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Abstract

Generating commonsense explanations re-
quires reasoning about commonsense knowl-
edge beyond what is explicitly mentioned in
the context. Existing models use common-
sense knowledge graphs such as ConceptNet
to extract a subgraph of relevant knowledge
pertaining to concepts in the input. However,
due to the large coverage and, consequently,
vast scale of ConceptNet, the extracted sub-
graphs may contain loosely related, redundant
and irrelevant information, which can introduce
noise into the model. We propose to address
this by applying a differentiable graph com-
pression algorithm that focuses on more salient
and relevant knowledge for the task. The com-
pressed subgraphs yield considerably more di-
verse outputs when incorporated into models
for the tasks of generating commonsense and
abductive explanations. Moreover, our model
achieves better quality-diversity tradeoff than a
large language model with 100 times the num-
ber of parameters. Our generic approach can be
applied to additional NLP tasks that can benefit
from incorporating external knowledge.1

1 Introduction

Commonsense knowledge graphs (CSKGs) have
been used to improve the performance of down-
stream applications such as question answering
(Yasunaga et al., 2021) and dialogue (Tu et al.,
2022), as well as for enhancing neural models for
commonsense reasoning tasks (Lin et al., 2019;
Yu et al., 2022). Typically, these methods extract
keywords from the input and construct a subgraph
around them using the KG knowledge, which is
then incorporated into the model.

Recent popular CSKGs such as ConceptNet
(Speer et al., 2017) and ATOMIC (Sap et al., 2019)
represent nodes in natural language, which allows
flexibility but also adds redundancy and noise (Wu

1Code is available at:
https://github.com/eujhwang/KG-Compression

Figure 1: An example from ComVE (Wang et al., 2020).
The subgraph obtained for the input sentence includes
unimportant information (in red) that can lead to noisy
outputs.

et al., 2023). Moreover, the retrieved subgraphs
around a task’s concepts potentially include infor-
mation that is not relevant to the context. For ex-
ample, in Figure 1, the goal is to generate a rea-
son why the input sentence (“A shark interviews
a fish”) defies commonsense. The concepts tank
and business are semantically irrelevant to either
the input or the reference output sentences. Includ-
ing irrelevant information introduces noise that can
deteriorate the model’s performance. Recent work
has addressed this by pruning noisy paths based
on low edge confidence scores in knowledge base
embeddings (Lin et al., 2019) or by using language
models (LMs) (Yasunaga et al., 2021). Yet, the
relevance of paths is not determined in relation to
the given task.

In this paper, we propose to use differentiable
graph compression that enables the model to learn
how to select the crucial concepts that are actually
related to the task. Our method contains two main
components: using self-attention scores to select
relevant concept nodes in the retrieved subgraph,
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and employing optimal transport loss to ensure the
chosen concepts preserve the most crucial informa-
tion of the original graph. In this way, the irrelevant
or redundant concepts can be automatically elimi-
nated in the subgraph.

We demonstrate the usefulness of our method
on two commonsense generation tasks: common-
sense explanation generation and abductive com-
monsense reasoning. Our method outperforms a
range of baselines that use KGs in terms of both
diversity and quality of the generations. We further
conduct a comprehensive analysis, exploring a dif-
ferent setup, such as the scenario of incorporating
new knowledge into the subgraph. Different from
the baselines, our method enables the model to
maintain performance, even in the presence of po-
tentially increased noisy data. Finally, we show that
our approach demonstrates better quality-diversity
tradeoff than the large language model vicuna-13b,
which has 100 times more parameters.

2 Background

KG-Enhanced Neural Methods. KGs have
been used to enhance models for question answer-
ing (Lin et al., 2019; Feng et al., 2020; Yasunaga
et al., 2021), relation classification (Wang et al.,
2021), textual entailment (Kapanipathi et al., 2020),
and more. Typically, such methods extract a sub-
graph of knowledge related to keywords in the in-
put, which is then either embedded or represented
in natural language before being incorporated into
the model. For example, both Wang et al. (2023)
and Wang, Fang, et al. (2023) used CSKGs to en-
hance a commonsense inference and a QA model
by including the abstraction of concepts in the in-
put (e.g. vacation → relaxing event). However,
some knowledge may be irrelevant in the context
of the particular question.

To reduce such noise, prior methods have pro-
posed to score and prune the paths. Lin et al. (2019)
used TransE (Wang et al., 2014) to score each edge
in the path, while Yasunaga et al. (2021) scores
nodes based on the likelihood of a pre-trained LM
to generate it after the input. In both methods, the
scores are not trained to represent a node’s impor-
tance in relation to the task.

