@inproceedings{yang-etal-2023-representative,
title = "Representative Demonstration Selection for In-Context Learning with Two-Stage Determinantal Point Process",
author = "Yang, Zhao and
Zhang, Yuanzhe and
Sui, Dianbo and
Liu, Cao and
Zhao, Jun and
Liu, Kang",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.331",
doi = "10.18653/v1/2023.emnlp-main.331",
pages = "5443--5456",
abstract = "Although In-Context Learning has proven effective across a broad array of tasks, its efficiency is noticeably influenced by the selection of demonstrations. Existing methods tend to select different demonstrations for each test instance, which is time-consuming and poses limitations in practical scenarios. Therefore, this study aims to address the challenge of selecting a representative subset of in-context demonstrations that can effectively prompt different test instances in a specific task. We propose that this representative subset should be of high quality and diversity. Our empirical analyses confirm that demonstrations that meet these criteria can indeed bolster model performance. To satisfy these criteria, this paper further introduces a two-stage Determinantal Point Process (DPP) method designed to incorporate both quality and diversity in the process of demonstration selection, thereby obtaining representative in-context demonstrations. Through comprehensive experimentation, we have confirmed the efficacy of our proposed method, paving the way for more practical and effective In-Context Learning.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2023-representative">
<titleInfo>
<title>Representative Demonstration Selection for In-Context Learning with Two-Stage Determinantal Point Process</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanzhe</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dianbo</namePart>
<namePart type="family">Sui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Although In-Context Learning has proven effective across a broad array of tasks, its efficiency is noticeably influenced by the selection of demonstrations. Existing methods tend to select different demonstrations for each test instance, which is time-consuming and poses limitations in practical scenarios. Therefore, this study aims to address the challenge of selecting a representative subset of in-context demonstrations that can effectively prompt different test instances in a specific task. We propose that this representative subset should be of high quality and diversity. Our empirical analyses confirm that demonstrations that meet these criteria can indeed bolster model performance. To satisfy these criteria, this paper further introduces a two-stage Determinantal Point Process (DPP) method designed to incorporate both quality and diversity in the process of demonstration selection, thereby obtaining representative in-context demonstrations. Through comprehensive experimentation, we have confirmed the efficacy of our proposed method, paving the way for more practical and effective In-Context Learning.</abstract>
<identifier type="citekey">yang-etal-2023-representative</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.331</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.331</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>5443</start>
<end>5456</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Representative Demonstration Selection for In-Context Learning with Two-Stage Determinantal Point Process
%A Yang, Zhao
%A Zhang, Yuanzhe
%A Sui, Dianbo
%A Liu, Cao
%A Zhao, Jun
%A Liu, Kang
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F yang-etal-2023-representative
%X Although In-Context Learning has proven effective across a broad array of tasks, its efficiency is noticeably influenced by the selection of demonstrations. Existing methods tend to select different demonstrations for each test instance, which is time-consuming and poses limitations in practical scenarios. Therefore, this study aims to address the challenge of selecting a representative subset of in-context demonstrations that can effectively prompt different test instances in a specific task. We propose that this representative subset should be of high quality and diversity. Our empirical analyses confirm that demonstrations that meet these criteria can indeed bolster model performance. To satisfy these criteria, this paper further introduces a two-stage Determinantal Point Process (DPP) method designed to incorporate both quality and diversity in the process of demonstration selection, thereby obtaining representative in-context demonstrations. Through comprehensive experimentation, we have confirmed the efficacy of our proposed method, paving the way for more practical and effective In-Context Learning.
%R 10.18653/v1/2023.emnlp-main.331
%U https://aclanthology.org/2023.emnlp-main.331
%U https://doi.org/10.18653/v1/2023.emnlp-main.331
%P 5443-5456
Markdown (Informal)
[Representative Demonstration Selection for In-Context Learning with Two-Stage Determinantal Point Process](https://aclanthology.org/2023.emnlp-main.331) (Yang et al., EMNLP 2023)
ACL