al., 2023), and a discrepancy in what
LLMs generate in the wild versus in question an-
swering (Chen et al., 2023).

In this paper, we explore the task of generative
commonsense reasoning: a constrained text
generation task aiming to generate a plausible
sentence given a list of concepts as input. As
depicted in Figure 1, language models should
generate a sentence that incorporates ‘open, hand,
oyster, glove’ in a meaningful way that aligns
with our commonsense. We unveil that LLMs are
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Input Concepts (x):
lasso, horse, cow

Pre-trained 
Language 
Model 
p(y|x)

SELF-SAMPLE

Oracle
Commonsense 
(CS) Scorer

TRAIN
Auxiliary 
NADO Model
RO(x,y)

(x, y1, cs score)
(x, y2, cs score)

…
(x, yN, cs score)

Final Output Token
Distribution: q(y|x)

y1: A horse is being lassoed by a cow.
y2: The cowboy used his lasso to catch the  

runaway cow.
…
yN: A woman is pulling a horse and a man is 

lassoing a cow.

Figure 2: The process of BOOST to steer a frozen PTLM with an additional neural model and oracle commonsense
scorer. The solid lines indicate the training process, while the dashed lines indicate inference. In practice, we
combine our commonsense scorer with lexical checking rules, and use the joint signal to train the auxiliary model.

unreliable and fail to generate commonsensical
outputs when the input concepts get complicated.
In another case depicted in Figure 1(c), when we
swap the position of two input concepts ‘customer’
and ‘employee’, LLMs such as Davinci-003 are
vulnerable to the change and generate ‘employee
watched a customer prepare food’ despite being
instructed to not consider the concept appearance
order, which is far from plausible.

Various knowledge-augmented systems have
been previously proposed to incorporate external
knowledge into the model (Liu et al., 2021; He
et al., 2022) for more plausible generation outputs.
However, they all require updating model weights
at the scale of hundreds millions of parameters such
as BART (Lewis et al., 2020). As PTLMs continue
to evolve and scale up to hundreds of billions of
parameters in size, finetuning the entire LM be-
comes computationally prohibited for many parties
in academia and the industry.

In this work, we propose BOOST, a framework
to boost the commonsense of PLTMs’ generation
in a plug-and-play manner (Figure 2), which is in-
spired by the recent development of controllable
generation to use a small auxiliary model to control
a PTLM by training on its self-generated samples
(Meng et al., 2022). Specifically, to better integrate
commonsense knowledge, we first build a scorer
that evaluates how commonsensical a sentence
is. The commonsense scorer, called O-Scorer,
extracts tuples of commonsense-related concepts
(e.g., <customers, prepare their food>) from a sen-
tence, and scores the extracted tuples by grounding
the tuples to a dynamic commonsense knowledge
base (CSKB) (Bosselut et al., 2019; Ghazarian
et al., 2023). Next, we use the signal from the
O-Scorer to train an auxiliary model that steers
the PTLM toward more commonsensical outputs.

Note that our training process is generalizable and
only requires access to the output probability of the
PTLMs, which is also efficient due to the smaller
size of the auxiliary model.

We test our method on gpt-2, Alpaca, and
Flan-T5 on two datasets: 1) CommonGen (Lin
et al., 2020) that focuses on daily concepts (e.g.,
<open, hand, oyster, glove>) and 2) CSK-PN (Chen
et al., 2023) that contains concepts linked with
negated commonsense relations (e.g. <wear sun-
glasses, at night>).

Our contributions are two-fold. First, we pro-
pose a reference-free evaluator to assess how com-
monsensical a sentence is, which achieves on-par
performance with referenced-based metrics such
as BERTScore (Zhang et al., 2019) in terms of
correlation with human judgment. Second, we ex-
tend a controllable generation approach to improve
commonsense for black-box PTLM. Experimental
results show that our method consistently results in
the most commonsensical outputs.

2 Methodology

2.1 Overview

Figure 2 provides an overview of our approach,
BOOST. During training, BOOST first generate
numerous samples (y1, ...,yN ) from the PTLM
conditioned on the input constraint x (e.g., ‘lasso
horse cow’). We then construct an oracle to give
commonsense scores on all of these self-sampled
generations. Next, for each yi of length Ti, we
train the auxiliary model called NADO which es-
sentially learns to predict the expected cs score
of the complete sequence yi given x and an incom-
plete sequence yi

<t (t ∈ [1, 2, ..., Ti]). The flow at
inference time is illustrated in dashed lines: both
the PTLM and NADO take x and the generated
sequence (prefix) y<L as input, from which we
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Sentences:
Peel an apple with a drill and a peeler.
A girl is blowing out candles on a cake.

A horse riding bikes on a river.

Drill
UsedFor

Peel Apples

Peeler
UsedFor

Peel Apples
Girl 

CapableOf
Blow Candles

Candles
AtLocation

Cake

Candles
UsedFor
Be blown

Horse
CapableOf
Ride Bikes

Bike
AtLocation

River

Horse
AtLocation

River

👎👍

👍👍👍

👎👎👎

Score
Dynamic 
CSKB 

Extracted Tuples:

0.7

1.0

0.1

Figure 3: An example of our oracle commonsense
scorer. We first extract tuples from a target sentence, and
assign each extracted tuple with a commonsensical score
using COMET (Bosselut et al., 2019), a dynamic com-
monsense knowledge base. The sentence-level score is
then obtained by aggregating tuple-level scores.

obtain the final output distribution q(y|x).
The rest of this section is organized as follows.

