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Abstract

Large Language Models (LLMs) make natural
interfaces to factual knowledge, but their use-
fulness is limited by their tendency to deliver
inconsistent answers to semantically equivalent
questions. For example, a model might predict
both “Anne Redpath passed away in Edinburgh.”
and “Anne Redpath’s life ended in London.” In
this work, we identify potential causes of in-
consistency and evaluate the effectiveness of
two mitigation strategies: up-scaling and aug-
menting the LM with a retrieval corpus. Our
results on the LLaMA and Atlas models show
that both strategies reduce inconsistency while
retrieval augmentation is considerably more ef-
ficient. We further consider and disentangle the
consistency contributions of different compo-
nents of Atlas. For all LMs evaluated we find
that syntactical form and other evaluation task
artifacts impact consistency. Taken together,
our results provide a better understanding of
the factors affecting the factual consistency of
language models.

1 Introduction

We have recently observed the development of sev-
eral highly performant pretrained large language
models (LLMs) that have expanded the boundaries
of what we can expect from foundational language
models. These recent successes have highlighted
the potential of using language models as a simpler
interface to factual knowledge (Petroni et al., 2019;
Dinan et al., 2019).

However, in fact critical settings we require not
only high accuracy but also consistency, i.e. robust-
ness to lexical variations in semantically equivalent
queries. Recent LM developments have mainly
improved on accuracy, while the question of con-
sistency has seen less attention. As exemplified
in Figure 1, even SoTA LMs may produce differ-
ent outputs depending on lexical variations in se-
mantically equivalent queries (Elazar et al., 2021;
Ribeiro et al., 2019; Cao et al., 2021). This sug-

Fact Anne Redpath - place of death - Edinburgh

Queries 1. Anne Redpath expired at <X>.

2. Anne Redpath’s life ended in <X>.

3. Anne Redpath passed away in <X>.

Answers 1. Southampton

2. London

3. Edinburgh

subject relation object

Atlas
Retriever

Reader

LLaMA

Wikipedia

Template: <Y> expired at <X>.

Figure 1: Overview of how consistency is computed in
ParaRel for Atlas and LLaMA.

gests that performance on benchmarks for factual
information does not measure true factual knowl-
edge, since models do not generalize well across
rephrased prompts.

Problems with inconsistency extend beyond fact-
related accuracy, as they also indicate a tendency to
hallucinate and a lack of factuality in foundational
LMs (Ji et al., 2023). As inconsistent models may
be fragile in unexpected manners, they are diffi-
cult to interpret and we are in a worse position for
providing limitations on what they may generate
(Wang et al., 2022).

To promote desirable properties such as robust-
ness and interpretability we may need to reconsider
our model designs. As an alternative to up-scaling,
we have seen the rise of model designs guided
by inductive biases to promote various properties
(Feder et al., 2022). Examples of such models are
text retrieval-augmented models that condition pre-
dictions on retrieved text passages for improved
adaptability, interpretability and efficiency (Izacard
and Grave, 2021; Izacard et al., 2023; Wu et al.,
2022), neurosymbolic models that condition predic-
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tions on logic for reasoning capabilities (Pacheco
and Goldwasser, 2021) and fact-injected LMs for
interpretability (Verga et al., 2021).

Our goal in this paper is to improve our under-
standing of consistency in foundational LMs. We
start by investigating methods to improve model
consistency. We consider two potential solutions,
1) model up-scaling and 2) Wikipedia text retrieval
augmentation, building on suitable inductive bi-
ases related to factual consistency. Furthermore,
we identify and investigate potential sources of
inconsistency of LMs. Our contributions can be
summarized as follows:

• We investigate ParaRel, a benchmark for eval-
uating consistency (Elazar et al., 2021) and
develop an improved version of it1 (Section 2).
We refer to this version as ParaRel* through-
out this paper. We have removed ambigu-
ous fact duplicates and added four query-level
metrics to estimate inconsistency sources re-
lated to evaluation task format, such as lin-
guistic form effects (Section 4).

• We investigate the hypothesis that model scal-
ing mitigates inconsistency (Section 3.1). Our
evaluation of varying sizes of the LLaMA and
Atlas models (Touvron et al., 2023; Izacard
et al., 2023) show that scale improves consis-
tency, but with diminishing returns.

• We hypothesize that retrieval augmentation
mitigates inconsistency and investigate this
using Atlas (Izacard et al., 2023) – a retrieval-
augmented model – along with non-retrieval
models of similar scale (Section 3.2). We
show that Atlas outperforms all baselines on
the ParaRel* task.

• We also investigate causes and correlations
related to consistency of Atlas (Section 5).

– We define metrics for measuring retrieval
consistency and find that the Atlas re-
triever components generally is consis-
tent and that retrieval consistency corre-
lates with prediction consistency.

– Through interventions on the retrieval
component we find that the consistency
and relevance of the retrieved result both
affect the consistency and accuracy of
the predictions.

1Code and datasets available at https://github.com/
dsaynova/pararel.

– We investigate to what extent the reader
component depends on term frequencies
in the retrieved result and find it to be
more inconsistent when this dependence
is weaker.

2 Data

We describe the original ParaRel benchmark in Sec-
tion 2.1 and our improvements in Section 2.2. Sec-
tion 2.3 explains the metrics studied for ParaRel*.

2.1 ParaRel
ParaRel (Elazar et al., 2021) is based on LAMA
(Petroni et al., 2019), an evaluation task based on
Wikidata that measures factual knowledge stored in
LMs through prompting for subject-relation-object
tuples. ParaRel adds a layer of semantically equiv-
alent cloze-style prompts to LAMA, which in turn
allows us to measure the consistency of LMs with
respect to the knowledge tuples represented by
LAMA (see Figure 1). The idea is that a model is
consistent if it is invariant to query paraphrases.

ParaRel measures consistency for N-1 relations,
for which there is only one correct object alterna-
tive for a subject-relation pair, and plausibility for
N-M relations, where there are several correct ob-
jects for a subject-relation pair. We only consider
the N-1 relations that measure consistency. Addi-
tionally, following Elazar et al. (2021), we simplify
the task by restricting the candidate sets. The mod-
els are only allowed to generate an answer from the
alternatives in the ParaRel* data for each relation.

2.2 Analysis and Improvements
Analysis of the ParaRel data showed that it contains
exact duplicate tuples – e.g. Audi R8 produced-
by Audi. This refers once to the Wikidata entity
Q758775 (prototype race car) and once to Q758778
(sports car model), which are not distinguishable
by name only. Additionally, duplicated subject-
relation pairs (with a different object) also exist
in the data. For example, SNES-CD produced-by
Sony and SNES-CD produced-by Nintendo are both
present in the data. Appendix F presents statistics
for the number of such duplicates.

