
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6114–6131
December 6-10, 2023 ©2023 Association for Computational Linguistics

Multimodal Embodied Plan Prediction Augmented with Synthetic
Embodied Dialogue

Aishwarya Padmakumar
Amazon

padmakua@amazon.com

Mert İnan∗

Northeastern University
inan.m@northeastern.edu

Spandana Gella
Amazon

sgella@amazon.com

Patrick L. Lange
Amazon

patlange@amazon.com

Dilek Hakkani-Tur∗
University of Illinois Urbana-Champaign

dilek@illinois.edu

Abstract

Embodied task completion is a challenge where
an agent in a simulated environment must pre-
dict environment actions to complete tasks
based on natural language instructions and ego-
centric visual observations. We propose a vari-
ant of this problem where the agent predicts
actions at a higher level of abstraction called
a plan, which helps make agent actions more
interpretable and can be obtained from the ap-
propriate prompting of large language models.
We show that multimodal transformer mod-
els can outperform language-only models for
this problem but fall significantly short of ora-
cle plans. Since collecting human-human dia-
logues for embodied environments is expensive
and time-consuming, we propose a method to
synthetically generate such dialogues, which
we then use as training data for plan predic-
tion. We demonstrate that multimodal trans-
former models can attain strong zero-shot per-
formance from our synthetic data, outperform-
ing language-only models trained on human-
human data.

1 Introduction

Embodied task completion (Shridhar et al., 2020;
Padmakumar et al., 2022) is a challenge where
an agent in a simulated environment (Kolve et al.,
2017; Savva et al., 2019; Chang et al., 2017) is
given natural language context in the form of in-
structions or dialogue and needs to take actions in
the environment to complete a desired task, addi-
tionally making use of egocentric visual observa-
tions. This typically requires the agent to predict
actions directly executable in the simulated envi-
ronment. For example, an action sequence to make
coffee could start with actions to move forward two
steps, turn left, and pick up a mug identified by a
semantic segmentation mask. In contrast, physi-
cal robot systems tend to be more modular with a

∗ Contributions from Mert İnan and Dilek Hakkani-Tur
were provided when they were employed at Amazon.

dedicated component for task planning - compos-
ing a sequence of fine-grained motor skills into a
more complex task (Chen et al., 2010; Lemaignan
et al., 2017; Jiang et al., 2019). In such a sys-
tem, the coffee task considered above would likely
start by invoking a semantic navigation module
to find the mug and a grasping module to pick it
up. Some prior work has been on embodied AI
benchmarks suggesting that more modular mod-
els can outperform monolithic models (Min et al.,
2021; Jia et al., 2022; Zheng et al., 2022; Min et al.,
2022). However, these do not evaluate and explore
the limitations of individual modules.

In this work, we formulate and explore the prob-
lem of task planning for embodied task completion.
We improve upon existing plan prediction models
and demonstrate the potential for improvement by
comparing them with human plans. We adapt the
Execution from Dialogue History (EDH) bench-
mark from the TEACh dataset (Padmakumar et al.,
2022) to evaluate models at the level of a plan
– a sequence of object interaction actions paired
with the type of object on which the action needs
to be executed – which are evaluated using task
success upon execution with the aid of a heuristic
plan execution module. Plan prediction is more
challenging in TEACh compared to other embod-
ied AI datasets, as tasks can be hierarchical and
parameterized, environments are cluttered, and ob-
jects may be hidden inside closed receptacles. We
evaluate variants of the multimodal Episodic Trans-
former (E.T.) model, previously used to directly
predict low-level actions in embodied task com-
pletion (Shridhar et al., 2020; Padmakumar et al.,
2022) and find that these outperform a finetuned
language-only baseline.

Data collection for embodied AI tasks involving
natural language is expensive and time-consuming
to collect (Padmakumar et al., 2022), motivating
the need for methods that require less human-
human data. We develop the first framework for ex-

6114



Figure 1: This figure depicts an example EDH instance from the TEACh dataset with modifications converting an
action sequence to a plan. Models are trained to predict plans instead of low-level action sequences, and a plan
execution module identifies navigation and other adjustment steps to ensure effective execution of plan actions.

panding agenda-based dialogue simulation (Schatz-
mann and Young, 2009) to a multimodal embodied
agent setup by augmenting agenda-based dialogue
act prediction with a rule-based module for identi-
fying action sequences in the environment to com-
plete tasks. We demonstrate that the E.T.based
models trained only on synthetic data can achieve
about 85% of the performance of the same models
trained on real data, obtaining a zero-shot success
rate of 17.09%, which outperforms the full shot suc-
cess rate of plans generated by the language-only
baseline at 10.27%.

To summarize, our contributions include:

• We formulate the problem of plan predic-
tion for the TEACh dataset and evaluate a
language-only baseline, variants of a multi-
modal transformer model (E.T.), and estab-
lish oracle performance on this problem.

• We are the first to design a framework for
synthesizing embodied dialogues involving
both utterances and environment actions to
complete a task.

• We demonstrate that the synthetic data gener-
ated by our framework results in competitive
zero-shot performance in our problem.

2 Task Setup

The TEACh dataset (Padmakumar et al., 2022) is
an embodied dialogue dataset consisting of inter-

actions between human annotators role-playing a
Commander and Follower collaborating in a sim-
ulated home environment to complete household
tasks. Only the Commander has access to task
information, and only the Follower can take ac-
tions in the environment requiring them to com-
municate to complete the task. An effective Fol-
lower must engage in dialogue with the Comman-
der, obtain relevant information such as details of
the task to be completed and locations of objects,
and reason about environment actions that can ac-
complish relevant state changes to make progress
in the task. We focus on the EDH benchmark from
the TEACh dataset where given some dialogue
history, as well as past actions and image observa-
tions, the Follower must predict subsequent actions
in the environment to make progress with the task.
This is evaluated by comparing environmental state
changes arising from gold and predicted action se-
quences. We modify the expected prediction from
a model to be a plan, which we define as a se-
quence of object interaction actions paired with the
object category of the object they are to be exe-
cuted upon 1. An example of the task of boiling
a potato is included in Figure 1. Note that in plan
prediction, the model needs to reason about physi-
cal state changes - that the act of boiling requires

1While it is possible to specify more abstract plans, we
choose this level of abstraction as the training data can be
generated automatically from the TEACh EDH instances.

6115



Figure 2: Control Flow for Simulating Synthetic Embodied Dialogues with an example of making coffee.

placing the potato in a container filled with water,
which is then heated using a stove in the example.
Other aspects of execution, such as navigating to
required objects and fine-grained position adjust-
ments, can be carried out by a separate execution
module, which, in our case, is heuristic-based but
can also be learned. This problem is non-trivial in
datasets such as TEACh where tasks are param-
eterized, and hence highly variable, and diverse
initial states can add or remove task steps. This is
borne out in our experiments by the significant gap
between model generated and human plans.

During inference, at each time step, a plan pre-
diction model is expected to predict one object
interaction action and the category of the object on
which it is to be executed. This is then executed
by one of two possible plan execution modules
described in section 4. Execution terminates ei-
ther when a model predicts a special Stop action,
reaches a limit of 100 plan steps, or results in 30
simulator execution failures. A plan step may fail
execution for a variety of reasons. It may be infeasi-
ble (e.g., trying to pick up a cabinet), a prerequisite
step may not be completed (e.g., the Slice action
is only feasible if the agent is holding a knife), or
the agent may be poorly positioned (e.g., too close
to the fridge to open it).

