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Abstract

Vision-Language Models (VLMs) are trained
on vast amounts of data captured by humans
emulating our understanding of the world.
However, known as visual illusions, human’s
perception of reality isn’t always faithful to
the physical world. This raises a key question:
do VLMs have the similar kind of illusions as
humans do, or do they faithfully learn to rep-
resent reality? To investigate this question, we
build a dataset containing five types of visual
illusions and formulate four tasks to examine
visual illusions in state-of-the-art VLMs. Our
findings have shown that although the overall
alignment is low, larger models are closer to
human perception and more susceptible to vi-
sual illusions. Our dataset and initial findings
will promote a better understanding of visual
illusions in humans and machines and provide
a stepping stone for future computational mod-
els that can better align humans and machines
in perceiving and communicating about the
shared visual world. The code and data are
available at github.com/vl-illusion/dataset.

1 Introduction

It’s well established that human perceptual systems
are susceptible to visual illusions, which are de-
fined as “consistent and persistent discrepancies
between a physical state of affairs and its represen-
tation in consciousness” (Day, 1984). Figure 1
shows a well-known example - the checker shadow
illusion (Adelson, 1995). Here, a cylinder on the
checker board creates a shadow on the board. Hu-
man viewers are directed to look at the two squares
A and B as shown in Figure 1(a). To most normal-
sighted people, they will perceive that square A is

∗Work done while the author was an undergraduate re-
search assistant at the University of Michigan.

(a) (b)

Figure 1: The checker shadow illusion (Adelson, 1995).

darker than square B. However, the reality is, the
color pixels of A and B are exactly the same, as
shown in Figure 1(b). This example demonstrates
that while the physical attributes of A and B are the
same, from humans’ eyes, they may look different,
which may further influence how language is used
to describe these objects.

Motivated by human visual illusion phenomena,
recent years have seen an increasing amount of
work in machine visual illusions (Gomez-Villa
et al., 2019, 2020; Hirsch and Tal, 2020; Sun and
Dekel, 2021; Lonnqvist et al., 2021). These pre-
vious works were solely based on vision, for ex-
ample, evaluating how the internal representation
from a computer vision model can be used as a
proxy of stimulus compared to human’s stimulus
shift under illusions. Most previous experiments
were conducted in a case-by-case manner, without
addressing general behaviors through a systematic
investigation.

Different from these previous works, this paper
studies visual illusion from a new angle, in the
context of language communication. Language
comprehension and language production are tightly
linked to how we perceive the visual world. Back to
Figure 1(a), when two people are observing the fig-
ure together, due to their likely shared illusion, the
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expression “the darker square” will lead to the same
reference of square A. But when a human com-
municates with a machine, will the machine also
interpret “the darker square” as square A? Given
the rise of large vision-language models (VLM),
it’s important to understand whether these VLM
models have a similar tendency to visual illusions,
and to what degree they may align with human vi-
sion. The answers to these questions will further
impact the alignment of the grounded language
communication between humans and machines.

To address these questions, we created a new
visual illusion dataset covering five different cate-
gories from the cognitive literature. Based on the
dataset, we created a benchmark, Grounding Vi-
sual Illusion in Language (GVIL), which consists
of four subtasks: Same-Difference Question An-
swering (SameDiffQA), Referential Question An-
swering (RefQA), Attribute Question Answering
(AttrQA), and Referential Localization (RefLoc) to
assess machines’ alignment with the human un-
der visual illusions. We specifically evaluated four
state-of-the-art vision-language models: Unified-
IO (Lu et al., 2022), OFA (Wang et al., 2022),
LLaVA (Liu et al., 2023) and InstructBLIP (Dai
et al., 2023). Our results have shown that these
four models mostly do not align with human vision
illusions, especially for QA-based tasks. However,
for the RefLoc task, these models (especially ones
with larger parameters) have demonstrated an im-
pressive alignment with humans.