Since we aim to use ParaRel to measure con-
sistency for N-1 relations, we remove all subject-
relation instances that occur more than once in the
dataset. Relation P37 official-language had 280
duplicates out of 900 data entries and cannot be
considered to be a N-1 relation, why we completely
remove it from our updated ParaRel* version.

5458

https://github.com/dsaynova/pararel
https://github.com/dsaynova/pararel


This removal of duplicates resulted in an updated
ParaRel* of 30 relations with 21,830 data tuples in
total, instead of the original 23,097. Some of the
retained relations contained more duplicates than
others, but never more than 10% of the data tuples.

2.3 Evaluation Metrics

ParaRel provides several statistics that can be used
to evaluate model performance. We mainly focus
on three: Consistency – pairwise agreement be-
tween prompts for each tuple; Accuracy – accuracy
when using the original LAMA prompt; Consis-
tent & Accurate – what percentage of subjects get
assigned the correct object for all prompts.

The consistency metric results in measurements
for all possible query pairs per tuple and relation.
To get one consistency value per model evaluated,
we calculate the micro-average of the consistency
values across tuples per relation and then take the
macro-average across relations, following Elazar
et al. (2021). The pairwise comparisons used to es-
timate consistency imply that other metrics relating
to consistency, by correlation or stratification, also
need to be on a pairwise query-level.

3 Effect of Scaling and Retrieval
Augmentation

To investigate the effect of scaling and retrieval
augmentation on the consistency of LMs we evalu-
ate LLaMA (Section 3.1) and Atlas (Section 3.2)
on ParaRel* and report the results in Section 3.3.

3.1 Effect of Scaling

Model scaling has been a successful approach to
improving performance on many NLP tasks. We
evaluate LLaMA (7B, 13B, 33B and 65B parame-
ters) (Touvron et al., 2023) on ParaRel* (see Ap-
pendix A for details on how we do this) and mea-
sure whether consistency improves with model
size. LLaMA represents traditional state-of-the-
art LLMs, being decoder-only auto-regressive LMs
trained on over a trillion tokens. We also investigate
this for retrieval-augmented models by comparing
two sizes of the Atlas model.

3.2 Effect of Retrieval Augmentation

We expect retrieval-augmented LMs to generally
be more consistent than standard LMs. Given a
consistent retrieval component, the prediction of a
retrieval-augmented model is conditioned on some-
thing bound to be more consistent than the query

alone. Retrieval augmentation from e.g. Wikipedia
has been successful for several fact-intensive ques-
tion answering tasks (Izacard et al., 2023; Lewis
et al., 2020) and reduced hallucination (Shuster
et al., 2021; Thoppilan et al., 2022).

Atlas is a retrieval-augmented LM optimized for
few-shot knowledge-intensive tasks. It was devel-
oped by Izacard et al. (2023) and retrieves pas-
sages from Wikipedia and a common crawl dump.
The model consists of a dense retriever based on
the Contriever architecture (Izacard et al., 2022)
and a reader based on the T5 seq2seq architec-
ture (Raffel et al., 2020). The model performs on
par with, or even better than, many larger fully-
parametric language models on e.g. Natural Ques-
tions (Kwiatkowski et al., 2019).

We evaluate Atlas on ParaRel* and compare
its performance to relevant baselines, i.e. non-
retrieval-augmented model counterparts. We
mainly use the base version of Atlas with 330M
parameters in our analysis and to some extent also
the Atlas-large with 880M parameters, using the
model weights released by the authors.2 We use
Wikipedia 2017 passages as the retrieval corpus
since this should match the temporal origin of the
ParaRel* data and keep the retrieval indices fixed.
We retrieve 20 passages per query.

Since Atlas has been pre-trained with MLM as
the pretext task, we can evaluate it zero-shot with
some adaptations (see Appendix A).

Baselines To properly investigate the effects of
the different model development choices for Atlas
on consistency, we need to compare Atlas to rea-
sonable baselines. To reason about the benefits of
the retrieval augmentation and additional training
provided for Atlas, we compare against the fully-
parametric T5-base model Atlas was initialized
from.3 To assess the benefits of retrieval augmenta-
tion specifically, we evaluate Atlas in a closed-book
setting without augmentation, while we acknowl-
edge that the model has not been adapted to this
setting.

We also compare Atlas-base and BERT-large to
estimate the benefits of retrieval augmentation. The
latter model should be a good representative for the
retrieval-free setup as it has an advantage in all
aspects except for retrieval augmentation. BERT-
large has slightly more parameters than Atlas-base,
is better adapted to the encoder-based ParaRel* task

2
https://github.com/facebookresearch/atlas#models

3google/t5-base-lm-adapt
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Model Cons Acc C & A

atlas-base 0.74±0.15 0.80±0.16 0.42±0.27

atlas-large 0.77±0.14 0.81±0.14 0.47±0.29

atlas-base* 0.60±0.23 0.41±0.24 0.24±0.22

t5-base 0.59±0.23 0.39±0.23 0.22±0.19

bert-base 0.58±0.24 0.46±0.26 0.27±0.24

bert-large 0.60±0.23 0.48±0.26 0.29±0.27

llama-7b 0.67±0.18 0.67±0.21 0.36±0.28

llama-13b 0.68±0.17 0.70±0.21 0.39±0.28

llama-30b 0.70±0.17 0.75±0.18 0.42±0.28

llama-65b 0.71±0.16 0.75±0.19 0.43±0.28

Table 1: ParaRel* results of Atlas, LLaMA and base-
lines averaged over all 30 N-1 relations. *=closed-book.

and has mainly been trained on Wikipedia, which
could give it an advantage (Elazar et al., 2021).

3.3 Consistency Performance
Table 1 shows the ParaRel* zero-shot results for
all evaluated models for all 30 relations. Following
the work by Elazar et al. (2021), all tables report
the macro-average and standard deviation over the
different relations. Our findings based on these
results are as follows:

Retrieval augmentation has a sizeable effect on
consistency and accuracy We find that the Atlas
models are more consistent compared to all other
evaluated models. Since Atlas-base outperforms
BERT-large in spite of the disadvantages outlined
in Section 3.2, we have good reason to believe that
retrieval augmentation leads to improved consis-
tency and is the main contributor to the superior
performance of Atlas. Atlas-base and large are also
more accurate on ParaRel*. Accuracy is not the
main interest of this work, however we expect these
effects to be interconnected.