3 Plan Prediction Models

We adapt the Episodic Transformer (E.T.)
model (Pashevich et al., 2021) for plan prediction.
This is a multimodal transformer model which, in
our case, receives the EDH dialogue history as lan-
guage input and egocentric image observations as
visual input and predicts plan steps consisting of
an object interaction action and the type of object
the action is to be taken on2. We obtain training
data by filtering EDH action sequences to contain
only object interaction actions and train the model
as in Padmakumar et al. (2022), where the model
receives images and plan steps from the EDH ac-
tion history as input and predicts the entire output
plan at once. At inference time, the last plan step
predicted is executed, and the input for the next
time step is updated with an image observation af-
ter executing this plan step. We use three variants
of this model.

• E.T. : E.T.model as described above.
• E.T. Hierarchical: E.T. is modified to

pass output from the action prediction head as
input to the object prediction head.

• E.T. + Mask: Uses predefined constraints
to determine whether the predicted action is

2See Appendix D for a more detailed explanation and a
figure.

6116



feasible to execute on the predicted object, and
if not, backs up to the action with the highest
probability that is feasible.

4 Plan Execution

While we can compare predicted plans with a
ground truth plan using surface metrics such as edit
distance, we believe a stronger test of predicted
plans is executing them in the environment and
measuring task success. To do this, we pair our
models with heuristic plan execution modules:

• Direct Plan Execution: Given a predicted
object interaction action and object type, we
use object coordinates from the simulator to
identify the closest object of the type 3, use the
navigation graph to navigate to it and attempt
to execute the action.

• Assisted Plan Execution: Direct plan execu-
tion can fail for various reasons. For exam-
ple, if the sink is full and something needs to
be placed in it, the sink needs to be cleared
first. Although we train our plan prediction
model with data that should enable it to pre-
dict such intermediate steps, we wish to ex-
plore whether models perform better if they
abstract out such details. To do this, we ana-
lyze common execution failure cases and im-
plement a set of heuristics, detailed in Ap-
pendix C, to increase their success.

In future work, we hope to replace these with mod-
els for plan executions (Zheng et al., 2022).

5 Synthetic Dialogue Generation

Collecting embodied dialogue examples is ex-
pensive and time-consuming (Padmakumar et al.,
2022). However, it would be desirable for embod-
ied agents to adapt to new tasks without requiring
human interaction data. Ideally, given a task defini-
tion, we would like to be able to bootstrap a model
for the task, which can then be further refined using
techniques such as reinforcement learning. This
work proposes a method to generate synthetic em-
bodied dialogues to train an initial model without
human interaction data. Our process for simulating
synthetic embodied dialogues is outlined in Figure
2 and in the following sections. Additional details
are included in Appendix G. We plan to release our
synthetic data for future research.

3Note that using the closest object is a heuristic and can fail.
In our experiments, we evaluate two oracle plan prediction
methods to quantify the limitations of this.

5.1 Next Task Step Identification
Our dialogue simulation process involves break-
ing down a task into task steps corresponding to a
single desired object state change, around which
dialogue utterances and environment actions are
constructed. Tasks in the TEACh dataset are de-
fined as sets of object properties that must be satis-
fied for the task to be complete (Padmakumar et al.,
2022). The public TEACh simulation wrapper 4

also includes a task checker that, when given a task
definition and the current state of the simulator,
can provide pending object state changes that need
to be accomplished for the task to be considered
complete. For example, Figure 2 demonstrates the
synthesis of a dialogue session related to making
coffee, which requires a mug in the environment to
be clean and filled with coffee. As the agent acts in
the environment, the task checker examines mugs
in the environment and identifies the one closest to
completion. The task checker can indicate to the
agent the object state changes that still need to be
accomplished on this mug; for example, in Figure
2, it identifies a face that needs to be cleaned. This
is a single Task Step that can be used as a focus
for dialogue utterances and environment actions.
Once this Task Step is completed, the simulation
process proceeds to the next Task Step of filling
coffee, after which the task checker will indicate
task completion, ending the dialogue simulation.

5.2 Agenda Based Dialogue Simulation
Given the next Task Step, we build a semantic
outline for a snippet of synthetic dialogue related
to this Task Step that includes dialogue acts ex-
changing information related to this Task Step
and predicting a special action ExecuteStep that
indicates a transition to predicting environment ac-
tions that accomplish this Task Step 5.

We do this by building an agenda-based dia-
logue simulator (Schatzmann and Young, 2009)
over dialogue acts relevant to the TEACh dataset
combined with the ExecuteStep action. We use
a subset of the dialogue acts annotated for the
TEACh dataset in Gella et al. (2022), focusing
on requesting and receiving instructions related to
the task and how to complete it, as well as the lo-
cations of objects. Our agenda-based simulator
consists of 9 dialogue states, each computed as

4https://github.com/alexa/teach
5Note that human-human dialogue in TEACh is much

more free-form and we hope to achieve more versatility in
future work.

6117

https://github.com/alexa/teach


a boolean function of 8 binary dialogue features.
We pre-define probabilities for sampling dialogue
acts, ExecuteStep, and DoNothing actions in each
state. We then generate a dialogue session by sam-
pling a sequence of actions, expanding each dia-
logue act into an utterance using templates filled
in with task and simulator information, and each
ExecuteStep into a sequence of environment ac-
tions as described in section 5.3. Appendix G in-
cludes more details of this process.

5.3 Plan Synthesis

When we predict that the session should transition
from dialogue to environment actions, we use a
rule-based system to identify an action sequence
in the environment that is likely to accomplish the
next Task Step. We hard code plans for each pos-
sible object state change, detailed in Appendix G.
For example, if the object state change requires an
object to be cleaned, the plan will involve mov-
ing the object to the sink, turning on and off the
tap, picking it up, and pouring out water accumu-
lated from cleaning. These hard-coded plans do
not account for handling difficulties arising from
the current state of the environment, for example,
clearing out the sink if it is too full to place the
object to be cleaned. Hence, we execute these syn-
thesized plans using Assisted Execution (Section
4) to improve our success rate at completing task
steps using these hard-coded plans.

6 Experiments

6.1 Plan Prediction Models

We evaluate our proposed plan prediction models
on the EDH task of the TEACh dataset (Padmaku-
mar et al., 2022). We experiment with each of the
models in section 3 with each execution method in
section 4. Additionally, we evaluate the following
baseline and oracle conditions 6:

Baseline: Our baseline is a language-only
BART model (Lewis et al., 2020), finetuned to take
in the EDH dialogue history and predicts the entire
plan as a sequence of tokens that are post-processed
for validity and executed as in (Gella et al., 2022).

6We do not compare to TEACh EDH models in this pa-
per (Padmakumar et al., 2022) as our execution methods ac-
cess information that the TEACh baseline models cannot ac-
cess. We do this to ensure that we are evaluating only the
process of plan prediction without additional complications
arising from navigation and simulator behavior

Oracle: As an upper bound to the success rate
obtainable with each of our plan execution meth-
ods, we obtain oracle plans using the ground truth
actions in the EDH instance. We filter these action
sequences, retaining only object interaction steps
and converting object IDs to object types to match
the plan representation used by our models.

Oracle with Object IDs (CorefOracle): To fur-
ther test the limitations of our plan representation
combined with the heuristic of selecting the closest
object of a particular type, we produce plans from
human action sequences containing object IDs in-
stead of object types to avoid ambiguity during
plan execution.

We additionally include our best zero-shot model
and our best model trained on both real and syn-
thetic data. These models use synthetic data gen-
erated according to the method outlined in Sec-
tion 5 using the initial states corresponding to the
TEACh train set. The zero-shot model is trained
only on synthetic data, and the data-augmented
model is trained on a combination of real and syn-
thetic data.

