
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6109–6113
December 6-10, 2023 ©2023 Association for Computational Linguistics

Spoiler Detection as Semantic Text Matching

Ryan Tran∗, Canwen Xu∗, Julian McAuley
University of California, San Diego
{rhtran,cxu,jmcauley}@ucsd.edu

Abstract

Engaging with discussion of TV shows on-
line often requires individuals to refrain from
consuming show-related content for extended
periods to avoid spoilers. While existing re-
search on spoiler detection shows promising
results in safeguarding viewers from general
spoilers, it fails to address the issue of users
abstaining from show-related content during
their watch. This is primarily because the def-
inition of a spoiler varies depending on the
viewer’s progress in the show, and conventional
spoiler detection methods lack the granularity
to capture this complexity. To tackle this chal-
lenge, we propose the task of spoiler match-
ing, which involves assigning an episode num-
ber to a spoiler given a specific TV show. We
frame this task as semantic text matching and
introduce a dataset comprised of comments and
episode summaries to evaluate model perfor-
mance. Given the length of each example, our
dataset can also serve as a benchmark for long-
range language models.1 2

1 Introduction

Many online social platforms (e.g., Reddit, Dis-
cord) provide opportunities for fans to discuss a
particular TV show and share their thoughts about
details in episodes. However, engaging in such dis-
cussions comes with the risk of spoilers, which may
lead to unsatisfactory viewing experiences (John-
son and Rosenbaum, 2015). As a result, many
viewers avoid these communities altogether until
they have caught up with the latest episode of the
show.

As an attempt to resolve this problem, some plat-
forms (such as Reddit) have built-in functionality
allowing users to tag their content as containing

∗Equal contribution.
1Code and model weights are publicly available at https:

//github.com/bobotran/spoiler-matching
2The data is available at https://huggingface.co/

datasets/bobotran/spoiler-matching

!

Just watched Ep. 5 Remeo died! OMG No!!

Juliet actually kissed him?? 15 replies

35 replies

The music in ep1 is beautiful 5 replies

⚠

 Spoiler

Predictions

[HIDDEN DUE TO SPOILER]

Juliet actually kissed him?? 15 replies

35 replies

The music in ep1 is beautiful 5 replies Irrelevant

Ep 2

Ep 12

#

 I can discuss
without worrying about

spoilers!

Online community comments

Figure 1: The task of spoiler matching. The model
matches the comments that discuss a plot to the corre-
sponding episode summary.

a spoiler. However, for long shows with a large
number of episodes, this proves unsatisfactory: A
user could be halfway through a show but will still
be afraid to click on spoiler-tagged content for fear
that it might contain spoilers for events later in the
show when in reality, it might pertain to events that
the viewer has already seen and with which they
can engage. Again, some websites allow users to
tag spoilers with more granularity, but it is far from
guaranteed that users will be both accurate and con-
sistent in tagging their content. This highlights the
need for automatic spoiler matching. Unlike tradi-
tional spoiler detection (Boyd-Graber et al., 2013;
Wan et al., 2019; Chang et al., 2021; Wróblewska
et al., 2021), which determines whether a comment
is a spoiler, spoiler matching aims to match a given
spoiler to an episode number. A spoiler matching
model working hand-in-hand with a spoiler detec-
tion model could provide much more fine-grained
protection from spoilers.

In this work, we consider the setting where the
show is known, and we would like to determine the
episode to which a comment is referring, as shown
in Figure 1. Specifically, we pose the problem
as a semantic text matching (Cer et al., 2018) task
between comments and episode summaries. We ob-
tain a high-quality evaluation dataset by manually

6109

https://github.com/bobotran/spoiler-matching
https://github.com/bobotran/spoiler-matching
https://huggingface.co/datasets/bobotran/spoiler-matching
https://huggingface.co/datasets/bobotran/spoiler-matching

Summary

“. . . After thinking back to Yor’s training, Anya uses her “killer move” and throws the ball at Bill. However, the ball hits the
ground and bounces toward Bill, who throws the ball right back and hits her. Bill and his team were excited, thinking he was
going to get a Stella Star. However, Henry informs them that they do not give out Stella Stars for a simple P.E. game...”

Comments

Relevant - Same episode: “Anya: ‘Finisher strike: Star Catch Arrow!!’ Ball: ‘nah, i don’t really feel like it’ ”
Relevant - Different Episode: “The dog finally has a name. Borf!”
Irrelevant: “This episode was fun. Just joy from start to end.”
Irrelevant: “Haven’t been this hyped over a dodgeball game since Hunter x Hunter.”