While Atlas has superior consistency on
ParaRel* compared to the other models investi-
gated, it does not achieve perfect consistency. De-
spite being developed for fact-critical tasks and
allowed to retrieve information from Wikipedia,
the model can generate different answers to seman-
tically equivalent factual questions. We investigate
potential reasons related to the evaluation task for-
mat and reader-retriever interaction in Section 4
and Section 5.

Model scaling has a sizeable effect on consis-
tency and accuracy We observe improved con-
sistency and accuracy performance with size for

both LLaMA and Atlas. The consistency increases
with approximately 1% in LLaMA and 3% in Atlas
per doubling in model size. Similar effects of up-
scaling were also observed by Elazar et al. (2021).
The larger LLaMA models also outperform BERT-
large, while they do not outperform Atlas.

Retrieval augmentation is more efficient than
up-scaling in increasing consistency Atlas-base
(330M parameters) performs on par with LLaMA-
65B despite being 90 times smaller. Evidently,
retrieval augmentation with Atlas is more efficient
than up-scaling for increased model consistency.
We also note that up-scaling LLaMA yields dimin-
ishing returns with respect to consistency. Conse-
quently, we have found a foundational NLP issue –
consistency – for which model up-scaling is not the
complete solution. Using model designs guided by
inductive biases is a promising approach for robust
and interpretable NLP systems.

4 Effect of Evaluation Task Format

Apart from retrieval-augmentation and scaling, we
also expect form and evaluation task format to have
had an impact on the consistency results in Table 1.
ParaRel*, like many other fact-critical evaluation
sets (Petroni et al., 2019; Norlund et al., 2021; Sci-
avolino et al., 2021), relies on automatic prompt
generation by substituting different subjects into
pre-defined templates. Additionally, both templates
and testing data are extracted and constructed semi-
automatically. Using synthetic data and automated
steps in benchmarks generation is common in NLP
pipelines (He et al., 2022; Meng et al., 2022b).
However, the convenience of this approach comes
with the risk of producing disfluent queries. Pre-
vious work has found that language models learn
form and syntax faster than semantics and gen-
eral natural language understanding (NLU) (Zhang
et al., 2021). We hypothesize that this can lead to a
prioritization of text fluency and syntax over facts,
influencing model consistency. Therefore, we also
evaluate the sensitivity of our models to issues that
may arise from the evaluation task format.

4.1 Metrics to Estimate Inconsistency Sources
from the Evaluation Task Format

Issues from the evaluation task format manifest as
four query-related effects, falling into three groups:
semantic overlap in answers, unidiomatic language
(on both template and object level), and subject-
object similarity. While semantic overlap is caused
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by the evaluation setup, the remaining issues relate
to a larger issue of the effect of language form on
model behaviour.

Semantic overlap The exact string matching
used in ParaRel* to determine model success, taken
together with the constrained decoding may lead to
biased estimations of model performance. Some re-
lations include more ambiguity than others, where
the model is allowed to choose between seman-
tically close answer alternatives, but only one of
these is accepted as a correct answer. Relation P30
located-in-continent, for example, only includes
Africa, Americas, Antarctica, Asia, and Europe,
while relation P101 field-of-work contains both bi-
ology and science, and relation P19 born-in con-
tains both Glasgow and Scotland. We hypothesise
that this added ambiguity may affect consistency
as measured by ParaRel*, and therefore one of the
comparisons we perform is on the consistency of
the 12 relations that have semantic overlap in the
answer options (for a full list see Appendix H) and
the remaining 18 relations that do not have an over-
lap.

Unidiomatic language Certain template-answer
combinations in ParaRel* result in disfluencies.
This is caused by either an ill-fitting template or
an object, that, when combined with a template,
results in unidiomatic language.

For example “Anne Redpath died in Edinburgh”
is much more natural than “Anne Redpath died at
Edinburgh”, even though to a human the meaning
is clear in both. This affects templates in 6 rela-
tions (for a full list of unidiomatic templates see
Appendix H).

Furthermore, “Solar Mass is named after the Sun”
sounds more natural than the ParaRel* entry “Solar
Mass is named after Sun”. This mainly affects ob-
jects in three relations: P101 specializes-in, P138
named-after, and P361 part-of. A manual anno-
tation of the answer alternatives can be found in
Appendix H, where we identified objects that were
expressed unnaturally within the template, typi-
cally because they lacked a determiner or plural
form. A more systematic classification to refine
these labels through larger-scale human annotation
or processing with a grammar checker is left for
future work.

To evaluate the effect of these issues, we com-
pare the pairwise consistency of affected relations
between the cases with and without unidiomatic

objects and templates respectively.

Subject and object similarity Several relations
contain an overlap between the subject and object
– for example – Nokia N9 produced-by Nokia. We
hypothesise that in these cases the model can be
guided by a simple heuristic rather than access-
ing factual information, which may lead to an in-
creased performance on ParaRel*. We identify 9
relations that contain more than 20% of tuples with
an overlap between subject and object stems (see
Appendix H) and report pairwise consistency for
queries with and without subject-object similarity.

4.2 Evaluation task format has an effect on
consistency

Subj-Obj

Similarity Unidiomatic

Object Unidiomatic

Template Semantic

Overlap

0.4

0.6

0.8

C
on

si
st

en
cy

atlas-base llama65 bert-large

Figure 2: Performance for query-related sources of in-
consistency. Filled-in marks indicate performance on
affected data, non-filled-in – on data not affected.

Figure 2 indicates the consistency performance
and analysis of model sensitivity to evaluation task
format issues, including form. Detailed results are
available in Appendix G. All evaluation task for-
mat related phenomena discussed have an effect on
consistency across all model settings. We see that
unidiomatic objects and templates affect all models
on a similar scale, whereas some models are less
susceptible than others to subject-object similarity
and semantic overlap in the answer alternatives.

Our results show that all evaluated LMs are frag-
ile to language usage, such that we cannot expect
them to be robust in the face of less fluent queries.
Judging whether this is acceptable LM behaviour
could be based on the severity of the disfluency.
We could leverage our results to create better eval-
uation tasks by filtering out samples that prevent
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query

nTsemantics

syntax

Ti Oi

RiF

Y

Figure 3: Causal effects on model consistency for a
retrieval-augmented model. Oi denotes the prediction
made by the model given retrieved information Ri and
query, based on a template Ti and invariant fact F . For
each fact we have nT templates. Y is the consistency,
i.e. fraction of equal Oi, Oj pairs. Dashed lines indicate
weak effects.

us from measuring our quantity of interest, such
as factual knowledge under correct language usage.
However, we argue that in the face of the less se-
vere linguistic variations measured in this work, it
is desirable to have a LM that is robust and stays
faithful to its factual predictions.