To our knowledge, this is the first work that takes
language into consideration to study machine vi-
sual illusion. There are two main contributions of
this work. First, this investigation provides an ini-
tial understanding of the alignment between human
and machine visual illusions. Such understanding
will enable techniques for a better communicative
grounding in situated language communication and
help develop more reliable embodied agents in the
future. Second, unlike using internal representa-
tions to explain illusions, language can be used
as a proxy to demonstrate whether and how ma-
chine illusions match or mis-match with the hu-
man illusion. This benchmark will not only facili-
tate computational models for better human agent
alignment, but also provide tools for scientific un-
derstanding of visual illusion in both humans and
machines.

2 Related Work

Human Visual Illusion Visual illusions in hu-
mans are instances where human subjective per-
ceived properties, such as color or size, deviates
from their true physical characteristics (Carbon,
2014). This underscores the fact that the human
brain doesn’t perfectly replicate physical features;
rather, it integrates contextual information and prior
knowledge to form the perceptual experiences (Car-
bon, 2014).

Visual illusions can affect human behavior in
multiple ways. Research has shown that human ac-
tion cannot resist visual illusions (Gentilucci et al.,
1996; Franz, 2001; Carey, 2001), so is language
comprehension and language production. Such
findings catalyze inquiries regarding the capabil-
ity of models to comprehend language instructions
based on human perceptions and align them with
human intent.

Machine Visual Illusion. Previous studies have
significantly advanced our ability to examine visual
illusions by providing systematic data and tools.
These efforts include the introduction of tools for
calculating and generating illusory images system-
atically (Hirsch and Tal, 2020; Fan and Zeng, 2023),
the development of open-source software with a
parametric framework for controlled illusion gen-
eration (Makowski et al., 2021), and the proposal
of a framework synthesizing new visual illusions
using automatic differentiation techniques (Gomez-
Villa et al., 2022). With the goal of evaluating
machine visual illusions, prior research (Gomez-
Villa et al., 2019, 2020; Afifi and Brown, 2019;
Benjamin et al., 2019) has also demonstrated that
convolutional neural networks trained on ImageNet
or low-level vision tasks can be misled by certain
visual illusions, similar to human responses. These
works have formed a foundation for scalable and
reproducible research on machine illusions.

Unlike prior research focusing exclusively on
vision models, our study introduces a novel and
unique angle by presenting the first dataset offering
natural language annotations for the evaluation of
machine-processed visual illusions. This work in-
tends to bridge the current gap and facilitate future
evaluations of vision-language models concerning
their alignment with human visual illusions. This
novel perspective illuminates future improvements
in human-machine alignment and promotes the cru-
cial role of human language as the interaction inter-
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face with machines.

Foundation Vision-Language Models. Recent
advancements in foundational vision-language
models (VLMs) have shown impressive results
across a broad spectrum of tasks (OpenAI, 2023;
Wang et al., 2022; Lu et al., 2022; Alayrac et al.,
2022; Radford et al., 2021). These models, acting
as user interfaces, interact with users through both
language and visuals, necessitating a deep under-
standing of human intent and an alignment with hu-
man values to make them more useful. While pre-
vious research has primarily focused on language-
based uni-modal alignment problems (Ouyang
et al., 2022; Kosinski, 2023), our work offers a
fresh perspective. Centered on the intersection of
VLM’s perception capability and human cognitive
biases, we investigate to what degree they can un-
derstand humans and align with human intentions
under visual illusions.

3 The Grounding Visual Illusion in
Language (GVIL) Benchmark

To facilitate our investigation, we created a bench-
mark for evaluating machine visual illusions in the
context of grounded communication. This bench-
mark is built upon a set of images with visual illu-
sions. Each image consists of two objects which
may look different to humans but are actually iden-
tical in their pixels. This setup has two advantages.
First, the definition of illusion is clear and non-
ambiguous, thus it is easy to measure whether the
machine has a similar illusion as humans. Sec-
ondly, the multi-object setup naturally supports the
evaluation of language grounding, such as evalu-
ating whether the machine can select the object
an expression grounds to under the illusion (i.e.,
square A is what "the darker square" grounds to in
Figure1(a)).