We evaluate models based on the success rate
(SR) and goal condition success rate (GC) as de-
fined in the original TEACh paper (Padmakumar
et al., 2022). Success rate, which measures the frac-
tion of EDH instances for which predicted plans
produced all expected object state changes, and GC,
which measures the fraction of such object state
changes across all instances, were calculated. Since
the TEACh test set is not public, we follow the stan-
dard protocol proposed in the TEACh codebase 7

of using a standardized division of the original vali-
dation sets into validation and test sets called the di-
vided validation and divided test sets, each of which
is further divided into Seen and Unseen splits.

We present our results in Table 1. For a sub-
set of these conditions, we train and perform in-
ference with three random seeds and perform 2-
sided Welch t-tests. Allowing for Bonferroni cor-
rections over four tests, we find that E.T. + Mask
is trending to be significantly better than the base-
line with p = 0.0381 on the divided_val_seen
split and p = 0.0164 on the divided_test_seen
split. We did not find any statistically significant
difference between the E.T. Hierarchical and
E.T. + Mask models 8.

7https://github.com/alexa/teach
8We did not perform statistical comparisons across all pairs

of conditions as it is expensive and time-consuming to run an

6118

https://github.com/alexa/teach


EDH Plan Divided Val Split EDH Plan Divided Test Split
Seen Unseen Seen Unseen

Model Execution SR GC SR GC SR GC SR GC

Baseline
Direct 11.26 13.67 7.51 11.03 7.19 9.62 8.87 9.54
Assisted 11.92 17.27 8.91 12.19 9.80 12.30 10.27 12.31

E.T.
Direct 12.91 16.32 15.58 16.20 15.03 19.52 16.62 15.61
Assisted 15.89 20.57 18.74 22.36 16.67 19.96 19.98 27.13

E.T. Hierarchical
Direct 14.24 15.67 16.23 17.27 14.71 17.97 17.27 20.30
Assisted 18.21 20.45 18.09 24.53 17.97 23.67 19.70 25.82

E.T. + Mask
Direct 15.23 22.51 17.81 18.29 16.34 23.84 17.46 18.96
Assisted 18.87 28.99 19.57 27.64 18.95 26.35 20.07 28.33

Best zero shot Assisted 18.87 17.52 16.23 19.30 15.36 17.17 17.09 16.82

Best Augmented Assisted 18.87 26.90 19.48 30.41 17.32 26.52 22.32 34.30

Oracle
Direct 61.92 63.64 55.57 58.48 54.58 53.58 56.77 58.01
Assisted 68.87 72.13 61.97 63.07 61.44 62.49 63.21 64.87

CorefOracle
Direct 77.81 83.03 70.87 71.87 75.82 79.50 71.90 74.34
Assisted 80.13 84.50 74.58 77.31 78.43 80.92 76.94 78.30

Table 1: Success rate (SR) and Goal Condition Success Rate (GC) of different models combined with different
execution methods on the TEACh EDH task. Oracle performances are separated as upper bounds on the task. Best
performance results are bolded for each metric and split in the specific execution method.

Since oracle plans do not obtain a 100% success
rate, we observe the limitations of our plan exe-
cution method, which can only handle 78.43% of
unseen test instances even with object coreference
resolved (CorefOracle). We believe this is due
to the difficulty in obtaining perfect positioning
and placement even with ground truth simulator
information, further supported by the gap between
direct and assisted execution of oracle plans. We
additionally see that there is considerable scope
for improvement from resolving ambiguity related
to which object instance to manipulate, which ac-
counts for an improvement of about 17% between
Oracle and CorefOracle.

We observe that while the E.T., E.T.
Hierarchical and E.T. + Mask models substan-
tially improve over the baseline, there is also a
considerable gap between them and Oracle which
uses the same plan representation, which demon-
strates that there is considerable scope for improve-
ment in understanding the details of the task to
be completed from dialogue, and reasoning about
actions to take to achieve the corresponding state
changes. Qualitatively, we find that multimodal
input’s main benefits are breaking down complex

inference with enough random seeds to allow for Bonferroni
corrections as the number of tests grows.

tasks such as watering a plant, for which detailed
steps are rarely provided in the dialogue, and iden-
tifying how much of the task has already been com-
pleted. Failures of the E.T. models mainly arise
from not learning when to stop, which is a limi-
tation of the current inference procedure. Other
causes of failure include performing unrelated ma-
nipulations on easily visible objects or ignoring
small objects in favour of larger ones.

On comparing models trained on real data with
synthetic data, we find that the zero-shot models
perform surprisingly well, outperforming the base-
line trained on real data and approaching the perfor-
mance of the models that have the same architec-
ture but are trained on real data. This suggests that
when generalizing to new tasks for this application,
it might be reasonable to train a model purely on
synthetic data and expect reasonable performance
from interaction with human users.

6.2 Zero Shot Training Ablation

We perform further ablations to identify how zero-
shot model performance varies according to data
size in Table 2. While we see a trend towards
improvement in performance with increasing data
size, and the best results are obtained at higher
data sizes, the improvement is not perfectly con-

6119



EDH Plan Divided Val Split EDH Plan Divided Test Split
Seen Unseen Seen Unseen

Model
Train
Set
Size

SR GC SR GC SR GC SR GC

E.T. 1x 12.25 9.50 13.17 9.33 14.05 11.04 13.82 9.36
E.T. 2x 15.89 13.95 14.47 13.58 14.38 12.03 15.97 11.85
E.T. 3x 17.88 11.94 14.84 10.61 13.07 12.14 16.06 11.22
E.T. 4x 16.89 11.28 13.45 13.07 14.05 11.26 14.94 13.54

E.T. Hierarchical 1x 15.56 10.15 13.36 10.77 11.76 9.73 12.32 9.74
E.T. Hierarchical 2x 15.89 11.16 14.19 16.68 11.44 13.50 14.47 18.53
E.T. Hierarchical 3x 18.87 17.52 16.23 19.30 15.36 17.17 17.09 16.82
E.T. Hierarchical 4x 18.21 10.45 14.75 10.14 14.05 11.97 15.69 11.21

E.T. + Mask 1x 13.58 9.98 13.82 10.90 13.73 12.30 13.35 9.83
E.T. + Mask 2x 14.24 16.39 15.49 16.08 14.38 12.41 15.59 14.94
E.T. + Mask 3x 16.89 12.05 14.10 12.45 12.09 11.21 15.03 12.09
E.T. + Mask 4x 15.23 14.37 14.66 15.20 14.38 13.45 14.29 14.98

Table 2: We explore how zero shot model performance varies with the size of the synthetic training set (as a
proportion of the size of the human-human training data). This table reports success rate (SR) and goal condition
success rate (GC) on the EDH divided test split with assisted execution.