Generating Commonsense Explanations. This
paper focuses on the task of generating common-
sense explanations, in particular focusing on the
following datasets. In ComVE (Wang et al., 2020)
the goal is to generate explanations for why a given

sentence, such as “A shark interviews a fish”, does
not make sense. α-NLG (Bhagavatula et al., 2020)
presents models with a past observation, such as
“Mike spends a lot of his time on the internet” and
a future observation such as “Now other people
love the internet because of Mike’s website”. The
goal is to generate a plausible explanation for what
might have happened in-between, such as “Mike
created a website that helps people search”. In a
related line of work, researchers collected or gener-
ated commonsense explanations for existing tasks
(e.g., Camburu et al., 2018; Rajani et al., 2019;
Brahman et al., 2021).

Diverse Sentence Generation. One of the de-
sired aspects of generating commonsense explana-
tions is the diversity of the outputs. Popular LM
decoding methods such as top-k (Fan et al., 2018),
top-p (Holtzman et al., 2020), and truncated sam-
pling (Hewitt et al., 2022) generate diverse outputs
by pruning the probability distribution over the vo-
cabulary for the next token and then sampling a
token from the pruned distribution. An alternative
approach is to use a mixture of experts (MoE) to
produce diverse outputs (Shen et al., 2019; Cho
et al., 2019). Our approach extends MoKGE Yu
et al. (2022), a model for commonsense explanation
generation. MoKGE uses a combination of KGs
to diversify the outputs of a MoE model. How-
ever, the knowledge that MoKGE retrieves from
the KG is not filtered, hence may contain loosely re-
lated, redundant and irrelevant information, which
can negatively impact the model’s performance in
generating high-quality diverse outputs. In our ap-
proach, we employ knowledge graph compression
to prioritize more important information.

3 Method

Our goal is to generate diverse sentences,
{y1, y2, ..., yk} that explain a given instance x (see
Sec 2 for the specific task descriptions). The ob-
jective is to maximize the probability of generating
each yi: P (yi|x), as well as to diversify them. Pre-
vious KG-enhanced approaches usually add an ex-
ternal graph Gx to make the generation also condi-
tioned on the graph: P (yi|x,Gx). However, as we
discussed in Sec 1, Gx often contains redundancy
or noise. For example, given a target concept A,
there is a semantically similar concept (e.g. a syn-
onym) A′ and a noisy concept B in the graph Gx).
Obviously, A′ will negatively impact the diversity
of generations because the model may select both
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Figure 2: Overview of our approach. We retrieve a subgraph from ConceptNet for the given input sentence, compress
it, and use MoE to generate diverse sentences for containing concepts from the compressed graph.

A and A′ for generation and the semantics of the
generations are similar; concept B will hurt the
generation quality since it is irrelevant to the con-
text. So, a natural idea to solve the problem is to
eliminate these concepts by compressing the graph.

Our method extends MoKGE (Yu et al., 2022)
by compressing the retrieved external knowledge
graph. The framework is illustrated in Figure 2 and
described in detail subsequently. In a nutshell, it
aims to identify the concepts within the KG that
provide the most relevant knowledge for a partic-
ular instance. We first extract a subgraph from
the KG based on the given input sentence, and en-
code it into a vector representation (Sec 3.1). Then,
we learn a compressed graph that maintains only
the most relevant concepts for the given instance
(Sec 3.2). We train the model with the correspond-
ing losses (Sec 3.3) and finally apply MoE to gen-
erate diverse outputs (Sec 3.4).

3.1 KG Subgraph Extraction and Encoding

The subgraph extraction and encoding follows
MoKGE (Yu et al., 2022).

Subgraph Extraction. We first associate each
input sentence with the set of concepts from
the KG that match its tokens. For example,
given the sentence q =“A shark interviews a fish”
(the “query”), we extract the concepts Cq =
{fish, shark, interview} from ConceptNet.2

Second, we fix a radius h and extract a subgraph
Gq with node set Vq ⊇ Cq from the KG such that
it contains all KG nodes and edges that are up to
h = 2 hops around the concepts in Cq (e.g. shark

2In what follows, our notation refers to KG concepts and
their corresponding KG nodes interchangeably.

→ swim → fish).