3.1 Data Collection
Our dataset encapsulates five distinct types of illu-
sions, each reflecting different elements of human
physiological and cognitive processes (Gregory,
1997; Kitaoka, 2010; Robinson, 2013). Table 1 dis-
plays a sample of each illusion type, along with a
detailed description.

These illusions can be categorized into two broad
areas: color and geometric illusions. For color illu-
sions, we adopt the classifications of color con-
stancy, assimilation, and simultaneous contrast
(MacEvoy, 2005). In terms of geometric illusions,

Color Constancy

The red ship on the left still looks red
after applying a blue filter, the blue
ship on the right still looks blue af-
ter applying a red filter, even though
the RGB colors of both ships are the
same.

Color Assimilation

The two circles have the same
color, while the one on the
left looks red (due to its neigh-
bor/foreground) and the one
on the right looks orange.

Color Contrast

The two grey circles have the
same color, while the one on
the left looks lighter and the
one on the right looks darker.

Geometrical Relativity

The two orange circles have
the same size, while the one on
the left looks smaller and the
one on the right looks bigger.

Geometrical Perspective

The two people have the same
height, while the one on the
left looks shorter and the one
on the right looks taller.

Table 1: Example illusion from each category and the
corresponding explanations.

we only included distortions among the four cat-
egories in Robinson’s illusion classification in or-
der to fix the need for a comparative assessment.
The illusions we used to generate our data include
Delboeuf (Delboeuf, 1865), Ebbinghaus, and Jas-
trow illusions (Jastrow, 1892) for relativity, and
Müller-Lyer (Müller-Lyer, 1889) and Ponzo illu-
sions (Ponzo, 1911) for perspective distortion. The
following explanations give an overview of the hu-
man perception phenomena underlying each cate-
gory:

• Color Constancy refers to phenomenon where
the color of an object remains constant perceptu-
ally, despite changes in lighting conditions.

• Color Assimilation shows how two adjacent
color patches influence each other’s perceptual
appearance, reducing the perceived color differ-
ence.

• Color Contrast. The perceived color of an ob-
ject shifts opposite to the color of its surround-
ings
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Figure 2: Data augmentation examples for the Ebbing-
haus illusion.

• Geometrical Relativity refers to the distortion
in the perceived shape or size of an object due to
the influence of surrounding oobjects.

• Geometrical Perspective reflects the tendency
of our visual system to perceive perceptually dis-
tant objects as larger than nearby ones of the
same size.

For each illusion type, we first collected several
root images from the literature (Todorović, 2020)
and online resources1. We manually identify at-
tributes that can be changed without impacting the
effect of illusion (e.g., the color of objects in geo-
metric illusions, or the position of objects in color
illusions), and edit them to create more illusion
instances of the same type, to enrich the number of
images in our dataset. We show some augmentation
examples in Figure 2.

The statistics of our dataset is shown in Table 2.
Note that since this dataset is only used for the eval-
uation purpose, i.e., to assess machine’s alignment
with human in visual illusion, we chose quality
over quantity. The dataset is modest in size as each
instance is carefully selected (or augmented) based
on cognitive literature. Nonetheless, our infras-
tructure is also designed to foster the continuous
development and augmentation of this dataset, al-
lowing for community contributions, for instance.
It will become an important resource to not only
support a better understanding of machine/human
visual illusion, but also facilitate the adaptation of
computational models to visual illusions.

3.2 Benchmark Tasks
We define four vision-language tasks targeting dif-
ferent model capabilities.
Same-Different Question Answering (SameDif-
fQA) aims at evaluating the ability of recognizing

1https://michaelbach.de/ot/

Category #Root #Image #Instance

Color Constancy 3 6 96
Color Assimilation 5 34 544
Color Contrast 3 30 480
Geometrical Relativity 3 20 320
Geometrical Perspective 2 10 160

Total 16 100 1600

Table 2: Dataset statistics.