EDH Plan Divided Val Split EDH Plan Divided Test Split
Seen Unseen Seen Unseen

Model

Syn-
thetic
Data
Size

SR GC SR GC SR GC SR GC

E.T. 1x 18.21 17.52 17.90 29.12 17.65 23.67 21.38 31.63
E.T. 2x 17.55 25.00 19.02 24.99 18.63 23.51 19.70 24.60
E.T. 4x 17.22 26.84 18.37 26.12 17.97 25.26 19.79 26.01

E.T. Hierarchical 1x 16.89 24.70 18.74 25.73 18.30 23.46 20.45 25.65
E.T. Hierarchical 2x 18.54 19.48 18.74 23.55 20.92 28.05 19.61 27.91
E.T. Hierarchical 4x 14.90 20.31 17.90 24.22 17.97 26.95 20.17 24.30

E.T. + Mask 1x 18.87 26.90 19.48 30.41 17.32 26.52 22.32 34.30
E.T. + Mask 2x 16.89 32.84 19.02 30.66 18.63 27.99 20.45 29.98
E.T. + Mask 4x 18.21 27.38 18.65 28.01 20.26 27.88 19.79 27.28

Table 3: We explore how synthetic data size impacts model performance. Models here are trained on a combination
of the human-human TEACh training data and synthetic data of the size indicated in column Synthetic Data Size (as
a proportion of the size of the human-human training data). This table reports success rate (SR) and goal condition
success rate (GC) on the EDH divided test split with assisted execution.

sistent with data size. We believe this sub-linear
scaling with the increase in data is due to a combi-
nation of limitations in the range of TEACh initial
states in which our synthetic plan execution method
can generate a valid action sequence successfully,

limitations of the diversity in synthetic templates
and limitations in the ability of the E.T. model to
model the TEACh plan prediction task effectively.
We believe that through engineering improvements
or a learned Reinforcement Learning policy, we can

6120



improve the range of initial states covered; with the
assistance of better LLMs, we can produce more
diverse synthetic dialogue, and using neural SLAM
models, we can overcome the limitations of what
a particular model can learn. We plan to explore
these directions in future work.

Note that we did not perform other hyperpa-
rameter tuning for models in Table 2 besides the
changes in training data. The best condition, E.T.
Hierarchical with a synthetic training set of
size 3x as large as the human-human training set
from Table 2 has been reported in Table 1 for
comparison with models trained on human-human
data. We find that this model trained purely on
synthetic data obtains a success rate of 17.09%
on the divided unseen test split, outperforming
the language-only baseline trained on real data at
8.87%, and approaches close to the performance
of E.T. Hierarchical trained on human-human
data at 19.70%.

6.3 Data Augmentation Training Ablation

In Table 3, we ablate different sizes of synthetic
data when used in data augmentation. We find
that when both real and synthetic data are included,
larger sizes of the synthetic training set are less
beneficial than when trained only on synthetic data.
The best condition E.T. + Mask with a combina-
tion of human-human and synthetic data of equal
size has been included in Table 1 as "Best Aug-
mented." We find that at 22.32% on the divided
unseen test split, this slightly outperforms the same
model condition trained on human-human data at
20.07%, and is much stronger than the best condi-
tion using only synthetic data at 17.09%.

7 Related Work

Task Planning: Interactive systems on physi-
cal robots typically have a modular structure in
which task planning plays a significant role (Chen
et al., 2010; Khandelwal et al., 2017; Peshkin et al.,
2001). In simulated environments, Logeswaran
et al. (2022) propose a language-only finetuned
GPT-2 model for task planning on ALFRED . Some
end-to-end ALFRED models also have task plan-
ning as a component (Min et al., 2021; Jia et al.,
2022; Blukis et al., 2022). However, this is a sim-
pler dataset where task planning can be cast as a
7-way classification problem. Prior work has also
explored language-only task planning using fine-
tuned BART models in TEACh (Gella et al., 2022;

Zheng et al., 2022; Zhang et al., 2022), which we
compare to as a baseline.

Dialogue Simulation: User simulation in the dia-
logue community originally consisted of rule-based
systems designed using linguistic knowledge to en-
able finetuning dialogue systems to individual user
preferences and subsequently evolved into trainable
probabilistic models that can be used to bootstrap
a dialogue system in the initial development phase
and further finetune it through reinforcement learn-
ing (Schatzmann et al., 2006; Young et al., 2013).
A common method for building user simulators is
agenda-based simulation (Schatzmann and Young,
2009), which uses a predefined set of transition
probabilities between dialogue acts in combina-
tion with goal information to sample subsequent
dialogue acts. This has been used to bootstrap a
range of dialogue models ranging from probabilis-
tic POMDP models (Schatzmann et al., 2007) and
text-to-SQL models (Liu et al., 2022) to hierar-
chical deep reinforcement learning methods (Peng
et al., 2017). In this work, we augment a standard
agenda-based simulator with an additional intent to
determine transitions to acting in the environment
to generate situated dialogues. Another popular
paradigm for dialogue simulation is to develop two
models - one for the user and one for the agent side
and train them simultaneously using reinforcement
learning (Liu and Lane, 2017; Shah et al., 2018).
This has also been used for some multimodal dia-
logue domains (Das et al., 2017), but we choose
not to adapt it in our domain as the time to generate
a single dialogue is higher in situated applications
due to the latency from executing environment ac-
tions in the simulator.

8 Conclusions and Future Work

We develop a model for multi-modal plan predic-
tion for the TEACh dataset using the Episodic
Transformer architecture and evaluate end-to-end
performance on the TEACh EDH task in conjunc-
tion with heuristic plan execution modules. We
additionally experiment with training this model us-
ing only synthetic data generated using an agenda-
based dialogue simulator combined with an en-
vironment action generator that uses a combina-
tion of rules and simulator information to iden-
tify sequences of actions in the environment that
can make progress with the task. We find that our
E.T. plan prediction models outperform a BART
baseline, even when BART is finetuned on human-

6121



human embodied dialogue data but E.T. is fine-
tuned only on synthetic data, suggesting that our
dialogue simulation approach is a viable alterna-
tive to expensive data collection for bootstrapping
an embodied task completion model on new tasks.
We also find a considerable performance gap be-
tween models and humans in plan prediction that
cannot be easily closed by techniques such as data
augmentation.

The recent success of large language models in
a wide variety of structured prediction tasks, in-
cluding robotic planning tasks similar to ours, is a
promising future direction for our work. Some pre-
liminary attempts prompting large language models
indicate that it is non-trivial to design an appro-
priate representation of the dialogue history and
plans for LLMs to guess at the remaining objects
required for subsequent actions effectively. Addi-
tionally, while it is likely that recent long context
LLMs can likely take in a significant amount of
state information of the environment, further work
is required to determine the best way to provide this
in environments such as AI2-THOR, especially if
a proposed method much scale up to more realistic
home environments with larger numbers of objects.
It is likely also possible to improve the diversity
of the generated simulated data by paraphrasing
generated utterances using LLMs.

9 Limitations

In this paper, we explore the problem of plan pre-
diction for embodied task completion, and conduct
our experiments in the TEACh dataset, which is
set in the AI2-THOR simulator. While we hypoth-
esize that models developed for plan prediction
will transfer better to physical robots as they align
better with levels of abstraction at which robotics
systems are currently implemented, further experi-
mentation is needed to evaluate such transferability.
In the short term, such experiments will likely need
to work on problems with a simpler action space
as some of the Follower actions supported in AI2-
THOR, such as slicing, are not supported in most
robots available currently. Additionally, it would
be beneficial to test plan prediction models and our
dialogue simulation method on similar tasks set
in other simulators. This is a direction we plan to
pursue in future work. We believe this is beyond
the scope of this publication due to the consider-
able engineering effort involved in adapting models
across different embodied AI simulators and task

representations.
In this work, we describe a method to generate

synthetic dialogues for embodied task completion
by augmenting an agenda-based dialogue simula-
tor with modules that break up an embodied AI
task into individual object state changes, and rule-
based methods to identify actions that complete
them. Additionally, we currently manually define
transition probabilities between dialogue acts for
simulation, which would also need to be modified
for a new dataset. While our approach is effec-
tive at bootstrapping plan prediction models with-
out any human-human interaction data, it requires
simulator-specific engineering, particularly when
defining heuristics for assisted plan execution. Ad-
ditionally, for both plan prediction inference and
dialogue simulation, every action must be executed
in the simulator. This results in considerable com-
pute time, as discussed in the appendix. While
dialogue simulation does not require the use of a
GPU, the plan prediction models do - both for train-
ing and inference. We have additionally found that
the Episodic Transformer models used in the paper
show a noticeable variance in performance when
trained with the same hyperparameters but with dif-
ferent random seeds. We attempt to strengthen our
conclusions by training models with multiple seeds
for statistical analysis where it is beneficial, but
we would also like to highlight the development of
models with less variance as an important direction
for future research.