Graph Encoding. To obtain embeddings for the
concept nodes, we apply an off-the-shelf graph en-
coder over the extracted subgraph (Wu et al., 2021).
In our implementation, we follow Yu et al. (2022)
and use the relational graph convolutional network
(R-GCN; Schlichtkrull et al., 2018). R-GCN com-
putes node representations by iteratively aggregat-
ing neighboring node representations and thereby
taking the relation types into account. In this way,
the final embeddings capture the structural patterns
of the subgraph.

3.2 Differentiable Graph Compression

As we discussed before, the extracted subgraphs
often contain redundancy and noise, and we aim to
compress the graph and remove the irrelevant infor-
mation. This introduces two challenges: (1) how
to make the graph compression differentiable so
that it can be trained in the context of downstream
tasks; and (2) how to maintain the most important
and relevant information in the compressed graph.

Self-Attention for Concept Scoring. Since we
want to select concepts for the generation step
(Sec 3.4), we can’t apply differentiable pooling
methods (Ying et al., 2018; Ma and Chen, 2020)
and instead choose to construct a semantically
meaningful subgraph containing the relevant nodes
and edges. To do so, we apply self-attention and
hence essentially use the features computed in the
previous step as main criterion to determine the
concepts’ importance. Specifically, we compute
self-attention scores Z ∈ RC×1 as proposed by
Lee et al. (2019) using graph convolution (Kipf
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and Welling, 2017):

Z = σ(D̃− 1
2 ÃD̃− 1

2XΘatt)

where σ is the non-linear activation function tanh;
C := |Vq| is the number of concept nodes in the
subgraph; Ã ∈ RC×C is the adjacency matrix ex-
tended by self-connections; D̃ is the degree matrix
of Ã, which is used for normalization; X ∈ RC×F

is the matrix of concept embeddings obtained in
the previous step, with embedding dimension F ;
and Θatt ∈ RF×1 is the parameter matrix for the
self-attention scores. Given the concept scores Z,
we consider a pre-set assignment ratio s ∈ (0, 1],
and form the compressed graph, G′, by selecting
s% of concept nodes. We denote S as the number
of concept nodes selected. In the example in Fig-
ure 2, the compressed (third) graph contains 80%
of the nodes in the original subgraph.

Optimal Transport for Regularization. The
self-attention based concept selection make the
graph compressed in an differentiable way, how-
ever the attention parameters can only be trained
from downstream generation tasks which cannot
gurantee the compression quality as well as gener-
alizability. Consider the case with concept A and
its synonym A′ in the retrieved graph Gq, if A is
selected by the attention scores, it is highly possi-
ble A′ also has a high score to be selected, so the
redundancy cannot be removed.

For this reason, we additionally apply optimal
transport (OT; Peyré and Cuturi, 2019), a method
commonly used for measuring the distance be-
tween two probability measures. Here, we regard
a graph as a discrete distribution, similarly to Ma
and Chen (2020), and minimize the OT distance
between the original graph and its compressed ver-
sion. To this end, we define an optimal transport
loss between graphs. Given a m-node graph and
a n-node graph, we assume they have discrete dis-
tributions µ =

∑m
i=1 aiσxi and ν =

∑n
j=1 bjσxj ,

where xi and xj indicate the nodes, σ is a delta
function, a = (a1, ..., am) and b = (b1, ..., bn) are
weights of nodes (generally uniform). If we define
a cost matrix M whose element Mij indicates the
transport cost from node xi to node xj , then the
optimal transport distance is:

W (µ, ν) = min
T

< T,M > (1)

T ∈ Rm∗n is called a transportation plan, whose
element Tij denotes the transportation probability

from xi to xj , and it meets the requirements that
T1n = a, and T T 1m = b.

Once the optimal transport distance is mini-
mized, the compressed graph is expected to keep
as much information of the original graph. Thus
redundant concepts will be largely removed, since
involving them in the compressed graph will lead
to less information kept. Take a simple example,
given an original graph with nodes {A,A′, C}, the
subgraph with node {A,C} should be more in-
formative than the one with {A,A′}, and its opti-
mal transport distance between the original graph
should be smaller.

Since solving an OT problem is computationally
expensive, we add an entropy regularization term
E(T ) =

∑
ij Tij(log Tij − 1), to allow for solving

it approximately using Sinkhorn’s algorithm (Cu-
turi, 2013) in practice, following prior work. With
a hyperparameter γ > 0, the entropy-regularized
loss becomes:

Wγ(µ, ν) = min
T

< T,M > −γE(T ) (2)

3.3 Loss Functions for Training
Following Yu et al. (2022), we train BART-base
(Lewis et al., 2020) in a seq2seq architecture on the
commonsense explanation generation task, with a
generation loss, and apply a KG concept loss in
addition. We also include an optimal transport
loss.

