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Abstract

Prior studies diagnose the anisotropy problem
in sentence representations from pre-trained
language models, e.g., BERT, without fine-
tuning. Our analysis reveals that the sentence
embeddings from BERT suffer from a bias to-
wards uninformative words, limiting the per-
formance in semantic textual similarity (STS)
tasks. To address this bias, we propose a
simple and efficient unsupervised approach,
Diagonal Attention Pooling (Ditto), which
weights words with model-based importance
estimations and computes the weighted average
of word representations from pre-trained mod-
els as sentence embeddings. Ditto can be eas-
ily applied to any pre-trained language model
as a postprocessing operation. Compared to
prior sentence embedding approaches, Ditto
does not add parameters nor requires any learn-
ing. Empirical evaluations demonstrate that
our proposed Ditto can alleviate the anisotropy
problem and improve various pre-trained mod-
els on the STS benchmarks.1

1 Introduction

Pre-trained language models (PLM) such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and ELECTRA (Clark et al., 2020) have
achieved great success in a wide variety of natu-
ral language processing tasks. However, Reimers
and Gurevych (2019) finds that sentence embed-
dings from the original BERT underperform tradi-
tional methods such as GloVe (Pennington et al.,
2014). Typically, an input sentence is first em-
bedded by the BERT embedding layer, which con-
sists of token embeddings, segment embeddings,
and position embeddings. The output is then en-
coded by the Transformer encoder and the hidden
states at the last layer are averaged to obtain the
sentence embeddings. Prior studies identify the
anisotropy problem as a critical factor that harms

1The source code can be found at https://github.com/
alibaba-damo-academy/SpokenNLP/tree/main/ditto.

BERT-based sentence embeddings, as sentence em-
beddings from the original BERT yield a high sim-
ilarity between any sentence pair due to the narrow
cone of learned embeddings (Li et al., 2020).

Prior approaches for improving sentence embed-
dings from PLMs fall into three categories. The
first category of approaches does not require any
learning (that is, learning-free). Jiang et al. (2022)
argues that the anisotropy problem may be mainly
due to the static token embedding bias, such as
token frequency and case sensitivity. To address
these biases, they propose the static remove biases
avg. method which removes top-frequency tokens,
subword tokens, uppercase tokens, and punctua-
tions, and uses the average of the remaining token
embeddings as sentence representation. However,
this approach does not use the contextualized rep-
resentations of BERT and may not be effective
for short sentences as it may exclude informative
words. The prompt-based method (last manual
prompt) (Jiang et al., 2022) uses a template to gen-
erate sentence embeddings. An example template
is This sentence: “[X]” means [MASK] ., where
[X] denotes the original sentence and the last hid-
den states in the [MASK] position are taken as sen-
tence embeddings. However, this method has sev-
eral drawbacks. (1) It increases the input lengths,
which raises the computation cost. (2) It relies on
using the [MASK] token to obtain the sentence rep-
resentation, hence unsuitable for PLMs not using
[MASK] tokens (e.g., ELECTRA). (3) The perfor-
mance heavily depends on the quality of manual
prompts which relies on human expertise (alterna-
tively, OptiPrompt (Zhong et al., 2021) requires
additional unsupervised contrastive learning).

The second category of approaches fixes the pa-
rameters of the PLM and improves sentence em-
beddings through post-processing methods that re-
quire extra learning. BERT-flow (Li et al., 2020)
addresses the anisotropy problem by introducing
a flow-based generative model that transforms
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the BERT sentence embedding distribution into a
smooth and isotropic Gaussian distribution. BERT-
whitening (Su et al., 2021) uses a whitening opera-
tion to enhance the isotropy of sentence represen-
tations. Both BERT-flow and BERT-whitening re-
quire Natural Language Inference (NLI)/Semantic
Textual Similarity (STS) datasets to train the flow
network or estimate the mean values and covari-
ance matrices as the whitening parameters.

The third category updates parameters of the
PLM by fine-tuning or continually pre-training the
PLM using supervised or unsupervised learning,
which is computationally intensive. For example,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) fine-tunes BERT using a siamese/triplet net-
work on NLI and STS datasets. SimCSE (Gao
et al., 2021) explores contrastive learning. Unsu-
pervised SimCSE uses the same sentences with
different dropouts as positives and other sentences
as negatives, and supervised SimCSE explores NLI
datasets and treats entailment pairs as positives and
contradiction pairs as hard negatives.