In §2.2, we first introduce details to construct the
commonsense scorer. Then, in §2.3, we provide
the theory and practices to train the auxiliary model
on PTLM’s self-generated data towards the oracle.

2.2 Constructing Commonsense Scorer

We use commonsense relation tuples as the inter-
mediate representation of a sentence. Specifically,
we get rid of human annotation and leverage on the
results of few-shot LLMs. We then check whether
these extracted tuples are sensible. To this end, we
assign each parsed tuple with a compatibility score
based on its maximum similarity with the numer-
ous valid accepted answers generated by COMET,
a dynamic commonsense knowledge base (CSKB).
Scores for all tuples in a target sentence are then
aggregated to obtain the sentence-level common-
sense score. Figure 3 provides an illustration of our
oracle scorer.

2.2.1 Commonsense-Relation Extraction
Tuple Format We leverage the format of Con-
ceptNet (Speer et al., 2017), a widely used knowl-
edge graph connecting concepts or events with
commonsense relations to represent general world
knowledge. Specifically, each tuple T contains a
head concept/event h (e.g., driller) and a tail con-
cept/event t (e.g., drill a hole), which are connected
through a commonsensical relation r (e.g., is Used
For). We consider four crucial relation types that
dominantly exist: is UsedFor, is Capable Of, is At
Location, and is Part Of.

Tuple Extraction We present a labor and cost
efficient way to extract all tuples from a target sen-
tence, including both commonsensical and nonsen-
sical tuples. LLMs such as GPT-3 and ChatGPT
(Brown et al., 2020; Ouyang et al., 2022) have
demonstrated remarkable ability of few-shot in-
context learning for semantic parsing tasks (Dong
and Lapata, 2016; Dunn et al., 2022). Motivated
by such progress, instead of asking human workers
to annotate a training set of sentences, we leverage
OpenAI’s GPT3.5-Turbo model to parse the rele-
vant tuples. We hand-crafted 9 examples for our
few-shot prompt such that the LLM can accurately
extract both sensical tuples (e.g., a girl is Capable
Of blowing candles) and nonsensical tuples (e.g.,
horse is Capable Of riding bikes) from the input
sentence. The complete instruction and prompt can
be found in Appendix A.

However, in practice, using GPT-3.5-Turbo to
parse all sentences needed to train our auxiliary
model is costly and unreliable when dependent
on the unpredictable traffic of OpenAI’s API. To
obtain an extractor that can parse ∼ a million sen-
tences at a reasonable cost, we finetune a T5 large
model (Raffel et al., 2020) on 6,000 GPT-3.5 an-
notated sentences for the same task. We show the
performance of both tuple extractors in §3.2.

2.2.2 Generative Commonsense Scoring
After extracting relation tuples from a sentence, we
need to assess how commonsensical they are. To
this end, we follow the compatibility test proposed
by Ghazarian et al. (2023) and leverage COMET
(Bosselut et al., 2019), a pre-trained generative
commonsense transformer that can predict sensi-
ble tails given the heads and relations as input.
Compared to other fixed and predefined knowledge
bases, COMET is dynamic and much more flexible
when dealing with original and unseen inputs.

Formally, given a tuple Ti = (hi, ri, ti) and a
dynamic CSKB denoted by Cdy, we query Cdy with
the head h and relation r to obtain a diverse list of
conditionally generated tails with beam decoding:
{t∗j}kj=1 = Cdy(hi, ri, beam = k). The common-
sense score for T is computed by

COMPAT(Ti|Cdy) = max
1≤i≤k

cos(emb(ti), emb(t∗j )),

(1)
where emb(·) is the vector representation from
a sentence embedding model (Reimers and
Gurevych, 2019). Finally, we need to aggregate
the compatibility scores computed from different
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triplets extracted from a single sentence. The
sentence-level commonsense score is denoted as
the O-score. One rationale is that a single non-
sensical tuple can result in a nonsensical sentence,
while the other is that one mistake will be mitigated
by other reasonable tuples. We hence take the 1)
minimum and 2) average compatibility scores, and
study their correlation with human judgement in
§3.3 and Table 2.

2.3 Commonsense-Guided Generation
In this subsection, we describe how we use our
derived commonsense oracle to steer the PTL)
toward more commonsensical outputs through a
neurally-decomposed head (NADO). In §2.3.1, we
summarize the theoretical solution of Meng et al.
(2022) to decompose the sequence-level oracle into
token-level guidance with a frozen PTLM, such
that when generating the i-th token, the auxiliary
neural network modifies the original output logits
predicted by the PTLM. Then, in §2.3.2, we lever-
age this method to generate more commonsensical
outputs. Note that our model only trains the addi-
tional NADO head which has much smaller size
than the PTLM and does not require access to the
parameters inside the PTLM.

2.3.1 Token-Level Guidance with NADO
Notation Suppose we have a sub-optimal PTLM
p(yt=T ′ |x,yt<T ′), our goal is to obtain an optimal
auto-regressive model q from p such that q gener-
ates outputs better satisfying the oracle scorer O
(for example, q’s generated outputs achieve higher
O-scores than p). We now define a predictive
function RO(x,yt<T ′) that predicts the expected
O-scores of the complete sequence y given input
x and the currently generated tokens yt<T ′ .