5 Effect of Retrieval Components

We found Atlas to be more consistent compared
to LMs without retrieval augmentation. In this
section we perform a deeper analysis on the effects
of letting a model retrieve over some corpus with
focus on the retriever and reader components.

We use the DAG depicted in Figure 3 as a start-
ing point for our reasoning. We define a query
to be the combination of a fact tuple, F and tem-
plate T , as depicted in Figure 1. We can see F
and T as the semantics and syntax of a query re-
spectively. A model prediction for a certain query
and retrieved information can thus be described as
O(T, F,R(F, T |β)|θ), where θ and β are model
parameters of the reader and retriever respectively.

The motivation for why retrieval-augmented
LMs should be more consistent than standard LMs
builds on two parts related to the retrieval and infer-
ence steps of the retrieval-augmented model. First,
a perfect retrieval result should ideally be indepen-
dent of the syntax (template) of a query conditioned
on the semantics (facts) of the query. The retriever
is trained on the more narrow task of identifying rel-
evant factual aspects of a query and matching those
to the information in the retrieval corpus, thereby
becoming less dependent on syntactic variations.
Furthermore, the retriever has a more restricted
output space and can only choose between already
existing facts rather than create new ones. Expres-

sion (1) summarizes the expected behavior of an
ideal retriever.

R(F, T |β) ⊥ T |F (1)

Second, the generated output of an ideal retrieval-
augmented model for a fact-related query should
be independent of the syntax, given the semantics
of the query and corresponding perfect retrieved
information. Expression (2) formalizes this idea.
In the ideal case, the retrieved information adds
an inductive bias to the generation process that
conditions the prediction to be independent of the
syntax of the query.

O(T, F,R|θ) ⊥ T |R,F (2)

In practice, we do not expect Atlas to correspond
perfectly to the ideal case. Our experiments inves-
tigate these dependencies and how they interact
with the consistency. We measure retriever con-
sistency (Section 5.1), the effect of the retrieved
information on consistency (Section 5.2) and the
dependence of the reader on the retrieved informa-
tion (Section 5.3).

5.1 Retriever consistency

We hypothesize that the retriever is less dependent
on syntax compared to a standard LM and thereby
more consistent. To estimate the dependence on
syntax of the Atlas retriever, we measure retriever
consistency by estimating the pairwise retriever
agreement for the prompt pairs for each tuple in
ParaRel*. As no automatic method exists for esti-
mating retriever consistency, we propose and eval-
uate three novel metrics. For Atlas, the retrieved in-
formation is in the format of 20 Wikipedia passages,
so our metrics for pairwise retriever agreement rely
on 1) id overlap between retrieved passage sets, 2)
title overlap between retrieved passage sets and 3)
retriever query embedding similarity.

For the two first metrics, we calculate the id
and title overlap of the 20 retrieved documents
(normalized to 1), estimating exact passage match
and whether passages were retrieved from the same
Wikipedia page respectively. These metrics do not
account for the fact that different passages, coming
from different Wikipedia pages, could contain the
same information, especially in the current setting
that queries for simple tuple-based facts. Thus, the
metrics are strict and should give a lower bound on
retriever consistency.
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The embedding based retriever consistency met-
ric is more soft. For this metric, we consider the em-
beddings produced by the retriever for each query
paraphrase and estimate their similarity. Since the
Atlas retrieval is based on a search with respect
to the similarity between embeddings of queries
and passages, the query embedding similarities for
paraphrases can be expected to reflect retriever con-
sistency. We use the cosine similarity between
retriever embeddings for paraphrase pairs as an
estimate for retriever consistency.

To get a baseline performance of the retriever
consistency metrics we also evaluate them on
pairs of randomly sampled passages previously re-
trieved by Atlas-base. We use two methods for
random sampling, 1) sample passage/query pairs
completely at random across relations and subjects,
denoted as r-all, and 2) sample passage/query pairs
from retrieval results for the same relations but
different subjects, denoted as r-subject.

Model Metric Similarity µ Similarity σ

r-all id 0.00±0.00 0.01±0.01

title 0.00±0.00 0.02±0.01

emb 0.54±0.04 0.06±0.01

r-subject id 0.01±0.01 0.02±0.02

title 0.01±0.01 0.02±0.02

emb 0.64±0.04 0.06±0.01

atlas-base id 0.51±0.10 0.19±0.03

title 0.58±0.10 0.20±0.04

emb 0.88±0.04 0.05±0.02

atlas-large id 0.52±0.10 0.19±0.03

title 0.59±0.09 0.20±0.04

emb 0.88±0.04 0.05±0.02

Table 2: Similarity metrics used to estimate retriever
consistency. r-all denotes random sampling over sub-
jects and relations, and r-subject sampling over subjects
with the relation fixed. µ refers to the distribution of the
mean per relation and σ refers to the distribution of the
standard deviation of the metrics per relation.

We apply our retriever consistency metrics to the
Atlas retriever and report the results in Table 2. Our
findings are as follows:

The Atlas retriever exhibits a weak dependency
on syntax For the id and title overlap metrics, we
first set a threshold in order to label a retrieval re-
sult as consistent. From inspection by example we
found the retriever able to find many passages on
the same topic, some with semantic overlap despite

not sharing the same id or title. An average over-
lap of 0.5 could thus be seen as a quite consistent
performance, especially if we compare them to the
low values for the baselines. There are multiple
factors that can account for the incomplete overlap
– e.g. the number of paragraphs that are related to a
particular fact can vary.

For the metric based on embedding similarities,
we observe a significant increase in embedding sim-
ilarity for queries with the same semantic meaning
compared to for random pairs of queries. The re-
triever embedding similarities also capture some
relation information, as the embeddings for random
queries sampled over subjects have an increased
similarity compared to the random baseline.

We conclude that the Atlas retriever is quite con-
sistent according to our metrics, especially if we
compare against the randomized baselines. How-
ever, its consistency is not perfect across para-
phrases, indicating a weak dependence on syntax.
We note that there are many nuances to automatic
metrics for retriever consistency that remain to
be explored. Future work could for example in-
clude measuring the consistency among passages
retrieved for the same query.

