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Abstract

To tackle the high inference latency exhibited
by autoregressive language models, previous
studies have proposed an early-exiting frame-
work that allocates adaptive computation paths
for each token based on the complexity of gen-
erating the subsequent token. However, we
observed several shortcomings, including per-
formance degradation caused by a state copy-
ing mechanism or numerous exit paths, and
sensitivity to exit confidence thresholds. Con-
sequently, we propose a Fast and Robust Early-
Exiting (FREE) framework, which incorpo-
rates a shallow-deep module and a synchro-
nized parallel decoding. Our framework en-
ables faster inference by synchronizing the de-
coding process of the current token with previ-
ously stacked early-exited tokens. Furthermore,
as parallel decoding allows us to observe pre-
dictions from both shallow and deep models,
we present a novel adaptive threshold estimator
that exploits a Beta mixture model to determine
suitable confidence thresholds. We empirically
demonstrated the superiority of our proposed
framework on extensive generation tasks.

1 Introduction

Recent advancements in autoregressive language
models (Brown et al., 2020; Raffel et al., 2020;
Hoffmann et al., 2022; Touvron et al., 2023) have
revolutionized the quality of language generation
in various generative tasks, including question
answering (Rajpurkar et al., 2016a), summariza-
tion (Nallapati et al., 2016; Fabbri et al., 2019b),
and machine translation (Cettolo et al., 2017a).
Nevertheless, these large transformer models have
shown high inference latency due to the consider-
able number of layers and the autoregressive de-
coding step. As the multiple stacks of transformer
layers have to be computed sequentially for each
individual token, the inference process poses sig-
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nificant computational burdens and hinders their
real-time adaptability (Jiao et al., 2020).

In light of the necessity to expedite inference la-
tency, the early-exiting framework (Elbayad et al.,
2020; Liu et al., 2021; Schuster et al., 2022)
emerges as a promising approach that dynamically
allocates computation paths based on the complex-
ity of generation for each token. As illustrated in
Figure 1a, tokens that are relatively easy to predict
the subsequent token yield consistent predictions
with only a few layer computations, while those
with higher difficulty require computations across a
larger number of layers to generate accurate predic-
tions. In an ideal scenario, the early-exiting method
empowers models to achieve notable acceleration
in inference without compromising the generation
quality when compared to that of a full model.

However, our extensive analysis identified four
challenges in the early-exiting framework. Firstly,
despite the potential to exit at earlier layers, key
and value states for remaining layers are still re-
quired for processing subsequent tokens. While
previous works have proposed the state copying
mechanism (Elbayad et al., 2020; Schuster et al.,
2022) to efficiently compute these states by reusing
hidden states from the early-exited layer, our find-
ings reveal that this method performs poorly with
larger models and longer output sequences (see Sec-
tion 4.1). Additionally, setting all layers as possible
exit positions does not guarantee faster inference
due to (1) the defective performance of earlier lay-
ers that can generate abnormally long sequence
outputs, and (2) the computational overhead from
confidence measurement at every layer (see Sec-
tion 4.2 and 4.3). Lastly, achieving the desired
level of latency and accuracy with early-exiting
heavily depends on selecting the appropriate con-
fidence threshold for the target task. This often
entails significant efforts and additional computa-
tional overhead (see Section 4.4). Hence, these
challenges call for a new approach that consistently
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(b) Fast and Robust Early-Exiting (FREE)

Figure 1: Overview of our FREE framework compared to the conventional early-exiting framework. FREE exhibits
three key differences: (1) FREE employs a shallow-deep module that utilizes two exit points instead of employing
all layers as exit points, (2) FREE replaces the state copying mechanism (yellow colored) with synchronized parallel
decoding (red colored) to prevent performance degradation while accelerating inference speed, and (3) FREE utilizes
an adaptive threshold estimator to determine the appropriate threshold values for each dataset during inference.

demonstrates high performance and low latency
across diverse language models and datasets.

In this paper, we introduce a Fast and Robust
Early-Exiting (FREE) framework that incorpo-
rates a shallow-deep module and synchronized par-
allel decoding. Our framework not only offers con-
sistent speedup and performance even for larger
models and longer output sequences, but also elim-
inates the need for the computationally expensive
process of finding the appropriate exit threshold.

Specifically, the shallow-deep module bifurcates
the computation paths into a shallow model (with a
specified number of early layers) and a deep model
(including all layers). Our synchronized parallel
decoding accumulates consecutive early-exited to-
kens that only pass through the shallow model until
a non-exiting token is encountered. Thereby, we
synchronize the decoding process of the current
non-exiting token with the previously stacked to-
kens, as shown in the left of Figure 1b. This pre-
vents performance degradation by utilizing actual
attention computed key and value instead of approx-
imated states through state copying, while it also
achieves a more efficient approach compared to de-
coding each token autoregressively. Furthermore,
we devise a novel adaptive threshold estimator, as
shown in the right of Figure 1b, by leveraging the
fact that parallel decoding outputs predictions even
for early-exited tokens from the deep model. This
estimator uses a Beta mixture model (BMM) to cap-
ture the correlation between confidence scores and
prediction alignment of two models, determining
the proper confidence threshold for each dataset.
In practice, we demonstrate the efficiency of our
FREE framework on extensive generation tasks.