Table 1: Example comments with an example summary from the show Spy × Family. The first two comments
are relevant; The first one corresponds to the same episode as the summary while the second does not, so they
are examples of a positive and negative example (respectively) during matching training. The third and fourth
comments are irrelevant and are filtered out of the dataset during the auto-labeling step.

labeling the posts with the corresponding episode.
To obtain a larger training set, we use prompt learn-
ing to efficiently fine-tune an auto-labeler model to
automatically label another 200k examples, in ad-
dition to 5.9k manually labeled examples. The task
is to match the comments to the correct episodes,
with pairs of {episode summary, comment} as the
input. As the number of episodes in a show is often
limited, this task form is practically feasible. Also,
as the median length of the concatenated summary
and comment is 1,538 tokens, it can be a good
dataset for benchmarking long-range Transformer
models (Beltagy et al., 2020; Zaheer et al., 2020;
Xiong et al., 2021).

2 Spoiler Matching Dataset

Data Collection We crawl 522,991 comments
across 13 TV shows from discussion threads on
Reddit. We also crawl 496 episode summaries from
their respective episode pages on the website Fan-
dom.3 Reddit threads have a hierarchical discus-
sion format where users reply to each other’s posts,
and each reply increases the indentation level. Top-
level comments are comments that are not made
in reply to any other comment. Threads focused
around discussion of a particular episode are hand-
picked by the human annotators, and the top-level
comments are scraped. We take only top-level com-
ments to minimize collecting comments that are
incomplete thoughts continued from another part of
a conversation. We then remove links and markup
elements and apply other cleaning preprocessing
before proceeding.

Manual Labeling After data cleaning, we group
the comments by show name and episode number

3https://fandom.com

Method F1 Recall Precision AUC

Fine-Tuning 79.75 78.45 81.09 90.23
LM-BFF (2021) 81.09 84.55 77.90 90.92
LM-BFF Ensemble 81.62 86.18 77.51 91.56

Table 2: Test set performance of the relevant/irrelevant
auto-labeler. For each model, the threshold that resulted
in the highest F1 score on the validation set is chosen
and used to compute the test set F1, recall, and precision.

based on the discussion thread from which they are
scraped, but we do not yet consider them labeled
at this step. This is because we find that about half
of the comments scraped this way are irrelevant.
We take this time to note the subtle difference in
labels at this step compared to traditional spoiler
detection.

While traditional spoiler detection classifies text
as spoiler or non-spoiler, we at this step look to
separate the irrelevant comments we have scraped
from the relevant ones. We define a relevant com-
ment as one that describes events from the episode
(discussion thread) from which it is scraped. Exam-
ples of irrelevant comments are discussions about
music, acting quality, personal feelings about the
episode, etc. Table 1 shows some examples. While
the first irrelevant comment is straightforward, the
second is a more nuanced example: The episode
in question is about dodgeball, but the comment
does not discuss any events that occurred in the
episode, so it is not considered relevant. Finally,
we manually label 11,032 comments, reserved for
the validation and test set.

Automatic Labeling To obtain a larger-scale
training set, we split the 11,032 manually labeled
examples into a small training, validation, and
test set by the ratio of 7:2:1, to train an auto-

6110

https://fandom.com

labeler. To maximize data efficiency with this small
dataset, we perform prompt-based fine-tuning to
train RoBERTa (Liu et al., 2019). Specifically, we
use LM-BFF (Gao et al., 2021) to fine-tune the
model to predict if the comment is relevant.

We evaluate LM-BFF under two settings. For the
first, we perform prompt-based fine-tuning on a set
of hand-crafted templates, then select the best one
according to validation set AUC. For the second,
we use the automatic template search (auto-T) to
generate and rank 40 templates based on validation
AUC. Under both settings, we do not perform the
auto-L search and instead fix the label words as
“relevant” and “irrelevant”. From this ranking, the
top 20 templates are selected, and the logits from
the corresponding models are averaged. Table 2
shows the evaluation of various auto-labelers. We
find LM-BFF with template ensembling to be ef-
fective for our use case. Critically, a higher recall
score means more irrelevant comments caught and
filtered, resulting in a cleaner downstream training
set for matching.

It is important to note that at this step, summaries
are not concatenated with comments before being
fed to the auto-labeler; the auto-labeler predicts rel-
evant/irrelevant based on the words in the comment
alone. This is because the job of the auto-labeler
is to filter out generic irrelevant comments; unlike
matching, episode-specific context is not required
to perform this task.