Generation Loss. For sentence generation, we
maximize the conditional probability of the target
sequence y given the input sequence x concate-
nated with the selected KG concepts c1, c2, ...cS .
We utilize the standard auto-regressive cross-
entropy loss as follows:

Lg = −
|y|∑

t=1

logP (yt|x, c1, c2, ..., cS , y<t)

where t is the timestep of the actual output. In
the generation step, the model auto-regressively
generates the output y with input x and S selected
concepts.

KG Concept Loss. The effectiveness of the con-
cept selection can be measured in terms of which of
the chosen concepts appear in the output sentence
a (the reference answer). More specifically, we
consider a regular binary cross entropy loss with
targets yc = I(c ∈ Vq ∩Ca) for each c ∈ Vq. Here,
I(·) represents the indicator function. and Ca is
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the set of concepts that are present in the output.
To obtain a probability for each of the S concepts
in the compressed graph, we apply an MLP. The
resulting loss is as follows:

Lc = −
(∑

c∈Vq∩Ca
yc logP (c) +

∑
c∈Vq−Ca

(1− yc) log 1− P (c)
)

Optimal Transport Loss. To make the optimal
transport distance differentiable, we solve Eq. 2
using the Sinkhorn’s algorithm (Cuturi, 2013):

Starting with any positive vector v0, we itera-
tively update u and v as follows:

ui+1 = a⊘Kvi; vi+1 = b⊘KTui+1 (3)

where ⊘ is the element-wise division and K is an
intermediate variable derived from the cost matrix
M : K = exp(−M/γ).

After k steps, we arrive at the k-step result P k =
diag(uk)K diag(vk) as an approximated optimal
transportation plan, hence the optimal transport
loss is approximated by

Lt = W k
γ (G,Gc) =< P k,M > −γE(P k)

Altogether, our model is trained with three loss
functions:

L = Lg + αLc + βLt (4)

where α and β are hyperparameters that control the
relative importance of the individual loss functions.
In our experimental setup, we set both α and β to
a value of 0.3.

3.4 Diverse Generation based on MoE

To encourage more diverse outputs, we follow pre-
vious work (Shen et al., 2019; Cho et al., 2019; Yu
et al., 2022) and use mixture of experts (MoE).

We use K experts, where each expert is responsi-
ble for generating a unique set of KG concepts. The
model is trained using hard-EM algorithm (Demp-
ster et al., 1977). Since it is similar to (Yu et al.,
2022)), we put the details in Appendix E. In Fig-
ure 2, the nodes in the 4th graph highlighted in
green, red, and blue colors indicate the K = 3
respective experts assigned to handle different con-
cepts. The utilization of our compressed graph
version helps the model better prioritize the crucial
concepts during output generation, as we demon-
strate in our experiments.

4 Experimental Setup

4.1 Datasets
ComVE (Wang et al., 2020) was part of the Se-
mEval 2020 commonsense validation task. Given a
nonsensical sentence, the task is to generate expla-
nations for why it doesn’t make sense. The dataset
contains 10k training examples and roughly 1000
examples each for test and validation. Each exam-
ple comes with 3 reference output sentences. The
other dataset, ααα-NLG (Bhagavatula et al., 2020),
addresses the abductive commonsense reasoning
task. Given a past observation and a future observa-
tion, the goal is to generate plausible explanations
for what might have happened in-between. The
dataset consists of 50k training examples, 1,779
validation and 3,560 test examples. Each example
in the dataset includes up to 5 reference outputs.

4.2 Baselines
MoE-based Methods. MoE-embed (Cho et al.,
2019) and MoE-prompt (Shen et al., 2019) pro-
duce diverse sentences by sampling different mix-
ture components. While MoE-embed employs in-
dependent latent variables when generating diverse
outputs, MoE-prompt shares the latent variable
between the experts. MoKGE (Yu et al., 2022) is
the approach that we extend by adding graph com-
pression. It generates outputs by incorporating KG
concepts on top of MoE-based methods.