2 Related Work

2.1 Early-exiting Framework

As the size of language models has significantly
increased, there have been numerous efforts to de-
velop efficient decoding methods that reduce the
computational cost of language generation tasks.
Motivated by prior literature (Teerapittayanon et al.,
2016; Graves, 2016; Zhang et al., 2019a), Elbayad
et al. (2020) introduced an early-exiting framework
for faster inference, which dynamically adjusts the
depth of the decoder for each token generation by
making predictions at an intermediate layer. To
achieve the better trade-off between speed and ac-
curacy, Schuster et al. (2022) recently explored
confidence thresholding methodologies, including
various confidence measures, a decaying threshold
function, and a calibration method.

However, their experiments were primarily con-
ducted on small-sized decoder models, necessitat-
ing further validation on larger models. In addition,
their approaches require additional training time for
statistical tests on the extra calibration sets, which
prevents them from real deployment scenarios.

2.2 Parallel Decoding

The non-autoregressive decoding, which gener-
ates multiple output tokens in parallel, was ini-
tially proposed by Gu et al. (2018). Several works
(Ghazvininejad et al., 2019; Gu and Kong, 2021;
Savinov et al., 2022; Santilli et al., 2023) have
since focused on enhancing generation quality in
machine translation tasks. Subsequently, Leviathan
et al. (2023) introduced speculative decoding for
sequence generation tasks. In this approach, an
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approximation model (small size) predicts outputs
autoregressively, while a target model (large size)
runs in parallel to verify the acceptance of predic-
tions made by the approximation model. With only
accepted tokens, they resample the next token from
an adjusted distribution. Related approaches have
been proposed by Chen et al. (2023) and Kim et al.
(2023), where they also utilize two models of vary-
ing depth and focus on refining the small model
through speculative sampling or a rollback policy
in a non-autoregressive manner.

Our approach is notably distinct from the afore-
mentioned works as we focus on early-exiting
framework by introducing synchronized parallel de-
coding within a single network, which incorporates
a shallow-deep module. While we also leverage the
advantage of simultaneously obtaining predictions
from models of different depth, we rather aim to de-
velop a novel and effective estimation methodology
to adaptively determine the optimal threshold for
each dataset. It is worth noting that their refining
strategies may result in unbounded latency increase
as they restart from incorrect predictions.

3 Preliminary

A Transformer network (Vaswani et al., 2017) is
composed of L layers, where each layer consists
of two sublayers, a multi-head attention (MHA)
layer and a feed-forward network (FFN) layer. The
computation for hidden states at time step t+1 via
stacked Transformer blocks is as follows:

hℓ
t+1 = Transformerℓ(hℓ−1

t+1), ℓ ∈ [1, L],

where h0
t+1 is the embedding layer outputs of yt

that represents the generated token at time step t.
After Lth layer of the decoder network, the pre-

dicted token ŷt+1, is determined by the probability
output from a softmax classifier WL:

p(yt+1|hL
t+1) = softmax(W⊺

Lh
L
t+1)

However, unlike the standard LMs, the early-
exiting framework enables the generation of
a subsequent token in earlier layers by using
p(yt+1|hℓ

t+1). If the confidence score cℓ is larger
than the predefined threshold, we can make a pre-
diction at time step t+1 as argmax p(yt+1|hℓ

t+1).
While classifiers can be parameterized indepen-
dently or shared across the L layers, most early-
exiting methods (Elbayad et al., 2020; Liu et al.,
2021; Schuster et al., 2022) utilize the shared clas-
sifier due to its large number of parameters caused
by enormous vocabulary size.

Table 1: Comparison of ROUGE-L scores between a
full model, fine-tuned using all layer outputs, and oracle-
exiting. We also measured cosine similarity between
hidden states of the last layer and oracle-exited layer.

Dataset Model Full M. Oracle Sim.

SAMSum
T5-small 44.84 44.17 (-0.67) 0.913
T5-large 48.82 47.58 (-1.24) 0.809

CNN/DM
T5-small 37.82 37.60 (-0.22) 0.902
T5-large 41.15 40.15 (-1.00) 0.792

Multi-News LongT5-base 37.62 29.63 (-7.99) 0.724
BIGPATENT LongT5-base 49.68 44.99 (-4.69) 0.686

After the current token is early-exited at the
ℓth layer, we need to calculate the key and value
states for all deeper blocks in order to perform
the self-attention for the subsequent tokens that
pass through deeper blocks. For a more efficient
approach of caching key and value states, the early-
exiting frameworks employ the state copying mech-
anism. It duplicates the hidden states of the early-
exited layer (i.e., hi

t+1 = hℓ
t+1, ∀i ∈ [ℓ + 1, L]),

allowing us to compute the approximate key and
value states required for the self-attention of Trans-
former networks. Schuster et al. (2022) have veri-
fied that state copying from lower layers does not
have a detrimental effect on performance in the
case of small-sized T5 models (Raffel et al., 2020).

4 Re-evaluating Early-exit Framework

In this section, we present four new findings from
our re-evaluation of the early-existing framework.
We utilized different model sizes of T5 (Raf-
fel et al., 2020) on SAMSum (Gliwa et al.,
2019) and CNN/DailyMail (See et al., 2017),
and LongT5-base (Guo et al., 2022) architectures
on Multi-News (Fabbri et al., 2019a) and BIG-
PATENT (Sharma et al., 2019).