In this work, we first analyze BERT sentence
embeddings. (1) We use a parameter-free prob-
ing method to analyze BERT and Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) and find
that the compositionality of informative words is
crucial for generating high-quality sentence em-
beddings as from SBERT. (2) Visualization of
BERT attention weights reveals that certain self-
attention heads in BERT are related to informative
words, specifically self-attention from a word to
itself (that is, the diagonal values of the attention
matrix). Based on these findings, we propose a
simple and efficient approach, Diagonal Attention
Pooling (Ditto), to improve sentence embeddings
from PLM without requiring any learning (that is,
Ditto is a learning-free method). We find that Ditto
improves various PLMs and strong sentence em-
bedding methods on STS benchmarks.

2 Analyze BERT Sentence Embeddings
Observation 1: The compositionality of infor-
mative words is crucial for high-quality sen-
tence embeddings. Perturbed masking (Wu et al.,
2020) is a parameter-free probing technique for
analyzing PLMs (e.g., BERT). Given a sentence
x = [x1, x2, . . . , xN ], perturbed masking applies
a two-stage perturbation process on each pair of
tokens (xi, xj) to measure the impact that a to-
ken xj has on predicting the other token xi. De-
tails of perturbed masking can be found in Ap-
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Figure 1: The heatmap shows the impact matrix for the
sentence “For those who follow social media transitions
on Capitol Hill, this will be a little different.”. The
impact matrices are computed using BERT (bert-base-
uncased) and SBERT (bert-base-nli-stsb-mean-tokens)
on Hugging Face, respectively.

pendix A.1. Prior works use perturbed masking
to recover syntactic trees from BERT (Wu et al.,
2020). Different from prior works, we use per-
turbed masking to analyze the original BERT and
a strong sentence embedding model, supervised
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019). Figure 1 shows the heatmap representing
the impact matrix F for an example sentence in the
English PUD treebank (Zeman et al., 2017). The
y-axis represents xi and the x-axis represents xj . A
higher value in Fij indicates that a word xj has a
greater impact on predicting another word xi. Com-
paring the impact matrices of BERT and SBERT,
we observe that the impact matrix of SBERT ex-
hibits prominent vertical lines on informative to-
kens such as “social media”, “Capitol Hill”, and
“different”, which implies that informative tokens
have a high impact on predicting other tokens,
hence masking informative tokens could severely
affect predictions of other tokens in the sentence.
In contrast, BERT does not show this pattern. This
observation implies that the compositionality of
informative tokens could be a strong indicator of
high-quality sentence embeddings of SBERT. Fur-
thermore, we compute the correlations between the
impact matrix and TF-IDF (Sparck Jones, 1972)
which measures the importance of a word, and
report results in Table 3. We find that the im-
pact matrix of SBERT has a much higher correla-
tion with TF-IDF than the impact matrix of BERT,
which is consistent with the observation above. No-
tably, ELECTRA performs poorly on STS tasks
and shows a weak correlation with TF-IDF. Conse-
quently, we hypothesize that sentence embeddings
of the original BERT and ELECTRA may be bi-
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Figure 2: Illustration of attention weights for BERT
head 1-10 (on the left) and head 11-11 (on the right).
The darkness of a line represents the value of the atten-
tion weights. The top-5 diagonal values of the attention
matrix are colored blue.

ased towards uninformative words, hence limiting
their performance on STS tasks.