IMG1 (illusion-free) IMG2 (illusion-induced)

Q: Are the two balls the same color or different?

Different

Same

Different

Same

Humanlike

Same

Same

No-Illusion

···

Different

N/A

IMG2:

IMG1:

Figure 3: Illustration of the SameDiffQA setup. For each
instance, the model is asked about its perception of an
object property across two images, one illusion-free and
one illusion-induced. For valid illusion evaluation, the
model must initially identify identical properties in the
illusion-free image.

illusions. As shown in Figure 3, each question
concerns a pair of images (IMG1 and IMG2). One
image (IMG1) is illusion-free where two objects
(blue balls) are identical in color. The other image
(IMG2) is induced with an effect of illusion where
two balls appear in different colors (blue on the left
and green on the right) although their pixels are the
same as in IMG1. The model is tasked to answer
whether two objects are the same color for each of
the images. From a human’s perspective, the an-
swer would be “Same” to IMG1 and “Different” to
IMG2 due to the visual illusion. If the model gives
the answer ‘Same” to IMG1 and “Different” to IMG2,
then the answers align with human’s answers and
therefore the model is considered “human-like". If
the model gives “Same” to both images, it implies
that the model is faithful to reality and does not per-
ceive the same illusion as humans do. If the model
answers “Different” to IMG1, it means it lacks ba-
sic ability to correctly perceive reality and these
cases are considered not applicable to our illusion
evaluation.
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While SameDiffQA focuses on the detection of
the presence of illusions, we design three tasks to
examine how well do machines align with humans
when communication happens under the influence
of illusions. Since it is reported that models tend
to take shortcut by giving an answer purely based
on the text question without looking at the image
(Goyal et al., 2017), we propose a paired test to
reduce the evaluation bias. As shown in Figure 4,
each instance comes with two images: one original
illusion image (IMG1) and one image IMG2 that flips
the objects from the original image (IMG1) in a way
that will also invert the answer to the question.

Specifically, we evaluate the following three as-
pects:

Referential Question Answering (RefQA) tests
the human-likeness of referring to objects under
the illusion. In the question, the object of interest
is referred to by a property affected by the illusion,
and the machine is asked to select the object from
two options, e.g., select either left or right for the
ball that looks blue, in IMG1 and IMG2.

Attribute Question Answering (AttrQA) tests the
human-likeness to describe the attribute of objects
under the illusion. The question is about describing
a visual attribute (e.g. color) influenced by the
illusion of a selected object, and we provide two
answer options to select from.

Referential Localization (RefLoc) tests the
human-likeness of localizing the referred object un-
der the illusion. Given a referential expression that
makes sense to humans under the effect of illusion
(but may not be faithful to reality), the model needs
to predict a bounding box for the object the expres-
sion is referring to. For each referential query, we
consider the machine’s response to be humanlike
only when the pair of responses from the two im-
ages both match with those from human’s. This
enforces that a humanlike response from machines
has to be grounded in the illusion image.

To create this benchmark, we annotate the col-
lected illusion images with natural language ques-
tions and the corresponding answers that humans
will give under illusions. To support the study of
language grounding, we also annotate the referring
expressions for each of the objects with the cor-
responding bounding box, where the expressions
are formed under illusions. We provide several
paraphrases for all the language annotations to help
the evaluation be more robust to models that are
sensitive to language forms. All the images and

IMG1:             | IMG2:           .

IMG1 (original)

IMG1: Left | IMG2: Right

··· | ···

Humanlike

Which ball looks blue, left or right?

Is the ball on the left blue or green?

Localize the blue ball in the image.  

··· | ···

IMG2 (flipped)

IMG1: Blue  | IMG2: Green

RefQA 

AttrQA

RefLoc

Unlike

··· | ··· ··· | ···

Figure 4: Illustration of the RefQA, AttrQA and RefLoc
setups. We flip the illusion image wherein the grounding
outcome should also be inverted, to create a pair of
images for each test. Model success requires accurate
identification in both original and flipped versions to
align with human responses. Matching human answers
signals the model’s capability to interpret illusions in a
humanlike way, while a mismatch indicates otherwise.

corresponding annotations are verified by at least
three human annotators from our team.