Reader and retriever consistencies are corre-
lated To estimate the effect of the retriever con-
sistency on the overall model consistency, we mea-
sure the Pearson correlations between reader con-
sistency and our retriever consistency metrics. We
expect consistent predictions to correlate with con-
sistent retrieval results and vice versa, building on
arguments related to Expressions (1)-(2).

We observe a weak correlation between all re-
triever consistency metrics and the Atlas consis-
tency. For both id and title the Pearson correlation
is 0.16 ± 0.08, while for query embedding simi-
larity it’s 0.14 ± 0.13. As previously discussed,
we expect retrieval augmentation to condition the
prediction to be less syntax dependent, why we
expected some form of correlation to exist, but we
cannot fully explain why it is not higher. One expla-
nation is imperfect metrics for retriever consistency.
Most likely, there are additional factors at play that
determine whether Atlas is consistent. After all,
the Atlas reader is only conditioned on and not
controlled by the retrieved information.
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Intervention Cons Acc C & A

none 0.74±0.15 0.80±0.16 0.42±0.27

relevant 0.79±0.15 0.80±0.16 0.48±0.28

irr cohesive 0.61±0.22 0.42±0.24 0.23±0.23

irr incohesive 0.58±0.24 0.42±0.24 0.22±0.22

Table 3: Atlas-base results for different interventions on
the retrieval augmentation. relevant denotes a consistent
and relevant retrieved result. irr cohesive a consistent
and unified result, but irrelevant. irr incohesive a con-
sistent but completely random result for each of the 20
passages.

5.2 Interventions to further investigate the
effect of retrieval augmentation

We carry out intervention experiments on the re-
trieved information to investigate its effect on Atlas.
To test whether consistent retrieved information
across paraphrases contributes to more consistent
predictions, we set the retrieved information Ri to
a fixed value across paraphrases indexed by i in
ParaRel*, meaning that ∀i Ri = R. We then mea-
sure the consistency of the reader conditioned on
this consistent retrieved information.

Taking the effect of retrieved information quality
into account, we test three different approaches for
setting the fixed retrieved information for a given
fact F = (s, r, o). First, given the corresponding
query paraphrases for F indexed by i we take the
retrieved passages for one of the paraphrases i′ and
use that as the retrieved information for the remain-
ing paraphrases R(s, r), i = R(s, r), i′ , making each
R(s, r), i both relevant and consistent. Second, we
take the retrieved passages for a query paraphrase
i′ for another subject s′ from the same relation
r and set this as the fixed retrieved information
R(s, r), i = R(s′, r), i′ , making the retrieved informa-
tion consistent and cohesive across the retrieved
passages but irrelevant. Third, we use a set of
completely random passages Rrand as the retrieved
information R(s, r), i = Rrand, making it consistent
but irrelevant and incohesive. See Appendix B for a
sketched example. The two latter approaches let us
disentangle the effect of relevance from the effect
of consistency for the retrieved information.

We report the results from these interventions in
Table 3. Our findings based on these results are as
follows:

Consistent and relevant retrieval augmentation
causes more consistent predictions We con-

clude that relevant and consistent retrieved infor-
mation leads to a more consistent Atlas model,
while not perfectly consistent. To some extent, this
confirms our hypothesis related to Expression (2),
while further investigations are needed to explain
the absence of perfect consistency. As we saw in
our previous results, the effect of form could play
a role.

Another potential explanation for the lack of per-
fect consistency is given by Longpre et al. (2021).
They found that a context-augmented LM may
ignore the provided context if it contradicts the
knowledge stored in the model parameters, hypoth-
esizing that fact popularity plays an important role.
Future work could examine whether this phenom-
ena also extends to retrieval-augmented models.

Consistent while irrelevant retrieval augmen-
tation does not result in more consistent pre-
dictions We can also observe from Table 3 how
consistent but irrelevant retrieved information not
related to the query at hand leads to significant
decrease in both consistency and accuracy. We ob-
serve similar behaviour regardless of whether the
irrelevant retrieved information was cohesive or not
(i.e. related to the same fact). Seemingly, the reader
prediction is not only dependent on consistent re-
trieved information, and the reader may be able to
discriminate what retrieved information is relevant
to the query. This corroborates our theory that ad-
ditional inconsistency sources for Atlas exist apart
from retriever consistency. More assumptions are
needed for the variables in Expression (2) before
we can accurately describe the workings of Atlas.

5.3 Reader dependence on retrieval result

To further reason about the effect of retrieval aug-
mentation on consistency, we would like to know
to what extent the Atlas reader is dependent on the
retrieval result. We start by investigating one pos-
sible heuristic – namely, that the reader relies on
frequencies in the retrieved passages.

We estimate the dependence of the Atlas reader
on the retrieval result using the rank of the reader
prediction according to term frequencies in the re-
trieved passages. This is further described in Ap-
pendix C. Since the Atlas reader may be more or
less dependent on the retrieved passages depend-
ing on how well it reflects a correct answer to the
query we also measure the rank of the gold label
following the same approach. We expect a useful
result to rank the correct answer higher compared
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Model Type Rank Match No match

base pred 0.09±0.06 0.06±0.04 0.19±0.09

gold 0.07±0.05 0.05±0.04 0.13±0.07

large pred 0.08±0.06 0.05±0.04 0.19±0.08

gold 0.07±0.05 0.05±0.04 0.14±0.08

Table 4: Frequency-based averaged rankings in the re-
trieved result of the reader’s predictions and the gold
labels. The Pearson ρ between consistency, predic-
tion and respectively gold rank were −0.34± 0.12 and
−0.18± 0.10.

to a less useful result.
We expect consistent predictions to be more re-

liant on the retrieval result compared to inconsis-
tent predictions and can measure this using our
defined metrics. Moreover, we expect the reader
to be more reliant on useful retrieval results, and
thus more consistent for these, compared to for less
useful results that are less successful in surfacing
the correct answer.

We estimate the dependence of the Atlas reader
on the retrieval result using our ranking and report
the results in Table 4. An average rank of 0 cor-
responds to the reader always predicting the top
answer candidate according to the retriever. Our
findings based on these results are as follows:

Reader dependence on retrieval result correlates
with consistency The average rank of a predic-
tion is higher for consistent predictions, compared
to inconsistent. It could be that the reader for some
instances is less faithful to the frequency based sig-
nal of the retriever and simply picks an answer less
supported by the retrieval result. Drawing from our
results in Figure 2, we hypothesize that this could
happen if the answer supported by the retrieved in-
formation would produce an unidiomatic sentence.
Alternatively, some samples may be more difficult
for both reader and retriever to process, resulting
in lower rankings of the predictions made.