Observation 2: Certain self-attention heads of
BERT correspond to word importance. Al-
though SBERT has a higher correlation with TF-
IDF than BERT as verified in Observation 1, BERT
still shows a moderate correlation. Thus, we hy-
pothesize that the semantic information of infor-
mative words is already encoded in BERT but has
yet to be fully exploited. Prior research (Clark
et al., 2019) analyzes the attention mechanisms of
BERT by treating each attention head as a simple,
no-training-required classifier that, given a word as
input, outputs the other word that it most attends
to. Certain attention heads are found to correspond
well to linguistic notions of syntax and coreference.
For instance, heads that attend to the direct objects
of verbs, determiners of nouns, objects of prepo-
sitions, and coreferent mentions are found to have
remarkably high accuracy. We believe that the at-
tention information in BERT needs to be further
exploited. We denote a particular attention head
by <layer>-<head number> (l-h), where for a
BERT-base-sized model, layer ranges from 1 to 12
and head number ranges from 1 to 12. We visualize
the attention weights of each head in each layer of
BERT and focus on informative words. We then
discover that self-attention from a word to itself
(that is, the diagonal value of the attention matrix,
named diagonal attention) of certain heads may be
related to the importance of the word. As shown in
Figure 2, the informative words “social media tran-
sitions”, “hill”, and “little” have high diagonal val-
ues of the attention matrix of head 1-10. Section 4
will demonstrate that diagonal attentions indeed
have a strong correlation with TF-IDF weights.

Token&Position&Segment Embeddings

Self-attention

Feed Forward

"it will be fine"

it will be fine

it

will

be
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head 10

0.1 0.4 0.1 0.3

Figure 3: The diagram of our proposed diagonal atten-
tion pooling (Ditto) method.

3 Diagonal Attention Pooling

Inspired by the two observations in Section 2,
we propose a novel learning-free method called
Diagonal Attention Pooling (Ditto) to improve sen-
tence embeddings for PLMs, illustrated in Figure 3.
Taking BERT as an example, the input to the Trans-
former encoder is denoted as h0 = [h01, . . . , h

0
N ],

and the hidden states at each Transformer en-
coder layer are denoted as hl = [hl1, . . . , h

l
N ], l ∈

{1, . . . , L}. Typically, the hidden states of the last
layer of the PLM are averaged to obtain the fixed-
size sentence embeddings, as 1

N

∑N
i=1 h

L
i (denoted

as last avg.). Alternatively, we can also average
the static word embeddings 1

N

∑N
i=1 h

0
i (denoted as

static avg.), or average the hidden states from the
first and last layers 1

2N

∑N
i=1 (h

0
i + hLi ) (denoted

as first-last) to obtain the sentence embeddings.
Ditto weights the hidden states with diagonal at-
tention of a certain head. For example, to obtain
the sentence embeddings from the first-last hidden
states of BERT using Ditto, we first obtain the diag-
onal values [A11, . . . ,ANN ] of the attention matrix
A for head l-h of BERT, where l and h are treated
as hyperparameters and are optimized on a develop-
ment set based on the STS performance. Then, we
compute 1

2

∑N
i=1Aii(h

0
i + hLi ) as the sentence em-

beddings2. Note that the impact matrix (Section 2)
correlates well with TF-IDF (as shown in Table 3)
and hence may also improve sentence embeddings.
However, the learning-free Ditto is much more effi-
cient than computing the impact matrix, which is
computationally expensive.

4 Experiments and Analysis
Following prior works (Jiang et al., 2022; Li et al.,
2020; Su et al., 2021; Gao et al., 2021), we exper-

2We did not normalize with N since Aii < 1 and normal-
ization by N may result in very small values.
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Table 1: Performance of different sentence embedding
methods on STS tasks (as Average Spearman’s correla-
tion). Table 6 in the Appendix reports detailed results.

Method Avg.

Learning-free methods

BERT static avg. 56.02
BERT last avg. 52.57
BERT first-last avg. 56.70
BERT static remove biases avg. 63.10
BERT last manual prompt 67.85
BERT static Ditto (Ours) 61.77
BERT last Ditto (Ours) 59.07
BERT first-last Ditto (Ours) 64.77

Methods that fix BERT parameters but require extra learning

BERT-flow 66.55
BERT-whitening 66.28
BERT last manual and continuous prompt 73.59
BERT first-last TF-IDF (Ours) 65.45

Methods that update BERT parameters

Unsup. BERT SimCSE 76.25
Sup. BERT SimCSE 81.57
Sup. SBERT first-last avg. 84.94
Sup. SBERT first-last Ditto (Ours) 85.11

Table 2: Sentence embedding performance of Ditto and
learning-free baselines on PLMs, measured by average
Spearman’s correlation on the test sets of 7 STS tasks.