4 Experimental Setup

Vision-Language Models. To be evaluated on
all of the four tasks in GVIL, the model has to be
equipped with the visual question-answering skill
and the object localization skill simultaneously.
Among a few candidates, we choose two state-of-
the-art models, the Unified-IO (Lu et al., 2022)
and OFA (Wang et al., 2022), both of which are
trained on a wide range of vision-language tasks,
and achieve impressive performance with a strong
zero-shot inference capability on unseen data. Ad-
ditionally, we select two recent works that adapt
large language models to understand visual images:
the LLaVA (Liu et al., 2023) and InstructBLIP (Dai
et al., 2023). These models are interesting to in-
spect as they have shown a highly conceptual under-
standing of the nuance in images, such as the capa-
bility of interpreting jokes, which may also be use-
ful in interpreting illusions. For each of the afore-
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Figure 5: Results of SameDiffQA. The number shows the percentage of the answers. Each cluster represents the
distribution over humanlike, no-illusion and N/A answers from a model. The green and red line correspond to the
linear regression of humanlike rate and no-illusion rate across all the model sizes. Except for OFA-Large, Unified-
IO-Large, InstructBLIP-13B, the differences between the humanlike rate and the no-illusion rate are statistically
significant P < 0.005. Details are in Table 4 Appendix A.

mentioned models, there exists a range of variants
in different sizes: OFA-{Tiny, Base, Large, Huge},
Unified-IO-{Small, Base, Large, XL}, LLaVA-
{Vicuna-7B, Vicuna-13B}, InstructBLIP-{Vicuna-
7B, Vicuna-13B}. This allows us to study the im-
pact of size variations on model’s understanding of
visual illusions.

Metrics. Through the experiments, we keep track
of the Humanlike rate to measure the alignment be-
tween humans and VLMs, which is the percentage
of examples where the machine gives exactly the
same answers as humans. For the SameDiffQA task,
we also compute the No-Illusion rate, which cor-
responds to the percentage of examples where the
machine consistently considers the objects as the
same under both illusion and illusion-free settings.
For examples where the model fails to identify the
objects as the same in the illusion-free image or
produces nonsense answers to the questions, we
mark them as Not Applicable (N/A) and exclude
them from the illusion recognition assessment.

5 Results Analysis

From our experiments, we are interested in investi-
gating the following research questions:

• RQ1: to what extent do VLMs recognize the
presence of illusions similar to humans?

• RQ2: how much do VLMs align with humans
when communication happens under the influ-
ence of illusions?

• RQ3: does the degree of alignment between
VLMs and human responses vary across dif-
ferent categories of illusions?

We highlight several of our findings across this
three questions in below.

5.1 Illusion Recognition

The results of SameDiffQA are shown in Figure 5.
Relative proportions of "humanlike," "no-illusion,"
and "not applicable (N/A)" responses are repre-
sented as green, orange, and grey bars respectively
for each model, which all together account for
100%. First of all, we notice a large percentage
of responses, across all models, fall under the N/A
category. This suggests that these models often
cannot even tell that the objects are identical in the
illusion-free image, underscoring the need for im-
provement in standard vision-language reasoning
capabilities beyond the scope of illusion contexts.

Given the high proportion of N/A responses, one
might question the benchmark’s adequacy in reli-
ably reflecting a model’s tendency towards either
"humanlike" or "no-illusion". Excluding the N/A
responses, we employed a χ2-test and found that 9
out of 12 models would reject the null hypothesis
which posits that the "humanlike" or "no-illusion"
responses are uniformly distributed. In other words,
these models do not behave randomly. Refer to Ap-
pendix A for more details. Such findings indicate
that, despite certain limitations in their capabili-
ties, our dataset and experimental design effectively
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Figure 6: Humanlike rate on RefQA, AttrQA and RefLoc.
Each bar represents a different model size, arranged in
ascending order from left to right. Note that LLaVA and
InstructBLIP cannot predict object bounding boxes thus
do not have the RefLoc results.