4.1 Lack of Robustness to Model Size and
Output Sequence Length

We first re-evaluate the state copying mechanism
which is an essential component of the early-exiting
framework. Following Schuster et al. (2022), we
use an oracle confidence measure that enables to-
kens to exit at the earliest layer, such that their pre-
dictions are identical to those of the final layer. No-
tably, as observed in Table 1, the degradation of the
generation quality with the state copying gets se-
vere on larger models and datasets with the longer
sequence (▷ Obs. 1). For instance, when consider-
ing the oracle-exiting results, the T5-small model
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demonstrates the degradation of only 0.67 on the
SAMSum dataset, whereas the T5-large model ex-
periences a much larger drop of 1.24. Similarly,
on datasets such as Multi-News and BIGPATENT,
which consist of relatively long output sequences,
the oracle-exiting results exhibit a decrease of 7.99
and 4.69, respectively.

To strengthen the supporting evidence, we fur-
ther discover the substantial variation in the distri-
bution of hidden states across different layers. In
Table 1, we also reported cosine similarity between
the hidden states of the final layer and the oracle-
exited layer. Even though the hidden states of the
final and oracle-exited layers yield the same predic-
tions, the cosine similarity between them decreases
significantly as the decoder network gets larger and
the output sequences become longer.

4.2 Performance Drop by Exit Position

To facilitate early-exiting for all decoder layers, the
training objectives need to be a combination of the
training objectives for each individual layer. We
can present as follows:

L =

L∑

i=1

αiLi where
∑

i

αi = 1, (1)

Li and αi is negative log-likelihood loss function
and weight coefficient for ith layer, respectively. Es-
pecially, previous work set αi as 1/L (unweighted
average; Elbayad et al. 2020) or i/

∑
i i (weighted

average; Schuster et al. 2022). They demonstrated
that these weighting rules effectively facilitate
learning in earlier layers without compromising
the overall performance of the full model on small-
sized decoder models.

However, as shown in Figure 2, we observed
a notable decrease in the performance of static-
exiting, which utilizes the same number of layers
for all tokens, when utilizing only a small por-
tion of the early layers from the T5-large model.
(▷ Obs. 2). For instance, if all tokens are exited
in the first or second layers, the model achieved
nearly zero ROUGE-L scores. Furthermore, when
we apply the early-exiting framework to these mod-
els during inference, we verified that the T5-large
model generates abnormally long sentences, actu-
ally consuming more inference time. Based on
these results, in the subsequent experiments, we
have excluded the first two or four layers from the
candidates for early-exiting layers of base and large
models, respectively.
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Figure 2: Illustration of the ROUGE-L scores and gen-
erated sequence length from the static-exiting approach
in T5-small (left) and T5-large (right) on the SAMSum
dataset. The horizontal dashed line represents the aver-
age sequence length of the ground truth.
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Figure 3: Component-wise computational cost on three
datasets. Four bars correspond to full model and early-
exiting with thresholds of 0.9, 0.7, and 0.5. The hatched
color denotes the elapsed time after the token exits,
related to the state copying mechanism. The numbers
above the bars represent the ROUGE-L scores. SA and
CA denote self- and cross-attention, respectively.

4.3 Non-negligible Computational Cost
During our analysis, we observed that the conven-
tional early-exiting framework not only presents
performance disadvantages but also poses chal-
lenges for inference latency. In Figure 3, we con-
ducted a breakdown of the computational costs
associated with a decoder model across three sum-
marization datasets. Surprisingly, early-exiting has
often shown an unexpected increase in total de-
coding time when compared to the baseline model
without using early-exiting.

This can be attributed to the non-negligible com-
putational cost involved in measuring confidence
at each layer, particularly due to the softmax oper-
ations with the large vocabulary size. In addition,
although the state copying method aims to reduce
computation time in the MHA and FFN layers of
the remaining layers, the computation of key and
value states using duplicated hidden states incurs
additional non-negligible overhead (▷ Obs. 3).
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Table 2: The optimal confidence threshold to achieve
desired performance. We chose the best values among
threshold value from 0 to 1 with step size of 0.1. The
numbers sequentially represent the selected threshold
and corresponding performance (gray colored).

Performance Drop

Task Dataset ∼1% ∼5% ∼10%

SUM

SAMSum 1.0 (48.8) 0.7 (46.8) 0.5 (45.0)
CNN/DM 1.0 (41.2) 0.5 (39.2) 0.3 (37.3)
Multi-News 0.8 (37.3) 0.5 (35.9) 0.4 (34.9)
BIGPATENT 1.0 (49.7) 0.8 (47.3) 0.6 (45.2)

QA SQuAD 0.1 (90.1) 0.0 (88.3) 0.0 (88.3)
MT IWSLT 1.0 (39.4) 1.0 (39.4) 1.0 (39.4)

4.4 Disparate Optimal Confidence Threshold

Determining the appropriate threshold for exit con-
fidence is a crucial challenge in the early-exiting
framework as it directly impacts the trade-off
between performance and latency (Zhang et al.,
2019b; Schuster et al., 2022). As summarized in
Table 2, our observations indicate that the opti-
mal confidence thresholds for achieving the low-
est latency in the same performance significantly
vary across datasets (▷ Obs. 4). For instance,
SQuAD and CNN/DailyMail datasets can maintain
performance with relatively lower exit thresholds,
whereas higher threshold values are required in the
case of the IWSLT dataset. Previous work (Schus-
ter et al., 2022) has leveraged distribution-free risk
control techniques for confident generations. How-
ever, these methods require additional training time
for statistical tests on the extra calibration set be-
fore the deployment, where time can be also influ-
enced by the size of the threshold candidate sets.