Other Methods to Improve Diversity. To show
that our method yields a sophisticated concept se-
lection beyond regular filtering, we compare it to a
simple synonym filtering on top of MoKGE, ap-
plied during the inference step, that yields a set of
unique KG concepts for generating outputs. This
baseline prevents the model from selecting similar
concepts when generating the outputs. Second, we
consider the common pruning approach, which
removes irrelevant paths from the potentially noisy
subgraph, following KagNet (Lin et al., 2019). To
measure the quality of the path, the path is decom-
posed into a set of triples. Each triple is scored
based on the scoring function of the knowledge
graph embedding technique, TransE (Bordes et al.,
2013) and the score for each path is the product
of its triple scores. The threshold for pruning is a
hyperparameter and set to 0.15 following Lin et al.
(2019).

Large Language Model (LLM). Lastly, we
compare to Vicuna-13b (Chiang et al., 2023). This
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ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoE, embed 33.640.2 28.210.1 46.570.2 9.610.1 18.660.5 43.720.2
MoKGE, embed 35.361.1 29.711.2 47.510.4 9.630.1 19.130.1 43.70.1
+ SAG + OT (ours) 32.190.6 26.280.6 49.050.1 9.690.0 19.080.2 43.650.3

MoE, prompt 33.420.3 28.40.3 46.930.2 9.60.2 18.910.4 43.710.5
MoKGE, prompt 30.930.9 25.31.1 48.440.2 9.670.2 19.010.1 43.830.3
+ filtering 34.010.5 28.920.5 47.490.9 9.640.1 19.020.4 43.480.6
+ pruning 33.432.0 28.272.2 48.260.7 9.640.0 18.670.2 43.100.3
+ SAG (ours) 28.460.8 22.811.2 48.330.6 9.660.0 19.000.6 43.800.5
+ SAG + OT (ours) 27.320.3 21.940.4 48.940.1 9.690.0 19.310.3 44.160.1

α-NLG self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoE, embed 29.021.0 24.191.0 36.220.3 10.840.0 14.310.2 38.910.2
MoKGE, embed 29.171.5 24.041.6 38.150.3 10.90.1 13.740.2 38.060.2
+ SAG + OT (ours) 24.980.2 19.830.2 38.930.3 10.930.0 13.060.3 37.770.3

MoE, prompt 28.052.0 23.181.9 36.710.1 10.850.0 14.260.3 38.780.4
MoKGE, prompt 27.402.0 22.432.4 38.010.6 10.880.2 14.170.2 38.820.7
+ filtering 31.382.9 26.362.8 37.950.6 10.780.6 13.890.2 38.070.1
+ pruning 31.842.3 26.722.4 38.210.2 10.780.0 13.730.1 38.010.2
+ SAG (ours) 28.490.8 23.590.5 38.050.4 10.860.0 13.410.5 38.000.3
+ SAG+OT (ours) 23.990.7 18.800.6 39.020.7 10.880.0 14.210.5 38.930.2

Table 1: Diversity and quality evaluation on ComVE and α-NLG datasets. All experiments are run three times with
different random seeds, and the standard deviations are reported in subscript.

large LM was built upon LLaMA-13b (Touvron
et al., 2023), a transformer-based LM trained on
trillions of tokens exclusively sourced from pub-
licly available data. Vicuna-13b performs on par
with ChatGPT (Chiang et al., 2023). We employ
Vicuna-13b in a 2-shot setup (see Appendix A for
the prompts).

4.3 Metrics

Following the same evaluation setting in previous
works, we assess the performance of the generated
sentences in terms of both diversity and quality.

Pairwise Diversity. Self-BLEU (Zhu et al., 2018)
is used to evaluate how each sentence is similar
to the other generated sentences based on n-gram
overlap. Self-BLEU-3/4 are diversity scores based
on 3/4-gram overlap. The metrics compute the av-
erage of sentence-level self-BLEU scores between
all pairwise combinations of generated outputs.
Hence, lower self-BLEU scores indicate a greater
variety between the sentences in the set generated
for each input sample.

Corpus Diversity. Distinct-k (Li et al., 2016) is
calculated by counting the number of unique k-
grams in the generated sentence and dividing it by
the total number of generated tokens, to prevent
preference towards longer sentences. Additionally,
we report entropy-k (Zhang et al., 2018), which
evaluates the evenness of the empirical n-gram dis-

tribution within the generated sentence.

Quality. We use standard metrics for automatic
evaluation of generative tasks: BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), which are
based on n-gram overlap between the generated
sentences and human-written reference outputs.
They assess the highest accuracy by comparing the
best generated sentences to the target sentences.