Task Model Pearson coeff. p-value

SameDiffQA OFA 0.689 0.311
UnifiedIO 0.940 0.059*

RefQA OFA 0.946 0.054*
UnifiedIO 0.977 0.022**

AttrQA OFA 0.957 0.043**
UnifiedIO 0.853 0.146

RefLoc OFA 0.933 0.066*
UnifiedIO 0.960 0.039**

Table 3: Pearson’s correlation analysis between the hu-
manlike rate and model size. Statistically significant
results with p < 0.05 and p < 0.1 are marked with **
and *, respectively.

gauge illusion recognition in the assessed VLMs.
When examining cases where responses are ap-

plicable for testing illusion recognition, we observe
that the majority of models are more likely to fail
in recognizing illusions (35.4% on average) than
producing humanlike responses (15.6% on aver-
age). This discrepancy is most pronounced in the
case of InstructBLIP, where the model predomi-
nantly offers ’no-illusion’ answers. Conversely, the
Unified-IO XL model stands out as the only model
exhibiting a significant propensity towards human-
like illusion recognition. A further investigation of
the underlying reason that causes this discrepancy
would be interesting further work.

To illustrate how the scores evolve with model
size, we plot regression lines of “humanlike"
(green) and “no-illusion" (red) rates, respectively.

0

20

40

60

80

OF
A 

Hu
ge

8.3 4.2 0.0 0.0
9.6 12.5 8.1

36.8

23.3
12.5

20.8 21.7

7.5 5.0 3.8

41.2

27.5 27.5

12.5

75.0

SameDiffQA RefQA AttrQA RefLoc

Constancy
Assimilation

Contrast
Relativity

Perspective

0

20

40

60

80

Un
ifi

ed
-IO

 X
L

20.8
8.3 4.2

33.329.4

8.8 9.6

44.9
35.0

5.8
11.7

42.5
50.0

2.5
8.8

35.037.5 40.0

7.5

75.0

SameDiffQA RefQA AttrQA RefLoc

0

20

40

60

80

LL
aV

A 
13

B

0.0 4.2 0.01.5 2.9 1.51.7
10.0

2.52.5 5.0 1.20.0 0.0 5.0

SameDiffQA RefQA AttrQA

0

20

40

60

80

In
st

ru
ct

BL
IP

 1
3B

33.3

8.3
0.0

19.9

0.0 2.9

25.8

2.5 1.7

31.2

0.0 0.0

40.0

0.0 2.5

SameDiffQA RefQA AttrQA

Figure 7: Humanlike rates of the largest model of each
family, with finer-grained human-likeness scores on
each illusion category.

An emerging trend reveals that “humanlike" scores
tend to increase as the model scales, whereas "no-
illusion" responses tend to decline. This finding
suggests a positive correlation between model scale
and human-machine alignment under illusions. We
hypothesize that this observed trend could be at-
tributed to the enhanced pattern-recognition capa-
bilities of larger models. These models, arguably,
are better suited to discern and assimilate patterns
present in data generated by humans, which may
have been shaped by the influence of illusions. Con-
sequently, it’s plausible to assume that these models
are progressing towards a more humanlike compre-
hension of illusions.

5.2 Communication Under Illusion
The results of RefQA, AttrQA, and RefLoc exper-
iments are shown in Figure 6, offering insights
into the alignment between machine and human
responses under the influence of visual illusions.
We find that all the VLMs encounter significant
challenges in responding to questions presented un-
der the influence of visual illusions in both RefQA
and AttrQA. As a result, the models obtain a maxi-
mum humanlike response rate of only 14.0% and
11.2% for RefQA and AttrQA, respectively. Inter-
estingly, models exhibit much stronger alignment
in the localization task, with the highest alignment
of 44.5% achieved by Unified-IO XL. This indi-
cates that the learned object localization skill aligns
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Figure 9: Visualization of the attention maps generated
by the OFA-Large model for the RefLoc task. In each
row, the input image is shown on the left, and the atten-
tion map for the referential expression "smaller orange
ball" is shown on the right. The attention maps surround-
ing the object of interest are highlighted for enhanced
visibility.

better with humans under illusions compared to the
visual question answering skills. Research into the
underlying reason behind this difference might be
an interesting future direction.