Finally, our work is currently limited to English
as we are not familiar with datasets in other lan-
guages that provide language instructions for tasks
that require complex reasoning over multi-step ac-
tion sequences.

10 Ethics Statement

This work is part of a broader tradition of build-
ing natural language interfaces to control vari-
ous devices. Natural language interfaces such as
language-based search and intelligent personal as-
sistants provide convenience and have the potential
to make multiple forms of technology ranging from
mobile phones and computers, as well as robots
or other machines such as ATMs or self-checkout
counters more accessible and less intimidating to
users who are unfamiliar or uncomfortable with
other interfaces on such devices such as command
shells, button-based interfaces or changing visual
user interfaces. Spoken language interfaces can

6122



also be used to make such devices more accessi-
ble for the visually impaired or users who have
difficulty with fine motor control.

User trust in such interfaces is essential. De-
pending on the circumstances, therefore, some con-
siderations to keep in mind are: (1) whether the
collection of personal data benefits the user; (2)
whether the collection of personal data is transpar-
ent to the user; (3) whether the user understands
whether and how they can control the collection
of personal data; and (4) whether the user has the
ability to elect whether to use such interfaces, opt
into or out of the collection of certain personal data,
access and update certain personal data, and delete
certain personal data. Additionally, safeguards may
be required as embodied agents become capable
of interacting with arbitrary objects in the world
to reduce the likelihood of accidents or malicious
misuse.

In this work, we also experiment using simu-
lated embodied dialogue data to train models. On
one hand, the use of simulated data can limit the
collection of personal data. On the other hand, sim-
ulators may not be designed to represent the full
range of user behavior and may perform better for
some users than others.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Ahmed Al-Moadhen, Renxi Qiu, Michael Packianather,
Ze Ji, and Rossi Setchi. 2013. Integrating robot task
planner with common-sense knowledge base to im-
prove the efficiency of planning. Procedia Computer
Science, 22:211–220. 17th International Conference
in Knowledge Based and Intelligent Information and
Engineering Systems - KES2013.

Peter Anderson, Angel Chang, Devendra Singh Chap-
lot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mot-
taghi, Manolis Savva, et al. 2018a. On evalua-
tion of embodied navigation agents. arXiv preprint
arXiv:1807.06757.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018b. Vision-
and-Language Navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Sugato Bagchi, Gautam Biswas, and Kazuhiko Kawa-
mura. 1996. Interactive task planning under uncer-
tainty and goal changes. Robotics and Autonomous
Systems, 18(1-2):157–167.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi,
Oleksandr Maksymets, Roozbeh Mottaghi, Mano-
lis Savva, Alexander Toshev, and Erik Wijmans.
2020. Objectnav revisited: On evaluation of em-
bodied agents navigating to objects. arXiv preprint
arXiv:2006.13171.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. 2022. A persistent spatial semantic
representation for high-level natural language instruc-
tion execution. In Conference on Robot Learning,
pages 706–717. PMLR.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. 2017. Mat-
terport3d: Learning from rgb-d data in indoor envi-
ronments. International Conference on 3D Vision
(3DV).

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Nat-
ural language navigation and spatial reasoning in
visual street environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12538–12547.

Xiaoping Chen, Jianmin Ji, Jiehui Jiang, Guoqiang Jin,
Feng Wang, and Jiongkun Xie. 2010. Developing
high-level cognitive functions for service robots. In
AAMAS, volume 10, pages 989–996.

Abhishek Das, Satwik Kottur, José MF Moura, Stefan
Lee, and Dhruv Batra. 2017. Learning cooperative
visual dialog agents with deep reinforcement learning.
In Proceedings of the IEEE international conference
on computer vision, pages 2951–2960.

Richard E Fikes and Nils J Nilsson. 1971. Strips: A new
approach to the application of theorem proving to
problem solving. Artificial intelligence, 2(3-4):189–
208.

Chuang Gan, Jeremy Schwartz, Seth Alter, Martin
Schrimpf, James Traer, Julian De Freitas, Jonas Ku-
bilius, Abhishek Bhandwaldar, Nick Haber, Megumi
Sano, et al. 2020. Threedworld: A platform for
interactive multi-modal physical simulation. arXiv
preprint arXiv:2007.04954.

Michael Gelfond and Yulia Kahl. 2014. Knowledge
representation, reasoning, and the design of intelli-
gent agents: The answer-set programming approach.
Cambridge University Press.

Spandana Gella, Aishwarya Padmakumar, Patrick
Lange, and Dilek Hakkani-Tur. 2022. Dialog Acts
for Task-Driven Embodied Agents. In Proceedings
of the 23nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue (SIGDial), pages
111–123.

6123

https://doi.org/https://doi.org/10.1016/j.procs.2013.09.097
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.097
https://doi.org/https://doi.org/10.1016/j.procs.2013.09.097


N Gopalan, E Rosen, GD Konidaris, and S Tellex. 2020.
Simultaneously learning transferable symbols and
language groundings from perceptual data for instruc-
tion following. Robotics: Science and Systems XVI.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968.
A formal basis for the heuristic determination of min-
imum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107.

Malte Helmert. 2004. A planning heuristic based on
causal graph analysis. In ICAPS, volume 16, pages
161–170.

Zhiwei Jia, Kaixiang Lin, Yizhou Zhao, Qiaozi Gao,
Govind Thattai, and Gaurav Sukhatme. 2022. Learn-
ing to act with affordance-aware multimodal neural
slam. arXiv preprint arXiv:2201.09862.

Yuqian Jiang, Nick Walker, Justin Hart, and Peter Stone.
2019. Open-world reasoning for service robots. In
Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 29, pages
725–733.

Yash Kant, Arun Ramachandran, Sriram Yenamandra,
Igor Gilitschenski, Dhruv Batra, Andrew Szot, and
Harsh Agrawal. 2022. Housekeep: Tidying virtual
households using commonsense reasoning. arXiv
preprint arXiv:2205.10712.

Piyush Khandelwal, Shiqi Zhang, Jivko Sinapov, Mat-
teo Leonetti, Jesse Thomason, Fangkai Yang, Ilaria
Gori, Maxwell Svetlik, Priyanka Khante, Vladimir
Lifschitz, et al. 2017. Bwibots: A platform for bridg-
ing the gap between ai and human–robot interaction
research. The International Journal of Robotics Re-
search, 36(5-7):635–659.

Hyounghun Kim, Abhaysinh Zala, Graham Burri, Hao
Tan, and Mohit Bansal. 2020. Arramon: A joint
navigation-assembly instruction interpretation task in
dynamic environments. In Findings of EMNLP.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van-
derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon,
Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017.
Ai2-thor: An interactive 3d environment for visual ai.
arXiv preprint arXiv:1712.05474.

George Konidaris, Leslie Pack Kaelbling, and Tomas
Lozano-Perez. 2018. From skills to symbols: Learn-
ing symbolic representations for abstract high-level
planning. J. Artif. Int. Res., 61(1):215–289.

Séverin Lemaignan, Mathieu Warnier, E Akin Sisbot,
Aurélie Clodic, and Rachid Alami. 2017. Artificial
cognition for social human–robot interaction: An
implementation. Artificial Intelligence, 247:45–69.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics, pages
7871–7880.

Nir Lipovetzky. 2014. Structure and inference in classi-
cal planning. Lulu. com.

Bing Liu and Ian Lane. 2017. Iterative policy learning
in end-to-end trainable task-oriented neural dialog
models. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pages 482–
489. IEEE.

Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and
Linfeng Song. 2022. Augmenting multi-turn text-
to-sql datasets with self-play. arXiv preprint
arXiv:2210.12096.

Lajanugen Logeswaran, Yao Fu, Moontae Lee, and
Honglak Lee. 2022. Few-shot subgoal planning with
language models. arXiv preprint arXiv:2205.14288.

Drew V McDermott. 1996. A heuristic estimator for
means-ends analysis in planning. In AIPS, vol-
ume 96, pages 142–149.

So Yeon Min, Devendra Singh Chaplot, Pradeep Kumar
Ravikumar, Yonatan Bisk, and Ruslan Salakhutdinov.
2021. Film: Following instructions in language with
modular methods. In International Conference on
Learning Representations.

So Yeon Min, Hao Zhu, Ruslan Salakhutdinov, and
Yonatan Bisk. 2022. Don’t copy the teacher: Data
and model challenges in embodied dialogue. arXiv
preprint arXiv:2210.04443.

Anjali Narayan-Chen, Prashant Jayannavar, and Ju-
lia Hockenmaier. 2019. Collaborative dialogue in
minecraft. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5405–5415.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shri-
vastava, Patrick Lange, Anjali Narayan-Chen, Span-
dana Gella, Robinson Piramuthu, Gokhan Tur, and
Dilek Hakkani-Tur. 2022. Teach: Task-driven em-
bodied agents that chat. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36,
pages 2017–2025.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 15942–
15952.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli
Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 2017.
Composite task-completion dialogue policy learning
via hierarchical deep reinforcement learning. arXiv
preprint arXiv:1704.03084.

Michael A Peshkin, J Edward Colgate, Wit Wanna-
suphoprasit, Carl A Moore, R Brent Gillespie, and
Prasad Akella. 2001. Cobot architecture. IEEE
Transactions on Robotics and Automation, 17(4):377–
390.

6124

https://doi.org/10.15607/RSS.2020.XVI.102
https://doi.org/10.15607/RSS.2020.XVI.102
https://doi.org/10.15607/RSS.2020.XVI.102
https://ojs.aaai.org/index.php/ICAPS/article/view/3541/3409
https://arxiv.org/abs/2110.07342
https://arxiv.org/abs/2110.07342
https://arxiv.org/abs/2110.00534
https://arxiv.org/abs/2110.00534


Caroline Ponzoni Carvalho Chanel, Alexandre Albore,
Jorrit T’hooft, Charles Lesire, and Florent Teichteil-
Königsbuch. 2019. Ample: an anytime planning
and execution framework for dynamic and uncertain
problems in robotics. Autonomous Robots, 43(1):37–
62.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8494–8502.

Silvia Richter and Matthias Westphal. 2010. The lama
planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Re-
search, 39:127–177.

Manolis Savva, Abhishek Kadian, Oleksandr
Maksymets, Yili Zhao, Erik Wijmans, Bhavana
Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra
Malik, et al. 2019. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
9339–9347.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a POMDP dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Compan-
ion Volume, Short Papers, pages 149–152, Rochester,
New York. Association for Computational Linguis-
tics.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young. 2006. A survey of statistical user simu-
lation techniques for reinforcement-learning of dia-
logue management strategies. The knowledge engi-
neering review, 21(2):97–126.

Jost Schatzmann and Steve Young. 2009. The hidden
agenda user simulation model. IEEE transactions on
audio, speech, and language processing, 17(4):733–
747.

Pararth Shah, Dilek Hakkani-Tür, Gokhan Tür, Abhinav
Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck.
2018. Building a conversational agent overnight with
dialogue self-play. arXiv preprint arXiv:1801.04871.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740–10749.

Alane Suhr, Claudia Yan, Jacob Schluger, Stanley
Yu, Hadi Khader, Marwa Mouallem, Iris Zhang,
and Yoav Artzi. 2019. Executing instructions in
situated collaborative interactions. arXiv preprint
arXiv:1910.03655.

Jesse Thomason, Michael Murray, Maya Cakmak, and
Luke Zettlemoyer. 2020. Vision-and-dialog navi-
gation. In Conference on Robot Learning, pages
394–406. PMLR.

Marc Toussaint and Christian Goerick. 2007. Proba-
bilistic inference for structured planning in robotics.
In 2007 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 3068–3073. IEEE.

Claudia Yan, Dipendra Misra, Andrew Bennnett, Aaron
Walsman, Yonatan Bisk, and Yoav Artzi. 2018.
Chalet: Cornell house agent learning environment.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

Yichi Zhang, Jianing Yang, Jiayi Pan, Shane Storks,
Nikhil Devraj, Ziqiao Ma, Keunwoo Peter Yu, Yuwei
Bao, and Joyce Chai. 2022. Danli: Deliberative agent
for following natural language instructions. arXiv
preprint arXiv:2210.12485.

Kaizhi Zheng, Kaiwen Zhou, Jing Gu, Yue Fan, Jialu
Wang, Zonglin Li, Xuehai He, and Xin Eric Wang.
2022. Jarvis: A neuro-symbolic commonsense
reasoning framework for conversational embodied
agents. arXiv preprint arXiv:2208.13266.

A Licensing and Responsible Use

In this section, we discuss the licensing and usage
of existing scientific artifacts in this paper:

• TEACh dataset: The TEACh dataset is re-
leased under a CDLA-Sharing V 1.0 license,
with images released under Apache 2.0 and
code under an MIT license. We believe our us-
age does not violate any of these license terms.
We do not redistribute any of these as part of
our work as they are publicly available. The
TEACh dataset was created to study models
for translating natural language instructions
combined with egocentric visual observations
into action sequences. Our use case is a sub-
task of this intended use case. We also believe
using the TEACh code to generate synthetic
dialogue sessions is consistent with this goal.

• AI2-THOR simulator: The AI2-THOR simu-
lator (Kolve et al., 2017) is necessary to use
the TEACh dataset and generate synthetic di-
alogue sessions. We believe our usage of AI2-
THOR does not violate the license. We plan
to release our data under the CDLA-Sharing
V 1.0 license, with images released under
Apache 2.0, which we believe will be con-
sistent with AI2-THOR and TEACh license

6125

https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://aclanthology.org/N07-2038
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://arxiv.org/abs/1912.01734
https://doi.org/10.48550/ARXIV.1801.07357


terms. We believe our work is consistent with
the intended usage of AI2-THOR, which is to
further embodied AI research in the household
domain.

• BART model: We finetune BART (Lewis
et al., 2020) as a baseline for our task, which
is released under the Apache 2.0 license. We
believe our usage is consistent with the license
and do not intend to redistribute it. We believe
that our use is consistent with the intended
usage of BART as a general purpose sequence
to sequence language model.

• Episodic Transformer Model: We use the
Episodic Transformer model (Pashevich et al.,
2021), which is released under an MIT Li-
cense, for plan prediction with some architec-
tural modifications. We believe our usage is
consistent with the intent of this model, which
was designed for a very similar embodied AI
application in a similar dataset.

The TEACh dataset was manually inspected by
the original authors to remove identifying informa-
tion and offensive utterances (Padmakumar et al.,
2022). Since our generated data is templated, we do
not believe this can contain personally identifying
information or offensive utterances. Our synthetic
dialogues are set in the TEACh environment and
only cover the tasks listed in the TEACh dataset.
The dialogues are in English and are mainly in-
tended to cover requesting and informing of task
steps (in the form of object state changes) and loca-
tions of objects. They support a limited breakage
of strict turn-taking by allowing an agent to not
generate an utterance at some time steps in the
generation procedure.