5 Novel Early-Exiting Framework: FREE

Building upon the discoveries in Section 4, we in-
troduce a Fast and Robust Early-Exiting framework
named FREE, leveraging a shallow-deep module
and capitalizing on the structure of parallel decod-
ing. Furthermore, we present a confidence estima-
tion algorithm designed to enhance the robustness
of early-exiting within the FREE framework.

5.1 Shallow-Deep Module

We present an effective shallow-deep module,
which strategically assigns a predetermined num-
ber of early layers (LS) as a shallow model, while
all the layers as a deep model. This module tack-
les the performance degradation associated with
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Figure 4: Overview of synchronized parallel decoding.
We colored the tokens used to generate the next token
based on the model that they forward.

co-training numerous exiting layers in the conven-
tional early-exiting framework.

To enhance the performance of the shallow
model, we exploit layerwise knowledge distilla-
tion (KD) as an additive loss term to Eq. (1) with
αLs = Ls/(L+ Ls) and αL = L/(L+ Ls):

LKD =
1

|LS |

LS∑

i=1

MSE(Hi
S ,H

m(i)
D ),

where m(i) indicates the layer in the deep model
that extracts knowledge into the corresponding
layer i of the shallow model. HS and HD are
hidden states from shallow and deep models.

We have experimented with the distillation from
the last layer (KD-last; Wang et al. 2020; Ko et al.
2023), from fixed uniform mapped layers (KD-unif;
Jiao et al. 2020; Park et al. 2021), and from dynam-
ically mapped layers (KD-dyna; Xia et al. 2022).
Especially, dynamic mapping function allows us to
align each deep model layer with its closest coun-
terpart in the shallow model:

m(i) = argmin
j

MSE(Hi
S ,H

j
D)

where j denotes the layer indices of the deep model
selected by the total number of LS , and the condi-
tion of m(1) ≤ · · · ≤ m(LS) should be satisfied.
Based on the consistently superior performance of
KD-dyna loss (see Appendix D.2), we utilized it
for all experiments with the shallow-deep module.

5.2 Synchronized Parallel Decoding

We present synchronized parallel decoding as an al-
ternative to the state copying mechanism, which is
a key component of the conventional early-exiting
framework but can lead to a significant perfor-
mance decrease, as demonstrated in Section 4.1. In
contrast to traditional approaches that have multiple
exit points, our method incorporates the shallow-
deep module, enabling us to stack consecutive
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early-exited tokens in the shallow model until a
non-exiting token is encountered. When decoding
the token with the deep model, we enhance effi-
ciency and effectiveness through parallel decoding,
synchronously computing the key and value states
of previously stacked tokens. The example of the
parallel decoding process is depicted in Figure 4.

The underlying principle of this approach is to
leverage the enhanced parallelism offered by mod-
ern hardware accelerators. This allows for efficient
computations to be carried out simultaneously on
the large number of sequences. Thus, by employ-
ing synchronized parallel decoding, we can directly
compute multiple hidden states similar to a single
token processing time. Besides, this can eliminate
the potential performance degradation that may
arise from inaccurate approximations of hidden
states resulting from the state copying mechanism.

5.3 Adaptive Threshold Estimation

We propose a novel adaptive threshold estimation
method that updates the threshold to be retailed
for different datasets. Unlike the previous methods
that utilize extra calibration sets (Schuster et al.,
2022), we quickly adapt the threshold by using
the information of early-stage instances, regardless
of the initial threshold values. Especially, during
parallel decoding, we collect samples to evaluate
the correspondence between the confidence scores
of the shallow model and the prediction alignment
between shallow and deep models.

As depicted in Figure 1b, we observe that when
the predictions of the deep and shallow models are
identical, the confidence tends to skew towards one,
otherwise it skews towards zero. To model this
skewed distribution over [0, 1], we utilize a beta
mixture model (BMM; Ma and Leijon 2011) due to
its flexibility and the appropriate support set of the
beta distribution. The probability density function
of beta distribution over x ∈ [0, 1] is defined as:

p(x|α, β) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

The parameters of the BMM are updated using
the maximum likelihood estimator (MLE; Norden
1972) with observed data points.

αk = c̄k

(
c̄k(1−c̄k)

s2k
− 1

)
, βk = αk(1−c̄k)

c̄k
, (2)

where c̄k being a average of the confidence
{cLs

i }
|Dc|
i=1 for corresponding k. k is set to 1 if the

predictions of the two models are identical, and 0

Algorithm 1 Adaptive Threshold Estimation
Input: empty calibration dataset Dc, initial confi-
dence threshold λ0

c , posterior condition ζ, update
number T
Output: updated confidence threshold λc

1: initialize t← 0, λc ← λ0
c

2: while t ≤ T do
3: Generate tth sentence with Nt tokens
4: /* Update Dc */
5: Dc ← Dc ∪ {cLs

i , I(ŷLs
i = ŷLi )}Nt

i=1

6: /* Find threshold with Eq.(2)-(4)*/
7: αk, βk ← MLEBMM(Dc) for k ∈ {0, 1}
8: λc ← argminλ:p(k=1|λ)≥ζ λ
9: update t← t+ 1

10: end while

otherwise. Similarly, sk is the standard deviation
of confidence of related k.

c̄k =
∑N

i=1 γic
Ls
i∑N

i=1 γi
, s̄2k =

∑N
i=1 γi(c

Ls
i −c̄k)

2

∑N
i=1 γi

, (3)

where γi := I(ŷLs
i = ŷLi ) denote whether the pre-

diction of two models are same.
After updating the BMM, we find an appropriate

threshold for future tokens by identifying the point
at which the posterior probability, defined as below,
reaches ζ:

p(k = 1|λc) =
p(k=1)p(λc|α1,β1)∑

j∈{0,1} p(k=j)p(λc|αj ,βj)
. (4)

Here, as we observe the severe imbalance between
the case of k = 0 and 1, we restrict the prior value
of each class to 0.5 for the balance between two
cases (i.e., p(k = j) = 0.5 ∀j). As this restriction
makes us to use a smaller value of ζ, we naïvely
set it as 0.4. A detailed algorithm can be found in
Algorithm 1.