5 Results and Discussion

Comparison to Baselines, Table 1. We observe
similar trends for the two datasets and across
the two model series, based on embedding and
prompts. Overall, the differences are strongest for
self-BLEU and Distinct-2, two aspects that are par-
ticularly important for diverse generation. This
suggests that our model is able to reason about
different possible contexts. On both datasets, our
method, MoKGE+SAG+OT, outperforms the mix-
tures of experts by large margins in terms of diver-
sity and, at the same time, achieves comparable or
better performance in terms of quality. Note that,
on ComVE, the quality differences between the
best and our, second-best model are within stan-
dard deviation.

The effectiveness of our approach is especially
evident from the comparison to the filtering and
pruning baselines. Recall that these approaches
similarly aim at better exploiting the KG by im-
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proving diversity and removing noise, respectively.
However, we observe a considerable decrease in
diversity and nearly always also slightly in quality.
This shows that simple solutions, unrelated to the
task at hand, are seemingly not able to identify the
most relevant knowledge. More specifically, for the
filtering baseline, we observed that the model is
unable to learn what concepts to choose for unseen
data. As a result, its ability to generalize to unseen
data is limited, resulting in lower diversity scores
on the test data. Altogether, this demonstrates
that our approach, based on the compressed graph,
is effective in suppressing redundant information
present in the KG and promoting other knowledge
that is more relevant in the given context.

We additionally confirm that our optimal trans-
port loss helps the model to keep the KG subgraph
more coherently; see especially the α-NLG results.

Generation Examples, Figure 4. Observe that
MoKGE tends to generate sentences with simpler
structure and fewer concepts, whereas our model
employs a broader range of KG concepts. This
makes the generations effectively more similar to
the human-written ones, where each of the three
sentences addresses a different context. We show
more examples in Appendix B.

Testing Robustness with Potentially more Re-
dundancy and Noise, Table 2. We created a
more challenging scenario by extending the ex-
tracted subgraphs with additional, related knowl-
edge potentially including more of both relevant
and redundant information. This was done by ap-
plying COMET (Bosselut et al., 2019), a trans-
former that was trained to generate KG triples (i.e.,
entity-relation-entity tuples) based on given entity-
relation pairs. The original MoKGE model seems
to struggle in this scenario: its performance de-
creases without exception in terms of all metrics. In
contrast, our approach, applied on top of MoKGE,
is successful in both retaining the performance
of MoKGE alone and even the improvements of
MoKGE+SAG+OT.

Comparison with Large Language Model, Ta-
ble 3 & Figure 4. We compare our method to
Vicuna-13b. Most interestingly, our proposal out-
performs the LLM on Distinct-2 and Entropy-4.
Note that even MoKGE alone is slightly better than
the LLM in these aspects, yet our method is ef-
fective in extending the gap by better exploiting
the external knowledge. Figure 4 gives example

Figure 3: Self BLEU-3, Distinct-2, and ROUGE-l per
assignment ratio on α-NLG dataset. MoKGE-prompt
with Self Attention and Optimal Transport is used for
the experiment.

outputs and shows that the LLM is still prone to
generating sentences with similar structure (e.g. “I
wore a wig to ...”), as it can be seen with α-NLG.
Furthermore, while the generated sentence “I wore
a wig to a party and felt great” explains the first
observation “I always wondered why I loved wear-
ing wigs”, it fails to explain the second observation
“I got beat up and reminded of why I shouldn’t”.
In the ComVE task, the generated sentences are
diverse in terms of both sentence structure and
word usage, but the model sometimes generates
sentences that are less logical, such as “Writing
in a paper with an eraser is not permanent”. In
contrast, our approach enables MoKGE to generate
a wider range of sentences that incorporate rele-
vant concepts and enhance the interpretability of
the generation process.

6 Analysis

Compression Ratios, Figure 3. This hyperpa-
rameter determines the amount of concept nodes to
be kept in the compressed subgraph. Maintaining
65% of the nodes in the subgraph yields the optimal
performance in terms of both diversity and qual-
ity on both datasets (see Appendix C for ComVE
dataset). Interestingly, we do not observe a great
negative impact on performance, even up to a ratio
of 30%. This shows that ConceptNet apparently
contains much information that is not necessarily
beneficial for diverse generations in the context of
a particular task and hence justifies our proposal.