Retriever frequency of the correct answer cor-
relates with consistency The retriever generally
promotes the correct answer frequency-wise. Addi-
tionally, similarly to our previous observation, the
retriever is largely better at promoting the correct
answer for samples for which the reader is consis-
tent. This indicates that there are samples for which
the retriever struggles to find suitable passages and
that the reader is less consistent for these.

6 Related Work

While there is a large body of work on the fac-
tual accuracy of LMs, the question of consistency
has received less attention. This issue was investi-
gated by Elazar et al. (2021), which introduced the
ParaRel benchmark which forms the basis of our
work here. On the accuracy side, there have been
investigations that relate effects of the training data
(primarily how frequently facts occur) to the cor-
rectness of factual predictions (Mallen et al., 2023;
Kandpal et al., 2023; Elazar et al., 2022).

The approach of viewing a complex LM as a
causal system and carrying out interventions to in-
vestigate the effect of components on the model’s
behavior was pioneered by Vig et al. (2020). Fur-
ther work by Meng et al. (2022a) applies this
methodology to examining fact associations and
proposes a hypothesis of how models recall factual
information stored in their parameters.

7 Conclusions and Future Work

In this work, we investigate methods to improve
factual consistency of LMs and further reason
about potential sources of inconsistency. We find
that up-scaling, represented by LLaMA, generally
improves on consistency, while it is inefficient
and surpassed by retrieval augmentation, repre-
sented by Atlas. Retrieval augmentation produce
the largest consistency improvement. However,
Atlas does not achieve perfect consistency even
for perfectly consistent retrieved passages, this in-
dicates that additional inconsistency sources are
involved and persistent in spite of consistent con-
ditioning. These are potentially related to form
anomalies and changeable reader dependency on
the retrieved information. In conclusion, we have
identified and measured several potential sources
of (in)consistency that should aid future work on
improving the robustness of LMs, while much re-
mains to be investigated.

Future work includes evaluating consistency
of additional model designs, such as context-
augmented LLMs and models that build on knowl-
edge graphs (Shu et al., 2022). We could also make
use of methods similar to the ones proposed by
Meng et al. (2022a) to further investigate paramet-
ric versus non-parametric memorization in the con-
text of retrieval augmentation and its effects on
consistency.
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Limitations

We reason about benefits related to up-scaling and
retrieval augmentation based on our results from
Atlas and LLaMA, but this may not give the com-
plete picture of the performance of these model
types in general.

Based on the performance of Atlas, we reason
about the effect of retrieval augmentation on incon-
sistency, while we cannot perfectly control for the
confounding effect of different training data. Gen-
erally, training data has been found to have a big
impact on model performance and especially when
relating to accessing factual information. The best
way to estimate the exact effect of retrieval aug-
mentation would be to use a proper closed-book
version of Atlas, trained without augmentation on
the same data. However, since the weights for this
baseline have not been released we resort to ad-
dressing this by marginalization over several other
relevant baselines.

Similarly, we compare LLaMA to Atlas to
reason about the benefits of LLMs versus re-
trieval augmentation, while these two models have
been trained on different datasets and we cannot
marginalize over training data effects. Elazar et al.
(2022) found that models trained to a larger extent
on Wikipedia performed better on ParaRel, poten-
tially because Wikipedia is a more unified source of
factual knowledge. In this sense, LLaMA might be
at a disadvantage, due to requiring large amounts
of training data that are not guaranteed to be unified
or factual.

Furthermore, we base our analysis of consistency
on a single benchmark dataset, which to the best
of out knowledge is the largest and most relevant
dataset for these types of evaluations. However, fur-
ther investigations into how these results generalize
beyond ParaRel* and its specific design choices re-
mains to be investigated.

We focus our study on cloze-style queries, which
limits how well the test set can be handled by dif-
ferent models. These prompts are more suited
for masked language modelling than for auto-
regressive models, so further investigations of the
effects of the chosen task formulation is needed.

Furthermore, models cannot express level of cer-
tainty, so it is unclear to what extent the perfor-
mance is tied to the (un)availability of facts in the
model. Together with the constrained decoding
method applied in this work, this may lead to mod-
els being able to surface a fact in certain settings,

but that may not serve as a binary distinction be-
tween a fact being represented or not in the model.
The different level of difficulty of recalling a fact is
a further possible confounder left for future work.

Ethics Statement

Our work has the overall goal of improving consis-
tency of LMs – a goal that, if accomplished, could
make AI generated text harder to identify with po-
tential negative consequences. On the positive side,
improved consistency of LMs should make them
easier to explain and safer to use in fact critical
situations. The ParaRel* data used in this work is
not associated with any ethical complications.
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A Generating predictions for ParaRel*
with LLaMA and Atlas

To evaluate LLaMA on ParaRel*, we compute the
log likelihoods of all answer options given a rela-
tion, template and subject, and select the answer
with the highest likelihood score.

Since Atlas is a seq2seq model, we cannot use
the same technique to restrict the prediction can-
didates as for the BERT-like models. Instead, we
make use of an approach similar to the one used for
LLaMA. For a given query, we get the latent rep-
resentation from the Atlas reader encoder and give
this as input to the Atlas reader decoder together
with each answer option. The answer options are
formatted as e.g. “<extra_id_0>France” to suit
the T5 format. We then select the answer option
with the highest likelihood score according to the
reader decoder. To ascertain that the constrained
decoding approach is working, we compare the
freely generated model answers to the constrained
model answers and ensure that they match when
the model happens to freely generate an accepted
answer option.

B Interventions on Retrieval
Augmentation

To analyse the effects of retrieval consistency, we
develop several strategies for setting consistent re-
trieved passages: relevant, irrelevant but cohesive,
irrelevant and incohesive. These refer to whether
the we expect the information in the passages to
be related to the questioned asked (relevant) or to
the type of relation in the question (cohesive). Ta-
ble 5 shows a sketched example of how these are
assigned.

C Measuring reader dependence on
retrieval result

We measure reader dependence on the retrieval
result by taking the frequency-based rank of the
reader prediction compared to all other possible
answer alternatives. This is done in two steps: 1)
we order the ParaRel* answer alternatives by fre-
quency for each retrieved result and 2) estimate
the ranking (normalised between 0 and 1) of the
prediction within this order. To relate this metric to
consistency, we make the estimates on prompt-pair
level by taking the average of the two correspond-
ing prediction rankings. This allows us to estimate
both mean rank per relation, but also mean rank for
consistent and inconsistent predictions separately.