6 Experiments

6.1 Experimental Setup
We conducted experiments on various sequence
modeling tasks, including question answering
(SQuAD; Rajpurkar et al. 2016b), machine transla-
tion (IWSLT 2017 En-De; Cettolo et al. 2017b),
and text summarization tasks using SAMSum,
CNN/DailyMail, Multi-News, and BIGPATENT
datasets. The LongT5-base model was used for
the Multi-News and BIGPATENT datasets, while
the T5-large model was used for the other datasets.
All implementations are based on PyTorch using
Huggingface (Wolf et al., 2020; Lhoest et al.,
2021). Further details can be found in Appendix B.
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Table 3: Comparison between early-exiting frameworks on various datasets. For CALM and FREE†, we reported
the performance using the smallest threshold value that achieves 99% performance of the full model, fine-tuned by
weighted average or KD-dyna losses, respectively. The parentheses denote relative speedup based on the first row.

SUM QA MT

Method SAMSum CNN/DailyMail Multi-News BIGPATENT SQuAD IWSLT De-En

Full Model 48.82 (×1.00) 41.15 (×1.00) 37.62 (×1.00) 49.68 (×1.00) 90.63 (×1.00) 39.19 (×1.00)
CALM 48.37 (×0.72) 40.78 (×0.86) 37.27 (×0.85) 49.21 (×0.65) 90.09 (×2.03) 39.19 (×1.00)
Full Model 49.11 (×1.00) 41.09 (×1.00) 39.20 (×1.00) 49.68 (×1.00) 91.90 (×1.00) 39.39 (×1.00)
FREE† 48.65 (×1.50) 40.89 (×1.80) 38.93 (×1.07) 49.51 (×1.62) 91.31 (×2.76) 39.04 (×1.07)
FREE 48.66 (×1.47) 40.99 (×1.65) 38.66 (×1.23) 49.47 (×1.58) 91.82 (×2.16) 38.17 (×1.18)

6.2 Experimental Results

In order to investigate the effect of the individual
component of our proposed framework, we evalu-
ate both FREE without and with an adaptive thresh-
old estimator, denoted as FREE† and FREE.

Overall performance. In Figure 5, we present
a comparison of the quality of generated output
(ROUGE-L) and the inference latency between the
FREE framework and baselines, including static-
exiting and the conventional early-exiting method
(CALM; Schuster et al. 2022). CALM method
exhibited poorer performance compared to a sim-
ple static-exiting approach on all datasets, likely
due to the state copying mechanism and the pres-
ence of numerous exit positions, as observed in
Section 4. In contrast, FREE† demonstrated robust
performance and the larger AUC (area under the
curve) across datasets by adjusting exit thresholds.

Adaptive threshold evaluation. In the early-
exiting framework, choosing the appropriate con-
fidence threshold is crucial for achieving the best
trade-off between generation quality and latency.
Unlike previous calibration methods (Schuster
et al., 2022) that require an extra calibration set
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Figure 6: The trade-off between the generated output
quality and normalized latency on T5-3B models.

and training time, our methodology effectively ad-
dresses this challenge by leveraging the byprod-
uct of parallel decoding. As summarized in Ta-
ble 3, FREE with adaptive threshold estimation
successfully achieved significant speedup, by up
to ×2.16, when preserving the 99% of full model
performance. Furthermore, in Figure 5, the esti-
mated threshold demonstrated nearly the maximum
achievable speed improvement without sacrificing
performance, represented by red stars.

Large language models. Recently, various stud-
ies (Dettmers et al., 2022; Xiao et al., 2023;
Leviathan et al., 2023; Liu et al., 2023b) have
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Table 4: The comparison of ROUGE-L and speedup
based on different numbers of layers for shallow model
and confidence thresholds.

Threshold

Dataset LS 0.7 0.5 0.3

SAMSum

4 48.27 (×1.04) 46.95 (×1.09) 44.72 (×1.15)
6 48.89 (×1.32) 48.65 (×1.50) 47.60 (×1.80)
8 48.74 (×1.11) 47.97 (×1.17) 47.09 (×1.31)
12 48.97 (×1.21) 48.74 (×1.28) 48.10 (×1.37)

CNN/DM

4 41.03 (×1.45) 40.59 (×1.68) 39.88 (×1.86)
6 41.08 (×1.53) 41.00 (×1.69) 40.60 (×2.07)
8 41.19 (×1.44) 41.15 (×1.64) 40.95 (×1.69)
12 41.11 (×1.33) 41.09 (×1.47) 40.95 (×1.55)

aimed at boosting the inference speed of large
language models (LLMs). To validate the ap-
plicability of the FREE framework on LLMs,
we conducted experiments utilizing the T5-3B
model (Raffel et al., 2020) on the SAMSum and
CNN/DailyMail datasets. Due to substantial com-
putational overhead, we utilized the LoRA adapter
(Hu et al., 2022), targeting both self-attention and
feed-forward layers with a rank of 64. Figure 6
summarized a comprehensive comparison of early-
exiting methods. Our method maintained superi-
ority over the baselines in terms of latency and
ROUGE-L scores, showing the consistent perfor-
mance trend observed in the T5-large model. Thus,
we are confident that our proposed framework
would demonstrate consistent level of inference
acceleration, even with larger language models.