Unique Concepts in the Output, Ap-
pendix D. The comparison of MoKGE
and MoKGE+SAG+OT shows that MoKGE
tends to generate more sentences containing 0
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ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoKGE 30.930.9 25.31.1 48.440.2 9.670.2 19.010.1 43.830.3
+COMET 32.731.5 27.451.8 48.320.2 9.640.0 18.680.3 43.510.4
+COMET+SAG+OT 27.231.2 21.681.5 48.650.6 9.680.0 19.380.4 43.990.4

α-NLG self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

MoKGE 27.402.0 22.432.4 38.010.6 10.880.2 14.170.2 38.820.7
+COMET 31.412.4 26.322.4 37.990.2 10.770.1 13.870.3 37.960.1
+COMET+SAG+OT 25.481.0 21.141.3 38.360.3 10.840.0 14.070.4 38.650.4

Table 2: Performance with COMET and COMET with Self Attention and Optimal Transport. MoKGE-prompt is
used for experiments.

ComVE self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

Vicuna-13b 18.100.0 12.740.0 48.400.0 9.650.0 17.650.0 43.970.0
MoKGE+SAG+OT 27.320.3 21.940.4 48.940.1 9.690.0 19.310.3 44.160.1

α-NLG self-bleu-3 (⇓) self-bleu-4 (⇓) distinct-2 (⇑) entropy-4 (⇑) bleu-4 (⇑) rouge-l (⇑)

Vicuna-13b 33.230.0 27.390.0 37.970.0 10.380.0 17.300.0 40.580.0
MoKGE+SAG+OT 23.990.7 18.800.6 39.020.7 10.880.0 14.210.5 38.930.2

Table 3: Comparison between Vicuna-13b with 2-shot setup and MoKGE with SAG Pooling. MoKGE-prompt is
used for experiments. Vicuna-13b was ran 1 time.

Figure 4: Examples of model generated sentences using MoKGE, Vicuna-13b, and MoKGE with Self Attention +
Optimal Transport.

or 1 concepts only. This indicates that the lower
diversity scores of MoKGE may be due to the
selection of irrelevant concepts during output
generation, showing the model’s inability to
effectively utilize them. The table shows that our
method increases the numbers of KG knowledge

actually used by the model and thus its success in
injecting external bias into LMs.

Human Evaluation, Table 4. We conducted
human evaluation on the outputs produced by
our model MoKGE+SAG+OT and the baseline
MoKGE for the α-NLG task. We randomly se-
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Model diversity quality

MoKGE 1.88 1.93
MoKGE+SAG+OT 2.10 2.08

Table 4: Human evaluation performance on 30 randomly
selected α-NLG samples.

lected 30 generations from each model. The anno-
tation was performed by 3 researchers in the lab.
We instructed the annotators to score the diversity
and correctness (quality) of each generation on a
scale of 0 to 3. Table 4 shows a consistent per-
formance improvement across both diversity and
quality when comparing our model to the baseline.

7 Conclusion

We present a differentiable graph compression al-
gorithm that enables the model to focus on crucial
information. Through experiments on two com-
monsense explanation generation tasks, we show
that our approach not only improves the diversity
but also maintains the quality of outputs. Moreover,
our graph compression helps the model regain per-
formance when new and potentially noisy informa-
tion is added to graphs. Our work opens up future
research in effectively selecting and incorporating
symbolic knowledge into NLP models.

Limitations

Use of Single Word Concept. Since ConceptNet
contains mostly single words, we limit additional
KG concepts to single words only. However, it can
easily be extended into phrases and we leave it to
future work to investigate how to effectively utilize
longer phrases.

Use of Relations. When additional KG concepts
are added to the model, we focus more on the con-
cept nodes, not the edges. However, relation edges
may provide additional insight. We leave the ex-
ploration of this for future work.

Ethics Statement

Data The datasets used in our work, SemEval-
2020 Task 4 Commonsense Validation and Explan-
tation (ComVE; Wang et al., 2020) and Abduc-
tive Commonsense Reasoning (α-NLG; Bhagavat-
ula et al., 2020), are publicly available. The two
datasets aim to produce commonsense explanations
and do not include any offensive, hateful, or sex-
ual content. The commonsense knowledge graph,

ConceptNet, was collected through crowdsourcing
and may also introduce bias to our model (Mehrabi
et al., 2021). However, we only use single word
nodes from ConceptNet, which limits the impact
of such bias.

Models The generative models presented in the
paper are trained on a large-scale publicly available
web corpus and may also bring some bias when
generating sentences.
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We present the prompts that we used for Vicuna-
13b for ComVE (Figure 5) and α-NLG (Figure 6).