Notably, we find a positive correlation between
scaling up models and the increase of human-
like rate across different models and tasks, which
echoes our earlier observations from the SameD-
iffQA experiment. To verify the statistical signifi-
cance, we conducted Pearson’s correlation analysis
for OFA and UnifiedIO models2. As shown in Ta-
ble 3, 6 of the 8 tested scenarios showed significant
or moderately significant positive correlations, with
Pearson coefficients exceeding 0.9. Such results un-
derscore the potential of larger models to enhance
the human-machine alignment of responses across
different tasks and illusion contexts.

2InstructBLIP and LLaVA were excluded since at least
three data points are needed for the test.

5.3 Delving into Illusion Categories

We provide a more granular analysis by examin-
ing each type of illusion, presenting the human-
like rates for each category in Figure 7. The re-
sults depicted here are sourced from the largest
model within each model family, namely Unified-
IO Huge, OFA Huge, LLaVA Vicuna-13B, and
InstructBLIP Vicuna-13B. Our observation reveals
that the perspective category demonstrates the high-
est degree of alignment between machines and hu-
mans. On the contrary, color constancy illusions
emerge as the category with the least congruity in
relation to human responses.

5.4 Understanding the Cause of Illusions

To gain insight into model predictions under the in-
fluence of illusions, we analyze the attention distri-
butions of OFA models in the RefLoc task. Specif-
ically, we compute the attention weight from the
localization query (e.g., "the smaller orange ball")
to the object representation of either a "humanlike"
or "counter-humanlike" perception under illusions.
As depicted by the dark blue and light blue bars
in Figure 8, as the model size increases, attention
weights lean more towards the humanlike selec-
tion. This trend is consistent with the humanlike
rate observed for the RefLoc task in Figure 6. To
determine if this bias stems from the illusion, we
also calculate attention weights for images without
the illusion inducer (represented by orange bars).
These weights are nearly equally distributed across
both objects, suggesting that the illusion does in-
deed influence the model’s attention and biases its
predictions similarly to human perceptions.

Figure 9 shows an example using the attention
visualization tool (Aflalo et al., 2022). The first
image displays the original illusion image, with
two orange balls of identical size while the left
ball seems smaller. The second image is devoid
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of the illusion inducer, while the third image arti-
ficially enlarges the right orange ball. Attention
maps corresponding to the "smaller orange ball"
query3 are shown adjacent to each image. In the
original illusion, the model predominantly focuses
on the left ball, aligning with human observations.
Without the illusion inducer, the query becomes
ambiguous, leading to a dispersed attention map.
However, when an actual size difference is present,
the model’s attention decisively shifts to the cor-
rectly perceived smaller ball on the left. A compar-
ison of these attention maps highlights that while
illusions can steer the model’s attention similarly
to humans, its effect is less pronounced than when
a real disparity exists.

6 Discussion and Conclusion

We introduce GVIL, the first dataset facilitating a
systematic evaluation of machine visual illusion via
natural language. Evaluating four distinct series
of state-of-the-art vision-language model families
across varying scales, we observe a notable align-
ment between these models and human perceptions
during object localization in the context of illusions.
Interestingly, this alignment tends to strengthen
with increased model size. Conversely, many mod-
els face challenges in mirroring human perspec-
tives within visual question-answering tasks. Our
preliminary observations underscore the need for
further discussions in two directions:

Assessment of Vision-Language Models in the
Realm of Visual Illusions. Vision-language
models have demonstrated commendable prowess
in both visual and language understanding. Yet, a
notable gap persists in assessing their performance
in the presence of visual illusions. Given that
such illusions are intrinsic to human perception,
overlooking this facet may contribute to misalign-
ment between human and AI interpretations during
real-world engagements. While our study unveils
certain trends, like the correlation between model
size and human-model alignment, making defini-
tive assertions is non-trivial due to the discrepancy
in model architectures and their training datasets.
Through GVIL, we aspire to catalyze further re-
search that addresses visual illusion in VLMs.