RO (x,yt<T ′) = Expy∼p(y|x) [O(x,y) | y<T ′ ]

(2)

=
∑

y∈Y
p (y | x,yt<T ′)O(x,y)

(3)

Solution The unique closed formed solution of
the optimal q is (namely, generates most common-
sensically according to O):

q∗ (y=T ′ | x,y<T ′) =
RO (x,y≤T ′)

RO (x,y≤T ′−1)
p (y=T ′ | x,y<T ′)

(4)

Please refer to Meng et al. (2022) for details of the
proof. From Eq.4 we see that when both x and
yt<T ′ are fixed, the optimal auto-regressive model
is factorized into RO and p at step T ′:

q∗ (yT ′ | x,y<T ′) ∝ RO (x,y≤T ′)·p (yT ′ | x,y<T ′) (5)

Approximation As we cannot enumerate Y that
contains infinite number of sequences, the well-
defined RO is intractable. A neural model called
NADO is hence introduced to approximate RO, by
training on numerous samples Y generated by p.

2.3.2 NADO-Guided Generation
Given a pre-trained language model p such as the
GPT-2 and Alpaca model, we first ask p to generate
numerous samples to obtain an approximation of Y
with various inputs concepts x ∈ X . We then use
the oracle O to assign each sample a score, which
is used to train the NADO model.

Training During training, the NADO model
takes x,y as input, and learns to predict from
RO(x,yt=0) till RO(x,yt≤T ). Here, T is the com-
plete sequence length and the sentence-level value
O(x,y) is used as the labels for all steps, from
t = 0 till t = T . We emphasize that in order for O
to learn RO successfully, all (x, y) pairs must be
self-sampled by the base model p instead of come
from the CommonGen training data.

We use cross entropy loss as the objective func-
tion. Given a particular input x, the cross entropy
loss is

LCE(x) =
∑

y∈Y
p(y | x)LCE

(
x,y, RO)

=
T∑

i=0

CE
(
RO (x,y≤i) ,O(x,y≤i

)
)

(6)
In practice, we also add a regularization term
to the loss. In order to satisfy the def-
inition that

∑
yi
RO (x,y≤i) p (yi | x,y<i) =

RO (x,y≤i−1), our regularization loss is measured
by the KL divergence of the following:

Lreg(x) = KL(
∑

yi

RO (x,y≤i) · p (yi | x,y<i) ,

(7)

RO (x,y≤i−1)) (8)

Then, the final training loss is LCE(x)+λLreg(x),
where λ is a hyper-parameter to balance these two
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terms. In practice, we use grid search and choose
the best λ from [0.1, 0.5, 1.0].

Inference At inference time, there are two for-
ward passes as shown in Eq.5 and Figure 2. The
decoding efficiency roughly remains unchanged be-
cause the NADO head has much smaller size than
the base PTLM.

3 Experimental Results for the Oracle

In this section, we show the results of the com-
monsense scorer described in §2.2. The experi-
ments and results of commonsense-guided genera-
tion (§2.3) can be found in §4 and §5.

3.1 Tuple Extraction Data
We use the GPT-3.5-Turbo model provided by Ope-
nAI to extract the tuples of 6,000 sentences (with
a total cost of $12.4), based on which we train the
T5-large based tuple extractor. Since our goal is
to parse all possible commonsense tuples whether
they are sensical or not, we need both sensical
and less reasonable sentences. To this end, we
randomly select 3,000 sentences from the Com-
monGen (Lin et al., 2020) train split (we consider
them as more sensical) and another 3,000 sampled
from a basic gpt-2 model (we consider them as less
coherent and sensical).

3.2 Tuple Extractor Results
Following the rationale in §3.1, we study the ben-
efit brought by augmenting the training data with
tuples extracted from less coherent and sensical
sentences. Specifically, we compare the following
three settings: 1) base: trained on the 3,000 sen-
sical sentences; 2) aug: trained on 1,500 sensical
sentences and 1,500 less sensical sentences; 3) all:
trained on all 6,000 sentences. We test the model
performance on a held-out set of 350 sentences that
is mix of both types. To obtain the gold labels on
the test set, we start with the few-shot GPT-3.5’s
annotation. After that, two human annotators itera-
tively checked and fixed any error they see.

For each relation type, we report the average f1-
score in Table 1. Here, if the lemmatized tokens
in a generated triplet has over 50% overlap with
those in the ground-truth triplet, we consider it as
correct. Otherwise, we consider it as wrong. Com-
paring T5-Large aug with T5-Large base in Table 1,
we see improvements across all four relation types.
Besides, increasing the train data size also boosts
the extractor’s performance. We also notice that

Relation Type At Lo-
cation

Used
For

Capa-
ble Of

Part
Of All

T5-Large base 71.0 67.1 65.6 76.8 70.1
T5-Large aug 72.4 67.9 68.9 79.2 72.1
T5-Large all 73.4 70.5 69.4 79.6 73.2

Few-Shot GPT-3.5 83.5 71.1 78.7 82.2 78.9

Table 1: The performance of different tuple extractors,
measured by F1-score. The last row indicates the upper
bound that our T5 models can achieve.