Using our LM-BFF Ensemble auto-labeler, the
511,959 unlabeled comments are auto-labeled, sep-
arating 204,475 relevant comments from 307,484
irrelevant ones. Using our test set, we estimate that
about 12% of the relevant comments are actually ir-
relevant. As we will demonstrate later, this number
is low enough that the auto-labeled comments still
serve as an effective training set for fine-tuning a
spoiler matching model.

Dataset Construction To recap, we have 496
episode summaries, 511,959 auto-labeled com-
ments and 11,032 hand-labeled comments. Among
the auto-labeled comments, we have 204,475 rel-
evant comments and among the hand-labeled we
have 5,892. Relevant comments are converted to
the spoiler matching dataset format by assigning
them the episode number of the discussion thread
from which they were scraped. To test the ability of
the matching models to generalize to unseen shows,
the test set is constructed such that it contains 3,105
hand-labeled comments from 4 shows that are nei-

#Examples
#Tokens

25% 50% 75%

Summary 496 1136.5 1537.5 2035.25
Comment 210,367 18 28 51

Table 3: Statistics of the Spoiler Matching Dataset.

Method
Human Labels Only w/ Auto-labels

dev test dev test

BM25 38.90 36.80 40.67 36.80

RoBERTa 54.63 31.03 50.40 35.19
Nyströmformer 56.74 33.83 49.23 40.16
BigBird 62.75 33.28 54.25 46.22
MaxP-RoBERTa 63.42 40.44 58.63 54.09
Longformer 65.57 42.71 64.40 61.09

Table 4: MRR of the baseline methods on Spoiler
Matching Dataset. Note that the development sets of
the two settings are different thus the numbers on the
development sets are not comparable.

ther in the validation set nor the training set. The
remaining 2,787 hand-labeled comments are used
for validation. The statistics of the resulting dataset
are shown in Table 3.

3 Experiments

Task Formulation Our task is to match the com-
ment to a certain episode in the show. Since there
are only a limited number of episodes in a show,
we iterate through all episode summaries of the
show and concatenate each episode summary with
the comment with a special token (e.g., [SEP]) in-
serted. After inference for each summary-comment
pair, we rank the episodes by the predicted match-
ing scores. We use Mean Reciprocal Rank (MRR,
Craswell, 2009) as the metric for evaluation.

Baselines We select 6 baselines, including BM25
as a lexical matching baseline, RoBERTa (Liu et al.,
2019) as a pretrained language model baseline,
and three long-range pretrained Transformers: Big-
Bird (Zaheer et al., 2020), LongFormer (Beltagy
et al., 2020), and Nystromformer (Xiong et al.,
2021). We truncate the summary if the input
exceeds the maximum tokens allowed for each
model. For RoBERTa, we also experiment with
the MaxP passage aggregation strategy (Dai and
Callan, 2019). All models are base size. We imple-
ment the training and evaluation pipeline with Hug-
ging Face Transformers (Wolf et al., 2020). The
models are fine-tuned with the AdamW optimizer,

6111

Rank Correct Prediction Matching Score Comment

23 21 1 0.1031 Great santa still alive

1 2 1 0.5822 Kars the ultimate lifeform is released from his stone inprisonment !!!!

1 11 13 0.8801 I really really want Anya to have a dog she can communicate with. If
she has a pupner with the ability to predict the future........

Table 5: Longformer predictions on three validation set examples. For each given comment, the first column
represents the rank of the correct episode; the second is the correct episode number; the third is the episode with the
highest matching score; the fourth is this highest matching score, and the fifth is the text of the comment. The score
is the positive-class confidence after softmax.

a batch size of 32 and learning rate of 2e-5.

Settings We experiment with two settings to ver-
ify the effectiveness of the auto-labeling. In the
human labels-only setting, we re-split the valida-
tion set to a small training set of 2,229 comments
and a validation set of 558 comments. The second
setting uses 204,475 automatically labeled training
examples and 2,787 manually labeled examples for
validation. The two settings share the same test set,
which contains 3,105 manually labeled examples
from 4 unseen shows.

Experimental Results Experimental results are
shown in Table 4. In the human labels only setting,
BM25 outperforms language models except MaxP-
RoBERTa and Longformer. This finding is con-
sistent with prior studies on text retrieval (Thakur
et al., 2021) that BM25 can be a strong baseline
when the training examples are insufficient. Com-
pared with the human labels only setting, auto-
labeling successfully improves model performance,
verifying the effectiveness of our auto-labeling
pipeline. Also, we observe that RoBERTa suf-
fers from a short context length and underperforms
BM25 under both settings. This is especially evi-
dent considering the large improvement resulting
from the adoption of the passage aggregation strat-
egy. Indeed, MaxP-RoBERTa is competitive with
the long-range models. Among the long-range
models, Longformer (Beltagy et al., 2020) achieves
the best performance and outperforms the other
models by a large margin. We hope our dataset can
also serve as a benchmark for long-range pretrained
language models, as the task requires interactions
with long sentences.