B Additional Related Work

Task Planning on Physical Robots Task plan-
ning has long been a standard component of physi-
cal robot architectures (Chen et al., 2010), particu-
larly with general purpose service robots (Khandel-
wal et al., 2017; Peshkin et al., 2001). Classical task
planners include a symbolic representation of the
state of the world, a goal, and skills the robot can
execute. They are expected to find a sequence of
skills that, when executed, will transform the world
into the goal state, typically using heuristic search
algorithms (Lipovetzky, 2014). Over the years,
research in planning has improved the symbolic

representations used in planners (Fikes and Nils-
son, 1971; McDermott, 1996; Gelfond and Kahl,
2014; Konidaris et al., 2018; Gopalan et al., 2020),
search algorithms (Hart et al., 1968; Helmert, 2004;
Richter and Westphal, 2010) and handling uncer-
tainty via probabilistic methods (Toussaint and
Goerick, 2007; Bagchi et al., 1996; Ponzoni Car-
valho Chanel et al., 2019). More recent work
has focused on expanding beyond fully defined
world representations by expanding to use com-
mon sense (Al-Moadhen et al., 2013) and open
worlds (Jiang et al., 2019). Some interesting efforts
in this direction use Large Language Models to
perform planning (Ahn et al., 2022).

Embodied AI Tasks in Simulation Simulated
environments (Kolve et al., 2017; Savva et al.,
2019; Puig et al., 2018; Chang et al., 2017; Yan
et al., 2018) have been used over recent years to ex-
plore the efficacy of deep learning methods that di-
rectly use egocentric visual observations instead of
data from expensive sensors. While there is a chal-
lenge in transferring results from simulated to real
environments, simulated environments are more
accessible, less expensive, and allow for the testing
of technologies that may not be sufficiently safe for
use in the real world (Savva et al., 2019). Addition-
ally, while simulated environments can be used for
tasks that do not require the use of language (An-
derson et al., 2018a; Batra et al., 2020; Gan et al.,
2020; Kant et al., 2022), they play a particularly
valuable role in developing language understand-
ing and reasoning capabilities over actions that
are currently difficult for physical robots to com-
plete, but we hope it will become a reality in the
future (Kolve et al., 2017). Much of the work in lan-
guage understanding for embodied AI happens us-
ing vision and language navigation, where an agent
must learn to navigate through a previously un-
seen environment purely based on natural language
route instructions (Anderson et al., 2018b; Chen
et al., 2019; Thomason et al., 2020). Embodied task
completion additionally requires performing object
manipulation actions (Shridhar et al., 2020; Pad-
makumar et al., 2022; Suhr et al., 2019; Kim et al.,
2020; Narayan-Chen et al., 2019). In this work,
we specifically focus on the TEACh dataset (Pad-
makumar et al., 2022) as it involves more complex
tasks that require non-trivial task planning.

6126



C Assisted Plan Execution

This section outlines the full set of heuristics in-
volved in assisted plan execution:

• For all actions, if the target object property
change is already complete, do nothing to
avoid an execution failure.

• Pickup: If the object is inside a receptacle
(container), open the receptacle. After pickup,
if a receptacle was opened, close it.

• Place: If the target receptacle is in a recep-
tacle, take it out and place it on the counter
first (for example, if we need to place some-
thing on a plate that is inside a drawer). If the
target receptacle needs to be opened, open it
and close it after placement (for example, a
drawer or microwave needs to be opened to
place something inside). If a placement at-
tempt fails, try removing the existing contents
of the receptacle one by one to make more
space.

• Open, Close: Toggle off the target object if
relevant (for example, microwaves need to be
turned off to open them).

• ToggleOn, ToggleOff: If the target is open,
close it first (for example, microwaves need
to be closed to turn them on).

• Slice: If the target is in a receptacle, move it
to the counter first.

Additionally, we also attempt position adjustments
to increase the chance of success.

D E.T. model

This section discusses the Episodic Transformer
(E.T.) Model (Pashevich et al., 2021) along with
our modifications in greater detail. For conve-
nience, we include a diagram of the model in Fig-
ure 3. The E.T. model receives language (in our
case, EDH dialogue history) and egocentric image
observations of size 900 x 900 as input. Visual
observations are first resized to 224 x 244 and then
encoded using a visual encoder that is based on a
Faster R-CNN model trained on 325K frames of
expert demonstrations from the ALFRED train fold
(which comprises seen splits of TEACh ) and not
finetuned in any of our experiments. This encoder
average-pools ResNet features four times and adds

Figure 3: This depicts the architecture for the E.T.-
based models. The basic E.T. model does not have a
connection between the action and object heads, but
E.T. Hierarchical does. There are three main in-
put processing components (dialogue history, image
observation, and previous plan actions). These are then
input into the positional and temporal encodings and
transformer layers to develop the next feasible set of
high-level plan actions.

a dropout of 0.3 to obtain feature maps of 512 x 7 x
7. These are then fed into two convolutional layers
with 256 and 64 filters of size 1 x 1, respectively,
and mapped using a fully connected layer to size
768.

The language input is tokenized using revtok 9

and encoded using two transformer layers with
12 attention heads and an embedding size of 768,
which are trained from scratch. The language
and visual encodings are concatenated and passed
through two multimodal transformer layers with 12
attention heads, which are also trained from scratch
in our experiments.

To predict actions and objects, the final embed-
ding corresponding to each image from the in-
put is projected using fully connected layers and
then passed to two independent softmax prediction
heads over the action and object space, respectively.
At inference time, the last action, which is not a
padding token, is identified and used for prediction,
along with the object, at the same time step. The
E.T. Hierarchical model connects the two pre-
diction heads by passing the output of the action
head as an additional input to the object head. The
E.T. + Mask model examines the action-object

9https://pypi.org/project/revtok/

6127

https://pypi.org/project/revtok/


pair predicted at inference time, and if they are
found to be incompatible, replaces the action with
the action of highest probability with the predicted
object. The object is assumed to be the more re-
liable prediction as it is more likely to be directly
visible.

E Plan Prediction Model
Hyperparameters

For training the E.T., E.T. + Mask and E.T.
Hierarchical methods, we retained hyperparam-
eters from the original TEACh paper (Padmakumar
et al., 2022), except the batch size, without further
hyperparameter tuning, and used the largest batch
size that could fit in a single GPU of a p3.8xlarge
AWS EC2 instance. Note that the following hyper-
parameters were kept constant for all experiments
reported in this paper, and results in different tables
arise only from changes in training data, model
choice (between E.T., E.T. Hierarchical and
E.T. + Mask), and plan execution method. We
used the AdamW optimizer with 0.33 weight decay
with a learning rate of 1e 4 for the first 10 epochs
and 1e 5 for the last 10 epochs. We trained all mod-
els for 20 epochs with a batch size of 3 and reported
results from the final epoch. We replace sampling
with rotation permutations of our training dataset
per epoch, ensuring that every training example is
seen exactly once in our dataset. For the language
decoder in the transformer, we use a dropout of
0.1, and for the encoder, we use a dropout of 0.1.
The different E.T. models required 4 hours for
preprocessing (extracting image features using the
ResNet-50 backbone) and about 2 hours per model
for training using 4 GPUs of a p3.8xlarge AWS
EC2 instance. At inference time, we could use a
maximum of 3 GPUs for inference as one GPU was
required by the simulator. When using 3 GPUs of
a p3.8xlarge AWS EC2 instance, E.T. models took
about 11 hours to complete inference jointly on
the divided_val_seen and divided_test_seen
splits and about 35 hours to complete infer-
ence jointly on the divided_val_unseen and
divided_test_unseen splits. The time difference
is due to the size of the various splits.