568

https://doi.org/10.18653/v1/P19-1487
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2022.acl-long.25
https://doi.org/10.18653/v1/2022.acl-long.25
https://doi.org/10.18653/v1/2022.acl-long.25
https://doi.org/10.18653/v1/2020.semeval-1.39
https://doi.org/10.18653/v1/2020.semeval-1.39
https://doi.org/10.18653/v1/2020.semeval-1.39
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.18653/v1/2021.findings-acl.121
https://doi.org/10.48550/arXiv.2305.14869
https://doi.org/10.48550/arXiv.2305.14869
http://arxiv.org/abs/2305.17019
http://arxiv.org/abs/2305.17019
http://arxiv.org/abs/2305.17019
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2022.findings-acl.149
https://doi.org/10.18653/v1/2022.findings-acl.149
https://doi.org/10.18653/v1/2022.findings-acl.149
https://proceedings.neurips.cc/paper_files/paper/2018/file/23ce1851341ec1fa9e0c259de10bf87c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/23ce1851341ec1fa9e0c259de10bf87c-Paper.pdf
http://arxiv.org/abs/1802.01886
http://arxiv.org/abs/1802.01886


# few-shot examples
< input sentence >
Give three reasons explaining why the above
sentence does not make sense:
1. < reference1 >
2. < reference2 >
3. < reference3 >
...
# target example
< input sentence >
Give three reasons explaining why the above
sentence does not make sense:

Figure 5: Vicuna prompt for the ComVE dataset.

# few-shot examples
Write three sentences that likely happened in
between the past event: < past event > and the
future event: < future event >:
1. < reference1 >
2. < reference2 >
3. < reference3 >
...
# target example
Write three sentences that likely happened in
between the past event: < past event > and the
future event: < future event >:

Figure 6: Vicuna prompt for the α-NLG dataset.

Data Model # of KG Concepts
0 1 2 3<=

ComVE MoKGE 5.9 23.2 28.9 42.1
+SAG+OT +0.1 -3.1 +1.5 +1.0

α-NLG MoKGE 16.8 31.9 29.0 22.3
+SAG+OT -2.0 -1.1 +1.7 +1.4

Table 5: Comparison of models with MoKGE and
MoKGE with Self Attention and Optimal Transport
on the number of unique concepts in generated outputs.
All KG concepts are lemmatized.

B Additional Generation Examples

We show additional sentences generated by
MoKGE and MoKGE+SAG+OT for ComVE (Fig-
ure 7) and α-NLG (Figure 8).

C Assignment Ratio for ComVE

We show the performance on ComVE with varying
node assignment ratios in Figure 9.

D Concept Inclusiveness

We analyze how well the model incorporates KG
concepts in output generation in Table 5.

E Mixture of Experts

Given input sentence q and target sentence y,
MoE employs a multinomial latent variable δ ∈
{1, 2, ...,K} and decomposes the marginal likeli-
hood as:

P (y|x, gx) =
K∑

δ=1

P (δ|x,G′
x)P (y|δ, x,G′

x)

Each δ represents an expert, which is responsible
for explaining (x,G′

x, y) observation.
With the above decomposition, the model mini-

mizes the loss function (Eq.(4))

∇ logP (y|x,G′
x) =

∑K
δ=1 P (δ|x, y,G′

x) · ∇ logP (y, δ|x,G′
x)

and is trained using hard-EM algorithm (Dempster
et al., 1977) as follows:

• E-step: choose expert δbest with minimal loss.

δbest = argmin
δ

− logP (y, δ|x,G′
x)

• M-step: update the parameters of the chosen
expert δbest from E-step.

F Hyper-parameters

We used BART-base (Lewis et al., 2020), which
is built on the Transformer architecture with a 6
layer encoder-decoder. For model training, we
used Adam optimizer with a batch size of 60 and
a learning rate of 3e-5. For the ComVE dataset,
the warmup steps are set to 5000. For the α-NLG
dataset, the weight decay is set to 0.01. For optimal
transport, γ is set to 1.0. As to the weights in the
discrete distributions, {ai} are set evenly as 1/m,
and {bj} are all set as 1/n, where m and n are
number of nodes in the graphs.
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Figure 7: Additional examples of model generated sentences with MoKGE and MoKGE+SAG+OT on ComVE
dataset.
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Figure 8: Additional examples of model generated sentences with MoKGE and MoKGE+SAG+OT on α-NLG
dataset.
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Figure 9: Self BLEU-3, Distinct-2, and ROUGE-l per
assignment ratio on ComVE dataset.
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