4 Case Study

In this section, we analyze comments from two
shows in the validation set, Dr. Stone and Spy ×

Family to understand behaviors of the models.4

Table 5 lists several challenging comments along
with Longformer’s output. The first example refers
to a scene where Santa very briefly flies across
the sky in the background. It is treated as unim-
portant, fantastical garnish on an event from the
episode: None of the characters acknowledge it,
so it is understood to have not actually occurred.
Thus, the episode 21 summary does not mention
it at all. This represents a class of comments that
references relevant but obscure events, which only
a recent viewer of the episode might remember. In-
terestingly, the score is relatively low, suggesting
that the model understands that it is outputting a
low-quality prediction.

The second comment describes an event from
the show but references a character from an en-
tirely different show; it is drawing a comparison
between two characters, one of them in the show,
based on physical likeness. The reference is fairly
well-known within the community, but without ad-
ditional external information, it would be difficult
for the model to understand this comment beyond
just context clues.

The third comment is challenging because it con-
cerns predictions. Comments on ongoing shows
often contain predictions, and if they happen to
be correct, will likely match better lexically to the
future episode when the events occur than the cur-
rent episode when they are foreshadowed/predicted.
This is not necessarily a bad thing for the end user,
but it poses a challenge for training and evaluating
our models. For this example, it is visually hinted
in episode 11 that the dog has the ability to see
the future but not confirmed until episode 13, so
the summary for episode 11 does not mention this
ability explicitly but the summary for episode 13
does, posing a possible explanation for the model’s
behavior.

4This section contains spoilers from these two shows.

6112

Taken together, these examples give a glimpse
into the challenges posed by spoiler matching. The
hope is that this analysis motivates new lines of
work into the study.

5 Conclusion

In this work, we define a new task of spoiler match-
ing that formulates spoiler detection as a seman-
tic text matching task and construct a large scale
dataset with 223k comments and 496 episode sum-
maries by mixing human and automatic labeling.
We benchmark the performance of BM25 and four
language models on the proposed dataset.

Limitations

One limitation of our work is that due to resource
restrictions, we only benchmark four language
models on our dataset, leaving many other long-
range language models untested. Also, our dataset
only covers 13 shows and the comments annotated
by human annotators are relatively limited.

Acknowledgement

The authors would like to thank Ching Tan and
Minh Nguyen for their help with annotating the
validation set.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Jordan L. Boyd-Graber, Kimberly Glasgow, and
Jackie Sauter Zajac. 2013. Spoiler alert: Machine
learning approaches to detect social media posts with
revelatory information. In ASIST, volume 50 of Proc.
Assoc. Inf. Sci. Technol., pages 1–9. Wiley.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Buru Chang, Inggeol Lee, Hyunjae Kim, and Jaewoo
Kang. 2021. "killing me" is not a spoiler: Spoiler
detection model using graph neural networks with
dependency relation-aware attention mechanism. In
EACL, pages 3613–3617. Association for Computa-
tional Linguistics.

Nick Craswell. 2009. Mean reciprocal rank. In Ency-
clopedia of Database Systems, page 1703. Springer
US.

Zhuyun Dai and Jamie Callan. 2019. Deeper text un-
derstanding for IR with contextual neural language
modeling. In SIGIR, pages 985–988. ACM.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In ACL/IJCNLP (1), pages 3816–3830. As-
sociation for Computational Linguistics.

Benjamin K Johnson and Judith E Rosenbaum. 2015.
Spoiler alert: Consequences of narrative spoilers for
dimensions of enjoyment, appreciation, and trans-
portation. Communication Research, 42(8):1068–
1088.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evalua-
tion of information retrieval models. arXiv preprint
arXiv:2104.08663.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and
Julian J. McAuley. 2019. Fine-grained spoiler de-
tection from large-scale review corpora. In ACL (1),
pages 2605–2610. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
EMNLP (Demos), pages 38–45. Association for Com-
putational Linguistics.

Anna Wróblewska, Paweł Rzepiński, and Sylwia Sysko-
Romańczuk. 2021. Spoiler in a textstack: How
much can transformers help? arXiv preprint
arXiv:2112.12913.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty,
Mingxing Tan, Glenn Fung, Yin Li, and Vikas Singh.
2021. Nyströmformer: A nyström-based algorithm
for approximating self-attention. In AAAI, pages
14138–14148. AAAI Press.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tañón, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In NeurIPS.

6113