6.3 Ablation Study

Different depth of shallow model. In Table 4,
we also ablate on the number of layers for the
shallow model to observe the trade-offs. While
our method demonstrated a trend towards higher
speedup gains as the depth of the shallow model
decreases, we experienced some decreases in per-
formance and speed gain when the depth of the
model is reduced too much (e.g., four layers). We
assumed that this is due to incorrect and redundant
output sentences, similarly observed in the conven-
tional early-exiting framework. Consequently, with
enough depth (e.g., six layers), FREE consistently
showed robust performance and inference speedup.

Robustness of parallel decoding. In order to
verify the robustness of our decoding mechanism,
we conducted a comparative analysis between syn-
chronized parallel decoding (SPD) and state copy-
ing (SC), both implemented with the shallow-deep

Table 5: The comparison between synchronized parallel
decoding (SPC) and state copying (SC). The shallow-
deep module is utilized in both decoding methods.

Method Threshold

Dataset SC SPD 0.9 0.7 0.5 0.3 0.1

SAMSum
✓ ✗ 46.35 44.59 43.92 42.36 41.27
✗ ✓ 48.89 48.89 48.65 47.60 45.27

CNN/DM
✓ ✗ 40.92 40.92 40.71 39.99 38.17
✗ ✓ 41.12 41.08 41.00 40.60 39.30

Multi-News
✓ ✗ 38.43 37.61 36.55 33.99 29.34
✗ ✓ 39.16 39.06 38.78 37.87 33.98

Table 6: The experimental results of FREE framework
based on different sizes of the calibration set.

3% 10% 100%

Dataset Thr. Perf. Speed Thr. Perf. Speed Thr.

SAMSum 0.51 48.66 ×1.47 0.49 48.69 ×1.51 0.48
BIGPATENT 0.54 49.47 ×1.58 0.54 49.39 ×1.63 0.54

module. Synchronized parallel decoding consis-
tently outperformed state copying across all three
datasets by much higher ROUGE-L metrics, as
summarized in Table 5. This improvement can be
attributed to the updated hidden states that are ob-
tained through the accurate computation of Trans-
former layers during parallel decoding. These find-
ings suggest that our efficient decoding method for
early-exited tokens can enhance the overall perfor-
mance of the early-exiting framework as well.

Dependency on size of calibration set. By using
the early-stage instances as the calibration set, we
iteratively update the adaptive confidence threshold
to converge to the appropriate value. Here, we
have observed the sample efficiency of the adaptive
threshold estimator by varying the sizes of this
calibration set. Interestingly, even with only 3% of
the total samples, our estimator can approximate
the threshold, measured by the full sample set, as
shown in Table 6. This ensures minimal additional
computation time required for threshold estimation.

Refining shallow model predictions. Prior
works (Leviathan et al., 2023; Chen et al., 2023;
Kim et al., 2023) have proposed refinement meth-
ods to correct erroneous outputs from an approxi-
mation model. Specifically, when a wrong token
is detected in previous sequences, they remove all
subsequently generated tokens and restart the gen-
eration process from that point. In Table 7, we
conducted experiments in order to evaluate the ef-
fects of this refinement method (Kim et al., 2023)
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Table 7: The evaluation of refinement methods in the
FREE framework. Refining thresholds control the level
of acceptance for predictions from the shallow model.

Thr. 0.7 Thr. 0.3

Dataset Ref. Thr. Perf. Speed Perf. Speed

SAMSum
✗ - 48.89 ×1.33 47.60 ×1.80
✓ 1.0 49.08 ×1.26 48.31 ×1.50
✓ 0.1 49.06 ×1.17 48.27 ×1.12

CNN/DM
✗ - 41.08 ×1.53 40.60 ×2.07
✓ 1.0 40.86 ×1.51 40.78 ×1.67
✓ 0.1 40.85 ×1.35 40.75 ×1.21

in our early-exiting framework. We observed that
when the refinement threshold is set low, allowing
for more correction by the deep model, the per-
formance improvement is minimal compared to
the increase in latency. Our findings suggest that
these approaches that cannot guarantee an upper
bound on latency increase may not be well-suited
for integration into the early-exiting framework.

Human-like summarization evaluation. Recent
studies (Gao et al., 2023; Liu et al., 2023a; Zhang
et al., 2023) have argued that existing summariza-
tion evaluation metrics like ROUGE-L do not ac-
curately represent the true summarization capabil-
ities. Instead, they explored the human-like eval-
uation using LLMs based on their strong corre-
lation with human judgment. Thereby, we con-
ducted two human-like evaluation methods, Likert
scale scoring and pairwise comparison (Gao et al.,
2023), using ChatGPT API (gpt-3.5-turbo-0613).
We compared a full model and our FREE frame-
work on 100 instances, randomly drawn from the
CNN/DailyMail dataset. Figure 7 and 8 provide
the templates used for each evaluation task. For the
full model, we observed scores of [4.73, 3.83, 3.87,
3.77], while our FREE method returned scores of
[4.68, 3.84, 3.84, 3.72] across the four dimensions.
Besides, the win counts for each method were 101
and 99, respectively. Given ROUGE-L scores of
41.09 (×1.00) for the full model and 40.99 (×1.65)
for the FREE method, our method is certainly capa-
ble of yielding predictions of similar quality, while
notably reducing computational overhead.