Reference-Free: min | mean Reference-Based

T5 O-Score 0.276 | 0.284 METEOR-all 0.214
GPT-3.5 O-Score 0.281 | 0.299 BERTScore-one 0.280
Gold O-Score 0.346 | 0.365 BERTScore-all 0.302

Table 2: Spearman correlation between human common-
sense ratings and six automatic metrics: our O-Score
with tuples extracted by T5, GPT-3.5-Turbo, and the
gold tuples, plus METEOR and BERTScore.

our extractors perform worse on UsedFor and Ca-
pableOf than on AtLocation and PartOf, which is
partially due to the errors of the training signal (i.e.,
labels are inaccurately annotated by GPT-3.5).

3.3 Oracle Commonsense Scorer Results

To compute the machine-generated compatibility
score in Eq.1, we set beam size k = 128. Mean-
while, we instruct human annotators to evaluate the
target sentences on how commonsensical they are.
Each sentence is annotated by 3 workers with a
scale of 1 (least) to 4 (best). We also ask every an-
notator to specify which part of the target sentence
is nonsensical. We find out that explicitly asking
the workers to pay detailed attention and point out
the erroneous parts helps to increase the inter an-
notator agreement (IAA, measured by Spearman’s
correlation) from 0.56 to 0.67. The final sentence-
level commonsense score annotated by humans is
the average of 3 individual ratings.

Table 2 shows the correlations between human
ratings and automatic scores. For our proposed
O-Score, we report the correlations of taking the
minimum (min) and average (mean) of all tuple-
level compatibility scores. Taking the average
consistently result in higher correlation, reflect-
ing that one mistake of a nonsensical tuple can
be mitigated by other sensical ones. Therefore, we
use the mean score to train the auxiliary model.
We also compare with reference-based metrics
such as METEOR (Banerjee and Lavie, 2005) and
BERTScore(Zhang et al., 2019). Since there are,
on average, 4 references per candidate in the Com-
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monGen dataset, we select the first reference to
compute BERTScore-one, and all available refer-
ences to compute BERTScore-all. We show that
our reference-free scorer performs on par with the
best reference-based metric, BERTScore-all, and
outperforms the same when use gold tuples ex-
tracted by human.

4 Experiments about Guided Generation

4.1 Data
Training Data As is illustrated in Figure 2, we
train our auxiliary model on the PTLM’s self-
sampled data. For each set of input concept, we use
top-p sampling (p=0.95) with temperature T=0.7
to generate N samples. In theory, the larger the
N , the more accurate approximation RO can learn.
In practice, due to limitations in computational re-
sources, we set N to 48 when the base model p is
gpt-2, and 10 for Alpaca. In total, we have 1.5M
training instances self-sampled by gpt-2 and 0.3M
training instances self-sampled by Alpaca.

Test Data We test on two different datasets. The
first is the CommonGen dev split (Lin et al., 2020)
which contains 993 lists of keywords focusing on
daily concepts (e.g., <open, hand, oyster, glove>).
Each list of keywords is paired with more than
one human written references. Our second test
data is distilled from CSK-PN (Chen et al., 2023),
which sources challenging triples from Concept-
Net (Speer et al., 2017) and tags them with posi-
tive/negative relation labels. We randomly select
993 triples with negative relations from CSK-PN
(e.g. <wear sunglasses, at night>). There is no
human reference for the second set. To reduce the
effect of data leakage in GPT-3 and Alpaca, we ran-
domly shuffled the keywords within each entry.2

4.2 Experimental Setup
Choice of Base Models. Although our framework
does not require fine-tune PTLMs, it does require
access to the PTLM’s output distribution. Hence,
we cannot apply our method to some popular but
close-sourced LLMs such as ChatGPT. We choose
Alpaca, Flan-T5, and gpt2 instead. In addition,
because the pre-trained gpt2 has no instruction fol-
lowing abilities, we have to train it to learn the task
of ‘generating a commonsensical sentence given
these input concepts’. Specifically, we finetune

2We know that GPT-3 text-davinci-003 is trained on
recent dataset up to 2021 which likely contains the ConceptNet
(Speer et al., 2017) and CommonGen (Lin et al., 2020) data.

it on the CommonGen training data for 1 epoch,
well before the finetuning converges. We call this
process warm up, as the goal is mainly to get the
smaller base model onboard with our task format.
For instruction-following models such as Alpaca,
we still add this warm up process for a fair compar-
ison. In total, we apply our commonsense-guided
generation method to 5 different base models:
gpt-2-large with warm up, zero-shot Alpaca-7b,
few-shot Alpaca-7b, Alpaca-7b with warm up,
and zero-shot Flan-T5-large.
Auxiliary Models. The auxiliary RO models are
4-layer transformer decoders with the same di-
mension and number of heads as the base mod-
els. 3 They are 1/9, 1/8, and 1/12 the size of
gpt-2-large, Alpaca-7b, and Flan-T5-large.
We train the auxiliary models for 10 epochs with a
learning rate of 1e− 5 on a single NVIDIA A100
80GB GPU. In comparison, it is not possible to fine-
tune Alpaca-7b using only one 80GB GPU with-
out any memory-saving technique such as LoRA
(Hu et al., 2021).