3We use the second last layer of the OFA large model, as
the overall attention score of this layer is the highest. Atten-
tions from all the heads are averaged.

Gaining Insights from Illusions. Exploring the
effects of visual illusions can offer fresh per-
spectives to comprehend the intricacies of vision-
language models. Visual illusion, in some way, is
similar to various types of values shared by our
human society, but not shared among today’s AI
models. Given the rapidly growing applications
of large AI models, it’s important to identify and
understand various aspects of alignment between
these models and humans. Vision illusion is only
an example among many possibilities for future
studies.

Limitations

This work is only the initial attempt to the question
and there are many limitations which we think of as
exciting future research directions. First of all, al-
though our experiments yields some interesting em-
pirical findings, it is not clear why different forms
of tasks (e.g., QA-based tasks vs. RefLoc) lead to a
stark contrast in the results. As these findings may
have implications in future technology that adapt
to visual illusions, more in-depth understanding of
these behaviors will be needed in the future. Sec-
ond, our benchmark is currently small in size. It
lays an infrastructure for this work. Future efforts
to collect more data to form a centralized reposi-
tory will be desired for studying visual illusions in
both humans and machines. Third, our investiga-
tion is only based on a manually collected dataset
for our intellectual curiosity. The construction of
this dataset has the limitations that the effect of
visual illusions are not validated by a wider range
of human subjects other than the authors. While
it has motivation in improving situated language
communication with embodied agents in the physi-
cal world, how visual illusions play in perceiving
and communicating about the real physical world
remains an interesting question.
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A Statistical Analysis for Illusion
Recognition

We conducted a statistical analysis to rigorously
validate that our experimental setup is able to reveal
a model’s inclination towards either “humanlike" or
“no-illusion", notwithstanding the high prevalence
of N/A samples. Specifically, we applied a χ2-test
to the model predictions omitting the N/A samples.
The null hypothesis posits that the humanlike and
no-illusion samples are uniformly distributed, i.e.,
the model behaviors randomly. As shown in Table
4, a significant proportion of the models reject the
null hypothesis. Out of the 12 models tested, 8
models rejected the null hypothesis with a p-value
< 0.001, and 9 models rejected the null hypothe-
sis with a p-value < 0.01. These figures strongly
suggest that most models perform better than what
would be expected by chance alone, which is a

piece of strong evidence that our dataset and exper-
imental setup can support the evaluation of illusion
recognition for the tested VLMs.

Model #HL #NI χ2 p-value
OFA-Tiny 17 172 129.45 <0.001***
OFA-Base 78 146 20.64 <0.001***
OFA-Large 58 73 1.72 0.190
OFA-Huge 60 136 29.47 <0.001***

UnifiedIO-Small 33 221 139.15 <0.001***
UnifiedIO-Base 33 62 9.38 0.002**
UnifiedIO-Large 115 103 0.66 0.416
UnifiedIO-XL 142 34 66.27 <0.001***

LLaVA-7B 13 202 12.89 <0.001***
LLaVA-13B 6 195 177.72 <0.001***

InstructBLIP-7B 91 223 55.49 <0.001***
InstructBLIP-13B 107 121 0.86 0.354

Table 4: Chi-square test for the SameDiff Task (Figure
5). #HL and #NI denote the number of humanlike illu-
sionary answers and no-illusion answers, respectively.
Statistically significant results with p < 0.001 and p <
0.05 are marked with *** and **. respectively.
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