7 Conclusion

We proposed FREE framework to address the chal-
lenges of conventional early-exiting frameworks
for autoregressive language models. Our approach
incorporates three key components: (1) shallow-
deep module, (2) synchronized parallel decoding,

Evaluate the quality of summaries written for a news
article. Rate each summary on four dimensions:
{Dimension_1}, {Dimension_2}, {Dimension_3},
and {Dimension_4}. You should rate on a scale from
1 (worst) to 5 (best).

Article: {Article}
Summary: {Summary}

Figure 7: The template for Likert scale scoring. The
four dimensions are relevance, informativeness, fluency,
and coherence.

Given a new article, which summary is better?
Answer "Summary 0" or "Summary 1". You do not
need to explain the reason.

Article: {Article}
Summary 0: {Summary_0}
Summary 1: {Summary_1}

Figure 8: The template for pairwise comparison. We
measured twice by changing the order of summaries for
a fair comparison.

and (3) adaptive threshold estimation. Through
extensive experiments on various generation tasks,
we empirically demonstrated the superior perfor-
mance of FREE framework, achieving significant
acceleration in latency without compromising the
quality of the generated output.

Limitations. Our work addressed a fast and ro-
bust existing framework that can be efficiently uti-
lized without concerns about performance degrada-
tion. However, our approach does have a few lim-
itations which we discuss below: (1) Our method
requires additional computational resources to fine-
tune the shallow model. However, as we have
demonstrated, parameter-efficient fine-tuning meth-
ods would be a promising solution to overcome this
limitation. (2) While our work demonstrates ro-
bustness in the depth of the shallow model, further
investigation is required to determine the appropri-
ate depth for various language models. This aspect
remains an area for additional research.
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A Dataset Description

We apply FREE on various generation tasks includ-
ing summarization, question answering, and ma-
chine translation. We provide detailed descriptions
of the datasets used.

• SAMSum (Summarization): SAMSum (Gliwa
et al., 2019) consists of 16K messenger-like con-
versations that are annotated with a summary
for providing a concise overview of the conver-
sation’s content in the third person.

• CNN/DailyMail (Summarization): CNN/ Dai-
lyMail (See et al., 2017) consists of over 300K
English news articles that were originally de-
signed for machine-reading and comprehension
as well as abstractive question answering, but
it now also supports extractive and abstractive
summarization.

• Multi-News (Summarization): Multi-News
(Fabbri et al., 2019a) comprises 45K news arti-
cles and corresponding summaries, where each
summary is professionally crafted and provides
links to the original articles referenced.

• BIGPATENT (Summarization): BIGPATENT
(Sharma et al., 2019) contains 1.3M records of
U.S. patent documents, each accompanied by
abstractive summaries written by humans. In
our work, we specifically focus on the Fixed
Constructions category, which is one of the nine
classification categories available in the dataset.

• SQuAD (Question Answering): The Stanford
Question Answering (SQuAD, Rajpurkar et al.
2016b) is a collection of 87.6K reading compre-
hension tasks. It includes questions generated
by crowd workers based on a set of Wikipedia
articles.

• IWSLT 2017 (Machine Translation): IWSLT
2017 (Cettolo et al., 2017b) addresses text trans-
lation, using a single machine translation (MT)
system for multiple language directions such
as English and German. Here, we specifically
focus on a German-to-English translation task.

B Detailed Experimental Setup

Training hyperparameters. In this section, we
describe the detailed hyperparameter values for our
work. We utilize the NVIDIA RTX 3090 GPUs for
training the language models, and we summarize

Table 8: Optimized hyperparameters for training
shallow-deep T5 models. The column labeled ‘# Batch’
indicates the product of the batch size per GPU and the
number of GPUs. ‘In len.’ and ‘Out len.’ represent the
maximum length of the input and output, respectively.

Dataset Model # Batch Epochs In len. Out len.

SAMSum T5-large 4×2 20 512 128
CNN/DM T5-large 4×4 3 512 128
Multi-News LongT5-base 2×2 3 2048 512
BIGPATENT LongT5-base 2×2 3 2048 512
SQuAD T5-large 4×2 10 512 30
IWSLT 2017 mT5-large 4×4 2 1024 128

the training configuration in Table 8. For all dataset,
we use AdaFactor (Shazeer and Stern, 2018) opti-
mizer with the learning rate of 1e-4. For the adap-
tive threshold estimation, we set the initial thresh-
old value λ0

c as 0.9, ζ as 0.4, T as 3% of total
sample number (refer to Algorithm 1).

Performance metrics. To numerically measure
the output quality of our method, we utilize the
F1 score for SQuAD, BLEU score (Papineni et al.,
2002) for IWSLT2017, and ROUGE score (Lin,
2004) for the four summarization tasks.