4.3 Compared Systems

A*esque Decoding (Lu et al., 2022) A Neuro-
logic decoding algorithm that injects constraints
into a neurologic process with a look ahead heuris-
tic, which results in more plausible outputs.
Gelato (Zhang et al., 2023) A tractable probabilis-
tic model (TPM) to impose constraints in language
models such as gpt2-large. It achieves state-of-
the-art (SOTA) performance on constraint satisfac-
tion. Because it is non-trivial to train new TPMs on
Alpaca-based models, we use the authors’ original
TPM which is trained on the gpt2-large model
that is finetuned on CommonGen.
Lex (Meng et al., 2022) The vanilla NADO
method trained only with lexical constraints as the
sequence-level Boolean oracle. Namely, the scorer
returns 1 if all lexical constraints are satisfied, and
0 otherwise.
BOOST (Ours) Our method that uses the common-
sense oracle to steer the auxiliary NADO model.
We compare two variations: 1) BOOST CS: using
only the commonsense oracle introduced in §2.2,
2) BOOST Joint: multiplying the lexical checking
Boolean function (the same used in Lex) with the
commonsense oracle score.

3For Flan-T5, the encoder-decoder model, the auxiliary
head is a 4-layer T5 decoder that takes in the input constraints
as hidden steps from a fixed, pretrained encoder.
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Test Data CommonGen (Lin et al., 2020) CSK-PN (Chen et al., 2023)

Automatic Human Automatic Human
Evaluation Metric O Score Coverage BLEU4 CS Overall O Score Coverage CS Overall

Setting: gpt2 warm up
A*esque (Lu et al., 2022) 0.469 97.2% 28.1 2.37 2.72 0.489 63.0% 3.14 3.09
GeLaTo (Zhang et al., 2023) 0.592 99.3% 33.0 2.45 2.78 / / / /
Base Model 0.514 90.7% 23.2 2.31 2.80 0.53 83.9% 3.10 3.04
Lex (Meng et al., 2022) 0.538 96.1% 29.8 2.38 2.80 0.544 92.1% 3.14 3.06
BOOST CS 0.615 90.9% 23.6 2.64 3.12 0.595 89.2% 3.33 3.13
BOOST Joint 0.597 96.1% 30.1 2.54 3.01 0.587 92.0% 3.28 3.18

Setting: Flan-T5 zero-shot
Base Model 0.571 84.6% 17.5 2.86 2.80 0.555 80.7% 2.78 2.71
Lex 0.577 93.7% 26.0 3.04 2.92 0.569 89.6% 2.97 2.88
BOOST CS 0.619 91.3% 21.6 3.14 3.05 0.613 88.9% 3.07 3.03
BOOST Joint 0.606 93.1% 25.6 3.12 3.06 0.601 89.6% 3.08 3.00

Setting: Alpaca warm up
Base Model 0.563 91.5% 20.9 3.02 2.84 0.523 93.9% 3.07 3.06
Lex 0.584 95.9% 30.5 3.12 3.00 0.535 95.0% 3.14 3.10
BOOST CS 0.611 93.6% 28.9 3.36 3.11 0.558 94.4% 3.21 3.19
BOOST Joint 0.592 95.7% 30.3 3.32 3.11 0.543 94.8% 3.23 3.21

Setting: Alpaca zero-shot
Base Model 0.509 90.4% 21.3 2.98 3.07 0.536 93.2% 3.26 3.09
Lex 0.566 95.3% 30.1 3.03 3.05 0.547 95.5% 3.21 3.11
BOOST CS 0.603 92.1% 24.4 3.36 3.17 0.565 93.9% 3.51 3.28
BOOST Joint 0.588 95.0% 29.7 3.32 3.23 0.559 95.4% 3.40 3.19

Setting: Alpaca few-shot
Base Model 0.552 92.2% 22.5 3.19 3.03 0.546 92.4% 3.27 2.89
Lex 0.581 95.7% 30.8 3.26 3.03 0.551 95.3% 3.26 2.92
BOOST CS 0.608 94.6% 28.4 3.38 3.18 0.584 94.8% 3.40 3.10
BOOST Joint 0.591 95.7% 30.1 3.36 3.18 0.572 95.2% 3.37 3.14

Table 3: Intra-Group evaluation results on two benchmarks: CommonGen (with reference) and CSK-PN (without
reference). Here, we define a group as multiple systems under the same setting (i.e., base model) and on the same
dataset. We use boldface to denote the best scores within each group, and underlines to denote the second best. Our
model BOOST consistently achieves the most commonsensical ratings as annotated by humans. The gap between
BOOST and the corresponding Base Model is statistically significant (p<0.05) measured by Student’s t-test. Note
that the human ratings across groups are not directly comparable as they are conducted in separate batches.

GPT3/ChatGPT We instruct OpenAI’s
3.5-turbo and text-davinci-003 to gener-
ate a plausible sentence given the constraints,
stating that the keywords do not necessarily have to
remain in the same order. Note that these models
are likely to be trained on our test data already.

For all compared systems, we decode with top_k
(k = 30) sampling with a temperature T = 0.7.

4.4 Evaluation Setup
Evaluation Metrics We use the keyword cover-
age ratio (after lemmatization) and the O score as
automatic metrics to assess the quality of generated
texts. For the CommonGen benchmark which
contains human written sentences, we also report
the n-gram overlap (BLEU-4). Considering that
our systems are trained towards higher O score,
we also conduct human annotation for unbiased
evaluation. Specifically, we instruct the MTurkers
to evaluate 1) how commonsensical each sentence
is from a 1-4 Likert scale, and 2) how much they

like the sentence overall (e.g., being interesting and
informative). An example questionnaire with the
full instructions can be found in Appendix C. We
pay the MTurkers $18 per hour, and the annotation
process is the same as mentioned in §3.3.