Method BERT RoBERTa ELECTRA
First-last avg. 56.70 56.57 36.28
Last manual prompt 67.85 61.08 19.44
First-last Ditto (Ours) 64.77 61.96 52.00

iment on the 7 common STS datasets, the widely
used benchmark for evaluating sentence embed-
dings. Appendix A.2 presents dataset and imple-
mentation details.

Main Results The first group of Table 1 presents
the results of the three common learning-free meth-
ods (Jiang et al., 2022) described in Section 3, in-
cluding static avg., last avg., and first-last avg.,
and two learning-free baselines described in Sec-
tion 1, static remove biases avg. and last manual
prompt (Jiang et al., 2022). Although last man-
ual prompt achieves 67.85, different templates can
have a significant impact on its performance, rang-
ing from 39.34 to 73.44 on STS-B dev set (Jiang
et al., 2022). Applying Ditto to static avg., last avg.,
and first-last avg. achieves absolute gains of +5.75,
+6.50, and +8.07 on the Avg. score, respectively.3

The second group of Table 1 presents results
from methods that fix BERT parameters but require

3Since static remove biases avg. may remove important
tokens and last manual prompt uses the last hidden states of
[MASK] as sentence embeddings instead of average pooling,
they are not suitable for applying Ditto.

extra learning. Note that our learning-free BERT
first-last Ditto achieves comparable performance
to BERT-flow and BERT-whitening in this group.
For further analyzing Ditto, we compute TF-IDF
weights on 106 sentences randomly sampled from
English Wikipedia as token importance weights
and use the weighted average of the first-last hidden
states as sentence embeddings, denoted as first-last
TF-IDF (the 4th row in this group). First-last TF-
IDF yields +8.75 absolute gain over the first-last
avg. baseline, only slightly better than the +8.07
absolute gain from our learning-free Ditto (with l
and h searched on only 1500 samples).

The third group of Table 1 presents results of
strong baselines that update BERT parameters
through unsupervised or supervised learning, in-
cluding unsupervised SimCSE (Unsup. BERT
SimCSE), supervised SimCSE (Sup. BERT Sim-
CSE), and supervised SBERT. We find that ap-
plying Ditto on the highly competitive supervised
learning method Sup. SBERT first-last avg. still
achieves an absolute gain of 0.17 (84.94→85.11),
demonstrating that Ditto could also improve strong
supervised sentence embedding methods. Note
that since SimCSE uses the [CLS] representation
as sentence embeddings instead of average pooling,
SimCSE is not suitable for applying Ditto.

Effectiveness of Ditto on Different PLMs Table 2
compares the baselines first-last avg. and last man-
ual prompt and our first-last Ditto method on dif-
ferent PLMs. Note that last manual prompt does
not work for ELECTRA because this method relies
on using the [MASK] token as the sentence embed-
dings while the ELECTRA discriminator is trained
without [MASK] tokens. Ditto consistently works
well on ELECTRA and greatly outperforms the
two baselines on RoBERTa and ELECTRA, while
underperforming last manual prompt on BERT.

Table 3: Correlation of the impact matrix with the TF-
IDF weights. Column STS avg. shows the average
Spearman’s correlation on the test sets of 7 STS tasks.
Columns Pear. and Spear. show Pearson’s correlation
and Spearman’s correlation between the mean values of
the impact matrix 1

N

∑N
i=1 Fij and the TF-IDF weights

for 1K sentences randomly sampled from the English
PUD treebank.

Method STS avg. Pear. Spear.
BERT 56.70 57.27 57.44
SBERT 84.94 62.90 70.21
ELECTRA 36.28 12.97 21.91
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Correlation with TF-IDF To further analyze cor-
relations between diagonal attentions and word
importance, we select the 4 heads corresponding
to the Top-4 Ditto performance based on Spear-
man’s correlation on the STS-B development set,
and compute correlations between diagonal val-
ues of the self-attention matrix of these heads and
TF-IDF weights. Table 4 shows all Top-4 heads
exhibit moderate or strong correlations with TF-
IDF weights. We find high-performing heads are
usually in the bottom layers (Section A.2), which
is consistent with the findings in Clark et al. (2019)
that the bottom layer heads broadly attend to the
entire sentence.