To give an example how the metric works, con-
sider the input query “Y is located in [X].” and as-
sume that we have the answer candidates Canada,
Norway and Singapore. We generate the corre-
sponding Atlas retrieval result with term frequen-
cies as indicated in Table 6 and pass the passages
to the reader to get the prediction Y=Singapore.
According to the term frequencies, this prediction
has rank 2, while Canada has rank 3 and Norway
1. After normalisation to values between 0 and 1,
the rank of Y is 0.5 and this is what we report.

D Knowledgeable Consistency

ParaRel also proposes two metrics for deeper anal-
ysis of cases when the model is expected to know
the fact and when the fact may not be in the model.
They define knowledgeable consistency as the pair-
wise consistency for any fact, for which any of the
prompts was able to retrieve the correct answer;
and unknowledgeable consistency – pairwise con-
sistency for fact that no prompt is successful. We
propose one more metric, which expands on the
idea of knowledgeable consistency. Since the origi-
nal metric in ParaRel counts any pair matches be-
tween prompts, as long as one of them was correct,
this can be misleading in estimating how consis-
tent to the true fact the model is. We define the
new metric as the pairwise consistency of prompts,
where both prompts agree and are both correct.

E Additional results

We calculate the extended metrics described in
Appendix D for the models we evaluate (See Ta-
ble 7). We observe similar trends in performance
between the models. One trend we notice is that the
unknowledgeable consistency plateaus for larger
model sizes.

Furthermore, we perform stratified measurement
of consistency of retrieval passages depending on
wheter the overall model prediction matched (was
consistent) or not (See Table 8).

Finally, we perform analysis of our proposed
metrics for measuring retrieval consistency and cal-
culate how well they correlate with each other (See
Table 9). Unsurprisingly, we find a high correlation
between id and title match (since id is sub-level of
title). We also find embedding distance correlates
with id and title.
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Set of retrieved passages

query no intervention relevant irr cohesive irr incohesive

Eibenstock is located in [Y] . {P1, P2, P3} {P1, P2, P3} {P9, P10, P11} {P3, P10, P14}
Eibenstock, which is located in [Y]. {P1, P3, P4} {P1, P2, P3} {P9, P10, P11} {P3, P10, P14}
Eibenstock, located in [Y]. {P2, P3, P5} {P1, P2, P3} {P9, P10, P11} {P3, P10, P14}
Glencree is located in [Y] . {P9, P10, P11}
Robert Bunsen specializes in [Y] {P12, P13, P14}

Table 5: An example of intervention on the retrieved passages when querying for the location of Eibenstock. We
refer to the passages as P1, P2, P3... and assume that 3 passages are retrieved for each query.

Candidate Frequency
Canada 2
Norway 7
Singapore 5

Table 6: Candidate term frequencies for a retrieval result,
as an example.

F Duplicated entries in ParaRel

See Table 10 for statistics for the duplicated data
entries in ParaRel.

G Detailed results for evaluation task
format effects on consistency

Detailed results for evaluation task format related
effects can be found in Tables 11 to 14, where we
report consistency per model and per group.

H ParaRel* flags indicating potential
data issues

Some queries are identified to have semantically
similar answer options, which may cause the model
to be unfairly punished for predicting, for example,
science instead of biology. For a summary see
Table 15.

Some queries are observed to result in unid-
iomatic language due to the template structure. For
details see Table 16.

Furthermore, resulting texts may be unidiomatic
due to the gold label that we want to predict. De-
tailed list of those objects can be found in Table 17.

Finally, Table 18 shows the full list of relations
that contain some overlap between the subject in
the prompt and the gold label we want to pre-
dict, potentially allowing the model to use shallow
heuristics for its prediction.
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Model Know Cons K-know Cons Unk Cons

atlas-base 0.75± 0.15 0.71± 0.17 0.59± 0.19
atlas-large 0.78± 0.14 0.74± 0.15 0.61± 0.20

atlas-base* 0.65± 0.24 0.57± 0.28 0.51± 0.20
t5-base 0.64± 0.23 0.56± 0.26 0.52± 0.23
bert-base 0.63± 0.25 0.56± 0.29 0.45± 0.21
bert-large 0.64± 0.24 0.57± 0.28 0.47± 0.20

llama-7b 0.69± 0.18 0.63± 0.22 0.48± 0.16
llama-13b 0.71± 0.17 0.65± 0.20 0.50± 0.17
llama-30b 0.72± 0.17 0.67± 0.19 0.50± 0.17
llama-65b 0.73± 0.16 0.69± 0.18 0.50± 0.17

Table 7: ParaRel* results of Atlas, LLaMA and some baselines averaged over all 30 N-1 relations with extra metrics.
*=closed-book.

Model Metric Match sim. No match sim.

atlas-base id 0.53± 0.10 0.45± 0.11
title 0.60± 0.09 0.52± 0.11
embedding 0.89± 0.04 0.87± 0.04

atlas-large id 0.54± 0.09 0.46± 0.11
title 0.60± 0.09 0.52± 0.11
embedding 0.89± 0.04 0.87± 0.04

Table 8: The pairwise retriever similarity results stratified over whether the corresponding prediction made by the
retriever was consistent. Complement to Table 2. Match consistency refers to the retriever consistency for cases for
which the final model prediction is consistent and no match consistency refers to cases for which the final model
prediction is inconsistent.

id title embedding

id 1.00± 0.00 0.82± 0.20 0.20± 0.12
title 0.82± 0.20 1.00± 0.00 0.21± 0.11
embedding 0.20± 0.12 0.21± 0.11 1.00± 0.00

Table 9: The correlations between the retriever consistency metrics for random sampling across relations and
subjects (’all’) averaged over ParaRel* relations. 1000 pairs were sampled per sampling method.
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Relation Name #entries #duplicates #exact

P17 located-in 912 2 0
P19 born-in 779 0 0
P20 died-in 817 0 0
P27 citizen-of 958 0 0
P30 located-in-continent 959 4 0
P36 capital-of 471 14 1
P37 official-language 900 280 0
P101 specializes-in 571 52 0
P103 native-language 919 2 0
P106 is-a-by-profession 821 0 0
P127 owned-by 616 0 0
P131 located-in 775 0 0
P136 plays-music 859 2 0
P138 named-after 461 23 2
P140 affiliated-with-religion 432 10 0
P159 headquarter-in 801 4 0
P176 produced-by 925 19 8
P178 developed-by 588 12 1
P264 represented-by-music-label 53 2 0
P276 located-in 764 74 1
P279 subclass-of 900 4 0
P361 part-of 746 64 0
P364 original-language 756 6 0
P407 written-in-language 857 31 0
P413 plays-in-position 952 0 0
P449 originally-aired-on 801 9 1
P495 created-in 905 2 0
P740 founded-in 843 0 0
P937 worked-in 853 21 0
P1376 capital-of 179 8 1
P1412 communicated-in 924 2 0

Total 23097 647 15

Table 10: We count the number of data tuples for each of the 31 ParaRel N-1 relations and indicate how many of
these are duplicates with respect to subject and relation. We also indicate how many of these duplicates are exact
duplicates, in the sense that a subject-relation-object tuple occurs multiple times for a relation.