Inter-Group and Intra-Group Comparison.
Our human evaluation is relative, meaning that the
human evaluators are asked to compare the quality
of different machine-generated outputs given the
same input constraint. Since we have five base
models and each entails a group of systems to
compare with, we first conduct human evaluation
within each group. Then, we select representative
systems for inter-group comparison.

5 Result and Analysis

5.1 Intra-Group Results

We compile the results on the CommonGen and
CSK-PN benchmark in Table 3. We find out that,
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Test Data CommonGen CSK-PN

Human Eval CS Overall CS Overall

A*esque 3.07 2.81 3.09 3.04
GeLaTo 3.15 2.78 / /
BOOSTgpt2 3.27 2.95 3.24 3.00
Alpaca warm up 3.27 3.05 3.21 3.01
Alpaca few-shot 3.32 3.20 3.20 3.10
BOOSTAlpaca warm up 3.40 3.17 3.41 3.16
BOOSTAlpaca few-shot 3.44 3.28 3.38 3.18

Text-Davinci-003 3.33 3.19 3.33 3.10
ChatGPT 3.46 3.09 3.49 2.95
Human 3.49 2.99 / /

Table 4: Inter-Group human ratings. The scores of all
models are comparable within the same test benchmark.
We color human performance in a grey background, and
use boldface/underlines to denote the best/second-best
scores among all machines.

BLEU-4 has a high correlation with the keyword
coverage ratio (r = 0.914 measured by Pearson
Correlation), but has close to zero correlation with
human judgment on commonsense (r = −0.08)
and overall preference (r = 0.04). We therefore
hypothesize that BLEU-4, coverage ratio, and other
metrics measuring the superficial lexical overlap
with ground truth, cannot identify meaningful and
commonsensical outputs at least in our setting.

Moreover, in all eight groups of human
evaluation, BOOST successfully improves the com-
monsense level and overall preference. Comparing
Flan-T5 with gpt2, we see that our approach is
more effective on instruction-tuned models than
similarly-sized decoder only models. In addition,
although BOOST Joint achieves slightly lower
commonsense ratings than BOOST CS, the later is
a lot worse in the keyword coverage, indicating that
BOOST CS has a higher risk to generate reasonable
sentences without satisfying the input constraints.
Hence, in the constrained generation setting, we
still consider BOOST Joint as the best model.

5.2 Inter-Group Results
The inter-group evaluation results are shown in Ta-
ble 4. Our model BOOST outperforms all baselines,
including Davinci-003. We leave the comparison
with ChatGPT in §6 as a separate discussion.

Surprisingly, although human written refer-
ences are still the most commonsensical, they are
less preferred by our annotators compared with
Alpaca/BOOST generations. Upon further inspec-
tion, we find out that the gold references in Com-
monGen are relatively short and flat (e.g., “The
car drove through the snow.”), which may also ex-
plain why Alpaca warmed up on CommonGen are

Constraint table, dog, game, walk, fireplace (from Com-
monGen)

Gelato A dog is playing a game on a table next to a
fireplace.

A* Decoding
A group of people are walking and playing
video games at their dining room with fire-
places, tables, and dogs.

Davinci-003 The dog walked around the table playing a
game by the fireplace.

BOOST Joint The dog walked around the table while we
played a game by the fireplace.

Reference The dog plays the game of walking from the
table to the fireplace.

Constraint statue, liberty, alive (from CSK-PN)
A* Decoding There are still some people who want to see

statues of liberty as living creatures.

Alpaca The Statue of Liberty became alive on a bright
and sunny day.

Lex The statue of Liberty is alive and stands
proudly in New York City.

Davinci-003 The Statue of Liberty stands alive and proud.

BOOST Joint
The Statue of Liberty is a symbol of freedom
and justice that is alive and well in the hearts
of all Americans.

Constraint ant, eat, telephone (from CSK-PN)
Lex The ant was eating the phone as if it were a

delicious snack.
Davinci-003 The ant was seen eating a telephone.
BOOST Joint An ant eating a dead fly on the telephone.

BOOST CS A black ant eating on the side of a brown
telephone.

Table 5: Example generations by different systems. Full
outputs of all compared models can be found in Table 7
in the Appendix.

less preferred than the few-shot setting where high-
quality in-context examples are carefully selected.

5.3 Case Study

We show three example generations by our systems
and the baselines in Table 5 to further understand
the advantage of BOOST. In the first example, the
baselines connect different constraints logically,
but in a less plausible way (e.g., all concepts are
bonded to the same object). Our system on the
other hand describes a scene where people play
games while dogs walk around. In the second and
third example, we all know that the Statue of Lib-
erty is not alive and a telephone is inedible. Instead
of directly adding negations, we observe BOOST

tends to provide more contexts to make its output
reasonable. In contrast, other baselines wrongly
acknowledge that the Statue of Liberty can be alive
or the ant can eat a telephone.

6 Has ChatGPT solved this task?

Pair-wise comparison with BOOST. According
to Table 4, our BOOST model may not surpass

5424



Winning System BOOST CS Same ChatGPT

CS 30% 17% 53%
Overall 47% 25% 28%

Table 6: Which system has better commonsense (CS)
and overall human preference? Pair-wise comparison
between BOOST and ChatGPT shows that our model
earns more overall pick while the ChatGPT have higher
commonsense.