Table 4: The sentence embedding performance of
BERT first-last Ditto using different attention heads
and the correlation with the TF-IDF weights. Dev de-
notes Spearman’s correlation on the STS-B development
set. Test denotes the average Spearman’s correlation
on the test sets of 7 STS tasks. Pear. and Spear. de-
note Pearson’s correlation and Spearman’s correlation
between the diagonal values of the attention matrix for
the certain attention head and the TF-IDF weights on
sentences in the STS-B task.

Method Dev Test Pear. Spear.
Ditto Head 1-10 74.56 64.77 64.34 63.56
Ditto Head 2-12 73.13 65.00 47.30 44.17
Ditto Head 11-11 70.59 62.46 47.64 44.68
Ditto Head 1-7 69.54 60.65 65.98 64.30

Uniformity and Alignment We use the analysis
tool from prior works (Gao et al., 2021) to eval-
uate the quality of sentence embeddings by mea-
suring the alignment between semantically related
positive pairs and uniformity of the whole repre-
sentation space. Gao et al. (2021) finds that sen-
tence embedding models with better alignment and
uniformity generally achieve better performance.
Figure 4 shows the uniformity and alignment of
different sentence embedding models along with
their averaged STS results. Lower values indicate
better alignment and uniformity. We find that Ditto
improves uniformity at the cost of alignment degra-
dation for all PLMs, similar to the flow and whiten-
ing methods as reported in Gao et al. (2021). Com-
pared to Ditto, flow and whitening methods achieve
larger improvements in uniformity but also cause
larger degradations in alignment.
Cosine Similarity We use the cosine similarity
metric from Ethayarajh (2019) to measure the
isotropy of sentence representations. Isotropy
means that the word or sentence representations
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Figure 4: Alignment-uniformity plot of baselines and
Ditto on different PLMs. The arrow indicates the
changes. For both alignment and uniformity, smaller
numbers are better.

are directionally uniform, and the average cosine
similarity between random samples should be close
to zero. Ethayarajh (2019) originally applied this
metric to word representations, and we adapt it to
sentence representations in our study. We sample
1000 sentences from the English Wikipedia dataset
and compute the average cosine similarity of their
representations. Table 5 shows the results. Lower
values indicate better isotropy. Our proposed Ditto
method improves the isotropy of all three learning-
free baselines: static avg., last avg., and first-last
avg. This result is consistent with the uniformity
analysis in Figure 4, where Ditto also enhances the
uniformity of different sentence embedding mod-
els.

Table 5: The average cosine similarity of sentence rep-
resentations for Ditto and learning-free baselines.

Method avg. Cosine Similarity
BERT static avg. 0.843
BERT static Ditto 0.768
BERT last avg. 0.508
BERT last Ditto 0.458
BERT first-last avg. 0.566
BERT first-last Ditto 0.403

5 Conclusions

We propose a simple and learning-free Diagonal At-
tention Pooling (Ditto) approach to address the bias
towards uninformative words in BERT sentence
embeddings. Ditto weights words with model-
based importance estimations and can be easily
applied to various PLMs. Experiments show that
Ditto alleviates the anisotropy problem and im-
proves strong sentence embedding baselines.

Limitations

Although our proposed simple and learning-free
Ditto approach demonstrates effectiveness in allevi-
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ating the anisotropy problem and improving strong
sentence embedding baselines, there are several
limitations. Firstly, we conduct our experiments
solely on the English sentence embedding models
and the English Semantic Textual Similarity (STS)
datasets. We hypothesize that the two observations
in Section 2 will hold true on pre-trained models
for other languages, hence we predict that Ditto,
which is based on the two observations, will be
effective in improving sentence embeddings for
languages other than English. We plan to investi-
gate the efficacy of Ditto on improving sentence
embeddings for other languages in future work.
Secondly, while we select the attention head (that
is, determining l and h) by conducting a grid search
of all attention heads based on the performance of
the STS development set, we will explore other
approaches for selecting attention heads for Ditto
in future studies. Lastly, we focus on using Seman-
tic Textual Similarity tasks for evaluating sentence
embeddings in this work. We plan to investigate
the quality of sentence embeddings in more tasks,
such as information retrieval.
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A Appendix

A.1 Details of Perturbed Masking

In the first stage, we replace xi with the [MASK]
token, resulting in a new sequence x\{xi}. The
representation of this sequence is denoted as
H(x\{xi})i. In the second stage, we mask out
xj in addition to xi to obtain the second corrupted
sequence x\{xi, xj}. The representation of this
sequence is denoted as H(x\{xi, xj})i. Thus we
obtain an impact matrix F ∈ RN×N by computing
the Euclidean distance between the two representa-
tions Fij = d(H(x\{xi})i, H(x\{xi, xj})i).