Model subject-object similarity no subj-obj similarity

atlas-base 0.83± 0.13 0.75± 0.15
atlas-large 0.88± 0.10 0.79± 0.13

bert-base-cased 0.79± 0.14 0.50± 0.16
bert-large-cased 0.81± 0.11 0.55± 0.14

llama-07b 0.87± 0.08 0.72± 0.11
llama-65b 0.86± 0.11 0.76± 0.10

Table 11: Pairwise consistency for datapoints containing subject-object similarity and for those that do not. Results
are based on 9 relations that contain at least 20% subject-object similarity.
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Model object issue no object issue

atlas-base 0.60± 0.22 0.74± 0.16
atlas-large 0.55± 0.23 0.71± 0.16

bert-base-cased 0.39± 0.26 0.58± 0.40
bert-large-cased 0.45± 0.27 0.59± 0.35

llama-07b 0.45± 0.13 0.66± 0.21
llama-65b 0.43± 0.14 0.68± 0.20

Table 12: Pairwise consistency for datapoints containing object level issues and for those that do not. Results are
based on 3 relations that have been labeled with object issues.

Model template issue both template issue one template issue none

atlas-base 0.43± 0.71 0.68± 0.13 0.83± 0.10
atlas-large 0.49± 0.73 0.73± 0.13 0.84± 0.03

bert-base 0.30± 0.69 0.43± 0.28 0.65± 0.23
bert-large 0.32± 0.70 0.48± 0.26 0.72± 0.21

llama-07b 0.35± 0.68 0.56± 0.20 0.76± 0.18
llama-65b 0.39± 0.69 0.62± 0.17 0.77± 0.18

Table 13: Pairwise consistency for cases where one, both or none of the compared templates have a template issue.
Results are based on 6 relations, where we identified template issues.

Model semantic overlap no semantic overlap

atlas-base 0.73± 0.13 0.75± 0.17
atlas-large 0.78± 0.10 0.77± 0.16

bert-base-cased 0.48± 0.23 0.65± 0.23
bert-large-cased 0.51± 0.20 0.67± 0.23

llama-07b 0.63± 0.17 0.69± 0.19
llama-65b 0.67± 0.16 0.74± 0.15

Table 14: ParaRel* results of Atlas and some baselines averaged over all 30 N-1 relations divided into relations that
have semantic ovelap in the answer options (12 relations) and those that do not have an overlap (18 relations).

Relation Name Comment

P19 born-in geographic (City/Country)

P20 died-in geographic (City/Country)

P101 specializes-in several general options (e.g. art and science)

P106 is-a-by-profession someone could be multiple roles - e.g a diplomat and politician

P131 located-in geographic (City/Country)

P140 affiliated-with-religion includes (Catholicism, Christian, Christianity) and (Islam, Muslim)

P159 headquarter-in geographic (City/Country)

P276 located-in geographic (City/Country)

P279 subclass-of several general options (e.g. art and science)

P361 part-of several general options (e.g. art and science)

P740 founded-in geographic (City/Country)

P937 worked-in geographic (City/Country)

Table 15: Relations where answer alternatives could have ambiguity due to semantic overlap.
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Relation Template Comment

P19 born-in [X] is native to [Y]. e.g. "Claude Arrieu is native to Paris"

[X] was native to [Y]. e.g. "Claude Arrieu was native to Paris"

P20 died-in [X] died at [Y]. preposition

[X] passed away at [Y]. preposition

[X] lost their life at [Y]. preposition

[X] succumbed at [Y]. preposition

P27 citizen-of [X] is [Y] citizen. [X] is France citizen ->a French citizen

P106 is-a-by-profession [X] works as [Y]. may require a/an

[X], who works as [Y]. may require a/an

[X]’s occupation is [Y] may require a/an

the occupation of [X] is [Y]. may require a/an

the profession of [X] is [Y]. may require a/an

P138 named-after [X] is named in [Y]’s honor. apostrophe

[X] was named in [Y]’s honor. apostrophe

[X], named in [Y]’s honor. apostrophe

[X], which is named in [Y]’s honor. apostrophe

[X], which was named in [Y]’s honor. apostrophe

P1376 capital-of [Y]’s capital, [X]. apostrophe

[Y]’s capital city, [X]. apostrophe

[Y]’s capital is [X]. apostrophe

[Y]’s capital city is [X]. apostrophe

Table 16: Relations containing unidiomatic templates.
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P101 - specializes in P138 named after P361 part of

Internet Alps Alps car foot perfume
astronomer Americas Americas cartridge forest pistol
bird Arctic Antarctic castle fruit piston
car Bible BBC cavalry galaxy port
cave Moon Bible cell gang radar
comedian Netherlands Caribbean cemetery gene saddle
diplomat Sun Caucasus chromosome genome screw
economist arrow Internet clergy gospel sea
habitat backpack Nile cloud graph seed
hotel brake Quran cocktail head shield
icon canon airline coin heart skeleton
mathematician cube airport comet kidney skull
miniature flower ankle computer leaf spacecraft
musical glove aquarium door liver stomach
musician grape army ear lung sword
nightclub horse artillery economist matrix track
novelist hotel atom ecosystem molecule trail
philosopher liver banana engine mosque tree
physician mayor battery enzyme municipality triangle
physicist mole bicycle eye navy turbine
priest monastery bird facade neck volcano
programmer patent bow film nerve
stock patriarch brain firearm orbit
stomach red breast fish organism
virus bridge fleet parish
website candle flower penis

Table 17: Relations containing unidiomatic objects.
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Relation Name

P36 capital-of
P127 owned-by
P131 located-in
P138 named-after
P176 produced-by
P178 developed-by
P276 located-in
P279 subclass-of
P361 part-of

Table 18: Relations containing subject and object simi-
larity.
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