ChatGPT in terms of commonsense, but it excels
in overall preference. On the CSK-PN eval set
where the gap between our model and ChatGPT
is larger, we randomly select 100 pairs of outputs
and conduct pairwise comparison on both com-
monsense and overall preference. Results can be
found in Table 6. Specifically, each pair is first ran-
domly shuffled and then annotated by at least two
annotators. If the two annotators disagree, a third
annotator is introduced for the final judge. They
can also provide an optionally justification for their
choice, which can earn them a small bonus.

Analysis of human’s feedback reveal that Chat-
GPT tends to generate a sentence with highly com-
mon scenarios (e.g., “It is not advisable to wear
sunglasses at night as it can impede your vision
and increase the risk of accidents.”), making the
raters less interested. On the other hand, our model
tends to provide more creative context (e.g., “Some-
one wears sunglasses at night to avoid the bright
lights of the approaching car.”), earning human an-
notators’ overall preference without sacrificing the
commonsense too much. As one annotator com-
mented, “I am fed up with those sentence with
the so-called better commonsense because they
are unimpressive”. Such tendency of ChatGPT re-
sults in a higher commonsense rating yet noticeably
lower overall preference. In short, we highlight that
ChatGPT has not entirely solved the task.

The (so far) impossible fair comparison. Last,
we would like to list two points regarding why eval-
uating ChatGPT and our model may not be a fair
comparison: (1) Test Data Contamination: Chat-
GPT, which is trained on data up to 2021, likely
have been trained on both datasets we tested on,
including the test set. (2) Size and Trick Differ-
ences: Different from BOOST, ChatGPT is more
than a plain language model and benefits largely
from RLHF and many engineering tricks unknown
to the public. It is also much larger than our largest
PTLM, which is alpaca-7b. Nonetheless, our ap-
proach is technically complementary with Chat-

GPT’s language model, too. Unfortunately, due to
API limitations, direct verification remains infeasi-
ble as we do not have access to its output logits.

7 Related Works
Controllable Generation with Frozen PTLMs
There are two major lines: modifying the decoding
algorithm and guiding PTLMs with auxiliary mod-
els. Recently, Lu et al. (2021, 2022) propose neu-
rologic decoding with a look ahead heuristic, and
(Qin et al., 2022) propose energy-based constrained
decoding. One drawback of this line that the in-
ference is slow due to the large search space. In
the other line, Dathathri et al.; Krause et al. (2021);
Yang and Klein (2021) guide the generation pro-
cess with an auxiliary model in a plug-and-play
fashion by leveraging statistical principles such as
the Bayesian rule. Meng et al. (2022) propose to
solve the distributional discrepancy of training data
and PTLM’s generated tokens by training with data
directly sampled from the base model. However,
mistakes in commonsense are neglected when pre-
vious works formulate the whole task as a lexical
constrained generation game.

Commonsense Metrics Zhou et al. (2022) mea-
sures the commonsense of dialogue turns by hard
and soft matching the relations across each turn
to ConceptNet. ACCENT (Ghazarian et al., 2023)
propose an unsupervised metric to measure the
event commonsense of dialogue responses via the
ATOMIC knowledge graph (Hwang et al., 2020).
Our commonsense oracle is inspired by ACCENT
but we primarily focused on factoid commonsense
in a constrained generation setting. A concurrent
work of ours is Vera (Liu et al., 2023), a super-
vised model that learns to estimate the plausibility
of statements. On the other hand, our metric is
unsupervised and neuro-symbolic, thus more inter-
pretable.

8 Conclusion
We present BOOST, a framework to boost the com-
monsense in PLTMs’ generation by training an aux-
iliary model with a commonsense scorer as the ora-
cle. Our O-Scorer is task-agnostic and reference-
free, meaning that it is generalizable to many down-
stream tasks such as dialogue and open-ended text
generation. For such application, one may need to
replace the vanilla PTLMs with task-specific mod-
els and then train the NADO head. The O-Scorer
can also be combined with task-specific guidance.
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Limitations

We discuss the limitations of our work. First, our
tuple extractor covers only four relation types and
can miss many other important relation types such
as causal, temporal order, etc. These later rela-
tion types are more sophisticated such that LLMs
are strong as gpt-3.5-turbo will fail at (Gao et al.,
2023; Yuan et al., 2023; Chan et al., 2023; Bang
et al., 2023). Second, we find out that the co-
sine similarities of sentence embeddings used in
Eq. 1 to compute the compatibility scores some-
times do not align with human judgement. The
errors incurred during the generative scoring pro-
cess is then propagated into the training process of
NADO, which negatively affect the output’s qual-
ity. Last, although the auxiliary models have much
smaller size than the PTLMs, the number of sam-
ples needed to train RO is still large in order to
guarantee a good approximation of the closed form
solution derived in Eq. 4.

Ethics Statement

It is known that the generated results by PTLMs
could capture the bias reflected in the training data
(Sheng et al., 2019; Wallace et al., 2019). Our
model BOOST is build upon PTLMs including T5
(Raffel et al., 2020), GPT-2 (Radford et al., 2019),
and Alpaca (Taori et al., 2023), which may poten-
tially generate offensive content for certain groups
or individuals. We suggest to carefully examine
the potential biases before deploying the models to
real-world applications.
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Appendix

A Few-Shot GPT-3.5 Tuple Extractor
Prompt

The prompt we used to query gpt-3.5-turbo is dis-
played in Figure 4. Recall that we need the LLM to
accurately extract both sensical tuples (e.g., a girl
is Capable Of blowing candles) and nonsensical
tuples (e.g., horse is Capable Of riding bikes) from
the input sentence. Hence, not all sentences in the
prompt are reasonable.