A.2 Dataset and Implementation Details
We conduct experiments on 7 common STS
datasets, namely, STS tasks 2012-2016 (Agirre
et al., 2012, 2013, 2014, 2015, 2016), STS-B (Cer
et al., 2017), and SICK-R (Marelli et al., 2014),
following prior works. These 7 STS datasets are
widely used benchmarks for evaluating sentence
embeddings. Each dataset consists of sentence
pairs scored from 0 to 5 to indicate the semantic
similarity. For evaluation, we follow the setting
of Reimers and Gurevych (2019) and report the
average Spearman’s correlation on the test sets of
all 7 STS tasks (that is, the “all” setting), without
using an additional regressor. Our implementation
is based on the SimCSE GitHub repository4 and
we modify it to fit our purposes. We conduct a grid
search of the attention head l-h for Ditto based on
Spearman’s correlation on the STS-B development
set (1500 samples). In this way, we select head
1-10 for BERT5, head 1-5 for RoBERTa6, head
1-11 for ELECTRA7, and head 3-7 for SBERT8.
The TF-IDF weights are learned on 106 sentences
randomly sampled from English Wikipedia9 us-
ing the gensim tool10. We also utilize the English
Wikipedia dataset and randomly sampled 1000 sen-
tences to calculate the average cosine similarity of
sentence representations. We conduct experiments
using a single Tesla V100 GPU. Note that BERT-
flow and BERT-whitening papers use the full target
dataset (including all sentences in the train, devel-
opment, and test sets, and excluding all labels) and
optionally the NLI corpus (SNLI (Bowman et al.,
2015) and MNLI corpus (Williams et al., 2018))
for training.

4https://github.com/princeton-nlp/SimCSE
5https://huggingface.co/bert-base-uncased
6https://huggingface.co/roberta-base
7https://huggingface.co/google/

electra-base-discriminator
8https://huggingface.co/sentence-transformers/

bert-base-nli-stsb-mean-tokens
9https://huggingface.co/datasets/

princeton-nlp/datasets-for-simcse/resolve/main/
wiki1m_for_simcse.txt

10https://radimrehurek.com/gensim/models/
tfidfmodel.html
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Table 6: The performance comparison of different sentence embedding methods on STS tasks (Spearman’s
correlation).

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Learning-free methods

BERT static avg. 42.38 56.74 50.60 65.08 62.39 56.82 58.15 56.02
BERT last avg. 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT first-last avg. 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT static remove biases avg. (Jiang et al., 2022) 53.09 66.48 65.09 69.80 67.85 61.60 57.80 63.10
BERT last manual prompt (Jiang et al., 2022) 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
BERT static Ditto (Ours) 52.61 62.72 59.88 70.40 65.60 63.34 57.85 61.77
BERT last Ditto (Ours) 43.58 64.84 53.27 66.06 65.77 58.88 61.11 59.07
BERT first-last Ditto (Ours) 53.77 67.99 59.78 73.77 69.66 66.76 61.64 64.77

Methods that fix BERT parameters but require extra learning

BERT-flow (Li et al., 2020) 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT-whitening (Su et al., 2021) 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
BERT last manual and continuous prompt (Jiang et al., 2022) 64.56 79.96 70.05 79.37 75.35 77.25 68.56 73.59
BERT first-last TF-IDF (Ours) 53.78 73.03 59.49 71.98 70.16 66.99 62.73 65.45

Methods that update BERT parameters (supervised or unsupervised learning)

Unsup. BERT SimCSE (Gao et al., 2021) 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
Sup. BERT SimCSE (Gao et al., 2021) 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
Sup. SBERT first-last avg. (Reimers and Gurevych, 2019) 80.67 88.00 89.78 90.28 82.12 85.16 78.55 84.94
Sup. SBERT first-last Ditto (Ours) 80.43 88.63 89.84 90.39 82.72 85.62 78.15 85.11
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