C Inference Latency Evaluation

For measuring inference speed, we execute 500
inference predictions for each dataset under each
examined configuration in PyTorch (Paszke et al.,
2019) compiled function in a single server with a
single NVIDIA GeForce RTX 3039 GPU and 12th
Gen Intel(R) Core(TM) i7-12700K CPU. For each
inference prediction, we use batch size 1, which is a
common use case for online serving (Schuster et al.,
2022). Also, we use to generate output sequences
through greedy sampling with a beam size of 1. We
measure the time including all decoding steps until
completion.
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Figure 9: The trade-off between the generated output
quality and normalized latency under different exit con-
ditions. The dashed line represents the F1 and BLEU
scores of the full model, which is the fine-tuned shallow-
deep module, respectively. Similar to Figure 5, we ex-
clude the inner point of the Pareto curve.
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Figure 10: The trade-off between performance and nor-
malized latency per sentence. We varied the exit thresh-
olds in the range of {0.0, 0.1, 0.3, 0.5, 0.7, 0.9}. The
latency values are normalized by the latency of a base-
line, which is a simple fine-tuned full model.

D Additional Experimental Results

In this section, we provide additional experimen-
tal results to demonstrate the effectiveness of our
proposed method and its individual components.

D.1 Performance on Different Datasets

In this section, we present a comparison of the qual-
ity of the generated output (F1 or BLEU) and the
inference latency on the SQuAD and IWSLT 2017
datasets, similar to the experiments in Figure 5.
Figure 9 illustrates that both FREE† and FREE con-
sistently outperform the CALM and static-exiting
baselines in the SQuAD dataset, which aligns with
our previous findings.

However, their performance advantages in the
IWSLT dataset are slightly reduced compared to
other datasets. This can be attributed to the larger
vocabulary size of mT5 compared to T5, result-
ing in longer processing times for the confidence
measurement. The CALM approach, which also
utilizes large linear classifiers, exhibits much lower

Table 9: Comparison between FREE with T5-large
and directly trained small-sized T5-base. We apply
threshold values of FREE†as 0.1 for SQuAD and 0.2
for CNN/DailyMail.

SQuAD CNN/DailyMail

Method Model F1 Speedup ROUGE-L Speedup

Full Model T5-large 91.82 × 1.00 41.09 × 1.00
Full Model T5-base 90.50 × 1.86 40.22 × 2.06
FREE† T5-large 90.95 × 2.76 40.17 × 2.07

effectiveness in this dataset as well. We believe that
this challenge, regarding the large vocabulary size,
can be mitigated by employing a vocabulary size-
independent confidence measure that proposed in
previous work (Schuster et al., 2022). Nonetheless,
our proposed algorithm still outperforms the other
baselines on various datasets.

D.2 Layerwise Knowledge Distillation

Given the only two exit positions in our shallow-
deep module, since their performance significantly
impacts the overall robustness of the early-exiting
approach, we carefully design the loss function
for training. In Figure 10, we observed the per-
formance trends of four different loss functions
as we varied the exit thresholds. While the differ-
ences are not significant, the KD-dyna loss demon-
strates better trade-offs compared to a weighted
average or other KD-based losses. Specifically, the
lower performance of KD-unif on the SAMSum
dataset suggests that dynamically determining the
layer mapping can facilitate more effective knowl-
edge transfer between the deep and shallow models.
Consequently, we trained our shallow-deep module
using the KD-dyna loss for all experiments, and left
the exploration of additional loss functions, such
as contrastive distillation losses (Tian et al., 2019;
Bae et al., 2021), for future work.

D.3 Comparison with Small-sized Models

We conducted a comparison between the inference
speed of FREE using T5-large model and a directly
trained T5-base model. To ensure a fair compar-
ison, we manually selected the appropriate confi-
dence threshold for FREE† (without relying on an
adaptive threshold estimator) to align its perfor-
mance closely with that of T5-base. The results,
presented in Table 9, demonstrate that our proposed
method exhibited a competitive speedup in infer-
ence performance on the CNN/DailyMail dataset.
Moreover, it demonstrated a superior F1 score and
significantly higher speedup on the SQuAD dataset.
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Table 10: Comparison between early-exiting frame-
works on SAMSum with different decoding strategies.

top-k (k = 50) nucleus (p = 0.92)

Method ROUGE-L Speedup ROUGE-L Speedup

Full Model 44.34 × 1.00 45.84 × 1.00
CALM 42.35 × 0.78 44.48 × 0.82
FREE 43.58 × 1.30 45.78 × 1.31

We believe that the variance in speedup across
the datasets can be attributed to the performance
achievable by a directly trained smaller model, as
well as a shallow model within the FREE frame-
work. In the case of SQuAD, the T5-base model
(12 layers) achieved a ROUGE-L score of 90.50,
whereas a shallow model (6 layers) of our FREE
framework yielded a similar score of 90.24. Our
method effectively leverage these inherent benefits,
thereby facilitating the inference speedup through
exiting at lower layers.

D.4 Various Decoding Strategies
To evaluate the applicability of FREE on various
decoding methods, we conducted experiments with
top-k sampling (Radford et al., 2019) and nucleus
sampling (top-p sampling; Holtzman et al. 2020).
top-k sampling samples the next word from the
top k most probable choices, instead of aiming
to decode text that maximizes likelihood. On the
other hand, nucleus sampling chooses from the
smallest possible set of words whose cumulative
probability exceeds the probability p. As detailed
in Table 10, FREE method exhibited consistent
and robust performance while achieving a larger
speedup compared to CALM. These results affirm
that our FREE framework can be widely applied,
irrespective of the chosen decoding method.
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