B Full Results of Case Study

The full results of the case study with outputs of all
compared systems can be found in Table 7.

C Human Evaluation Questionnaire

Figure 5 and Figure 6 are screenshots of the ques-
tionnaire we used in the human evaluation.
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Constraint table, dog, game, walk, fireplace (from Com-
monGen)

Gelato A dog is playing a game on a table next to a
fireplace.

A* Decoding
A group of people are walking and playing
video games at their dining room with fire-
places, tables, and dogs.

Davinci-003 The dog walked around the table playing a
game by the fireplace.

Lex A dog is walking around the fireplace and
playing a game on the table.

Alpaca The dog walks around the table while playing
a game by the fireplace.

BOOST CS Two dogs are playing a game of Frisbee by
the fireplace next to the table.

BOOST Joint The dog walked around the table while we
played a game by the fireplace.

ChatGPT A dog played near the table by the fireplace
after a walk.

Reference The dog plays the game of walking from the
table to the fireplace.

Constraint statue, liberty, alive (from CSK-PN)
A* Decoding There are still some people who want to see

statues of liberty as living creatures.
Davinci-003 The Statue of Liberty stands alive and proud.
Lex The statue of Liberty is alive and stands

proudly in New York City.

Alpaca The Statue of Liberty became alive on a bright
and sunny day.

BOOST CS The statue of liberty stands alone as a symbol
of liberty and awakening alive.

BOOST Joint
The Statue of Liberty is a symbol of freedom
and justice that is alive and well in the hearts
of all Americans.

ChatGPT The Statue of Liberty looked alive in the glow-
ing sunset.

Constraint ant, eat, telephone (from CSK-PN)
A* Decoding A man is feeding ants to an antennae on top

of his head, so they can be eating from the
telephone.

Davinci-003 The ant was seen eating a telephone.
Lex The ant was eating the phone as if it were a

delicious snack.
Alpaca The ant ate the telephone.
BOOST CS A black ant eating on the side of a brown

telephone.
BOOST Joint An ant eating a dead fly on the telephone.

BOOST CS A black ant eating on the side of a brown
telephone.

ChatGPT The ant tried to eat the speaker of a miniature
telephone.

Table 7: Full results of case study by different systems.
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<−− Instruction : −−>
Extract tuples (A, B) from the sentence for the relations based on the description below.
Do not infer anything . Only extract tuples that explicitly mentioned in the sentence .
Put None if there are no tuples to extract .

IsUsedFor: A (an object ) is used to do B (a goal) .
AtLocation: A is at the location or larger area B.
CapableOf: A (a living ) is capable of doing B (an event )
PartOf : A is part of B.

<−− Examples: −−>
The runner ran because he wanted to win the car race .
IsUsedFor: None
AtLocation: None
CapableOf: ( runner , run) , ( runner , win the car race )
PartOf : None

The small plates add dimension and depth to this dish of baked zucchinis and carrots .
IsUsedFor: (small plates , adding dimension to this dish )
AtLocation: None
CapableOf: None
PartOf : (baked zucchini , dish ) , ( carrot , dish )

The grinning boy put his foot into the sock to dress himself .
IsUsedFor: None
AtLocation: ( foot , sock)
CapableOf: (boy, grin ) , ( grinning boy, put his foot into the sock)
PartOf : ( foot , grinning boy)

The judges give high scores to the woman wearing a long dress who sings beautifully into a microphone on the
stage .

IsUsedFor: (microphone, singing )
AtLocation: (woman, stage) , (microphone, stage ) , (long dress , stage )
CapableOf: ( judges , give high scores ) , (woman, wear a long dress ) , (woman, sing beautifully )
PartOf : None

A man is kicking a soccer ball with his head.
IsUsedFor: None
AtLocation: None
CapableOf: (man, kick a soccer ball with his head)
PartOf : (head, man)

I used a chisel and hammer to carve a piece of wood.
IsUsedFor: ( chisel , carving a piece of wood), (hammer, carving a piece of wood)
AtLocation: None
CapableOf: ( I , carve a piece of wood), ( I , use chisel ) , ( I , use hammer)
PartOf : None

Spewing volcano with waterfalls flowing results in an idyllic uncontaminated environment at summer in the
mountains.

IsUsedFor: None
AtLocation: (volcano, mountains) , ( waterfalls , mountains)
CapableOf: (volcano, spew), ( waterfall , flow)
PartOf : ( waterfall , spewing volcano) , ( idyllic uncontaminated environment, mountains)

A fan argues with stewards after being told to leave the pitch .
IsUsedFor: None
AtLocation: (fan , pitch ) , ( stewards , pitch )
CapableOf: (fan , argue with stewards ) , ( stewards , tell fans to leave pitch )
PartOf : None

The soldier is driving the smiling tank across the bridge to save people .
IsUsedFor: ( tank , driving )
AtLocation: ( soldier , across the bridge ) , ( tank , across the bridge )
CapableOf: ( soldier , drive the tank) , ( tank , smile)
PartOf : None

Figure 4: Few-Shot prompt used to query gpt-3.5-turbo to extract tuples from a sentence. We purposefully select a
few non-sensical sentences in the prompt.
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Figure 5: The instructions for human evaluation (page 1).
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Figure 6: The instructions for human evaluation (page 2).
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