For the baseline BART model, we retain hy-
perparameters from the model presented in (Gella
et al., 2022). We take the pretrained BART-base
model from the Huggingface library 10 and fine-
tune for 20 epochs using a batch size of 2 per

10https://huggingface.co/

GPU. The training was done using gradient ac-
cumulation across 4 GPUs of a p3.8xlarge AWS
EC2 instance. We use the AdamW optimizer with
β1 = 0.9, β2 = 0.99, ϵ = 1e08 and weight de-
cay of 0.01. We use a learning rate of 5e05 with a
linear warmup over 500 steps. The BART model
can be finetuned in under an hour using all 4 GPUs
of a p3.8xlarge AWS EC2 instance. We first per-
formed inference on the BART model and saved
the predicted plans to file before separately exe-
cuting them in the AI2-THOR simulator. This
process can also be completed in under an hour.
Executing stored plans either in the case of the
BART model or the oracle conditions took about
2.5 hours using 3 GPUs of a p3.8xlarge AWS EC2
instance for the combined divided_val_seen
and divided_test_seen splits and about 8
hours for the combined divided_val_unseen and
divided_test_unseen splits.

F Data Statistics

The number of games and EDH instances in the
TEACh data splits and batches of synthetic data
used in this paper are included in Table 4.

Split
Number
of games

Number
of EDH

instances

TEACh train 3121 3895
TEACh
divided_val_seen

83 302

TEACh
divided_val_unseen

309 1078

TEACh
divided_test_seen

98 306

TEACh
divided_test_unseen

303 1071

Synthetic 1x 1587 2034
Synthetic 2x 3272 3875
Synthetic 3x 4952 7201
Synthetic 4x 6360 9284

Table 4: Data statistics in TEACh and synthetic data
splits.

G Dialogue Simulation Details

This section provides a more detailed description
of the dialogue simulation process. Dialogue sim-
ulation begins by sampling which agent starts the
interaction - the Commander or the Follower, each

6128



with 50% While it is possible to create new initial
states, we iterate over each initial state in the train
split of the TEACh dataset, each of which is as-
sociated with a task to be completed in that state.
For each agent, the Commander and the Follower
we maintain a state for the agent that is factored
into binary state features. We then use predefined
probabilities for sampling different dialogue acts
in each state and alternate taking turns between
the two agents. In this implementation, we use
the following dialogue acts defined in Gella et al.
(2022):

• RequestForInstruction

• Instruction

• RequestForObjectLocationAndOtherDetails

• InfoOnObjectLocationAndOtherDetails

• Acknowledge

• FeedbackPositive

• FeedbackNegative

However, we use both FeedbackPositive and
FeedbackNegative only to end the dialogue either
as a success or failure respectively. We addition-
ally divide the Instruction dialogue act into two
sub-types for convenience:

• Instruction: For communicating the task
and its parameters

• Step: For communicating a single desired ob-
ject state change that would result in progress
towards completion of the task, for example,
cleaning a mug to fill it with coffee eventually.

We correspondingly also create a special
RequestStep action. Besides this, we have two
non-dialogue actions that an agent can also choose
to perform:

• ExecuteStep: This is a cue to transition to
actions in the environment. This is only per-
formed by the Follower which identifies a
rule-based plan to accomplish the desired state
change and executes it with assisted plan exe-
cution described in section 4.

• DoNothing: This allows an agent to skip a
turn and hence avoids rigid turn-taking in the
resultant dialogue and introduces variability
in the amount of information communicated
in the dialogue to mimic real dialogues better.

The state features used are:

• dialogue_started: Agents start with this
feature set to False, indicating that the agent
is in the initial state before any dialogue has
taken place and must initiate dialogue. It gets
set to True once an initial utterance has been
exchanged.

• goal_communicated: This feature is False
initially and set to True after an Instruction
utterance has been sent from the Commander
to the Follower communicating the high level
task.

• cur_step_requested: This feature is False
initially, gets set to True when the Follower
sends a RequestStep action to the Comman-
der and reset to False when environment ac-
tions are executed.

• cur_step_sent: This feature is False ini-
tially, gets set to True when the Commander
sends the current step to the Follower through
a Step dialogue act and reset to False when
environment actions are executed.

• cur_step_obj_requested: This feature is
False initially, gets set to True when the Fol-
lower requests the location of an object and
reset to False when environment actions are
executed.

• cur_step_obj_sent: This feature is False
initially, gets set to True when the Comman-
der sends the location of an object and reset
to False when environment actions are exe-
cuted.

• task_complete: This feature is False ini-
tially and gets set to True when the task is
completed successfully.

• follower_stuck: This feature is used to
identify failed dialogues. It is False initially
and set to true if the Follower attempts envi-
ronment actions but is unable to accomplish
the intended object state change. When this is
identified, the dialogue is terminated early.

Given the value of the state features, the next
state of the agent is computed as boolean functions
over state features included in Table 5. Given the
dialogue acts we then sample dialogue acts accord-
ing to Table 6 for the Commander and Table 7 for
the Follower.

6129



dialogue_not_started ¬ dialogue_started

goal_or_step_start

dialogue_started ∧¬ goal_communicated ∧¬
task_complete ∧¬ follower_stuck ∧¬
cur_step_requested ∧¬ cur_step_sent ∧¬
cur_step_obj_requested ∧¬ cur_step_obj_sent

step_start

dialogue_started ∧ goal_communicated ∧¬
task_complete ∧¬ follower_stuck ∧¬
cur_step_requested ∧¬ cur_step_sent ∧¬
cur_step_obj_requested ∧¬ cur_step_obj_sent

step_requested
dialogue_started∧¬ task_complete ∧¬ follower_stuck
∧ cur_step_requested ∧¬ cur_step_sent

step_sent
dialogue_started ∧¬ task_complete ∧¬
follower_stuck ∧ cur_step_sent ∧¬
cur_step_obj_requested ∧¬ cur_step_obj_sent

obj_loc_requested
dialogue_started∧¬ task_complete ∧¬ follower_stuck
∧ cur_step_obj_requested ∧¬ cur_step_obj_sent

obj_loc_sent
dialogue_started∧¬ task_complete ∧¬
follower_stuck∧ cur_step_obj_sent

task_complete dialogue_started ∧ task_complete ∧¬ follower_stuck

follower_stuck dialogue_started ∧¬ task_complete ∧ follower_stuck

Table 5: Boolean functions over dialogue state features to compute current dialogue state (¬ represents NOT and ∧
represents AND).

dialogue_not_started
Instruction 0.8
Step 0.1
DoNothing 0.1

goal_or_step_start
Instruction 0.8
Step 0.1
DoNothing 0.1

step_requested
Step 0.9
DoNothing 0.1

step_start
Step 0.9
DoNothing 0.1

obj_loc_requested
InfoOnObject
Details

0.9

DoNothing 0.1

follower_stuck
Feedback
Negative

1.0

task_complete
Feedback
Positive

1.0

Table 6: Probabilities for sampling various dialogue acts
for the Commander given the dialogue state.

dialogue_not_started
RequestFor
Instruction

1.0

goal_or_step_start
RequestStep 0.8
ReqForObjLoc
AndOD

0.1

ExecuteStep 0.1

step_start
RequestStep 0.8
ReqForObjLoc
AndOD

0.1

ExecuteStep 0.1

step_requested ExecuteStep 1.0

step_sent

ReqForObjLoc
AndOD

0.9

ExecuteStep 0.1

obj_loc_requested
ExecuteStep 1.0

obj_loc_sent ExecuteStep 1.0

Table 7: Probabilities for sampling various dialogue acts
for the Follower given the dialogue state.

6130



Given a dialogue act, we use the following tem-
plates to get utterances:

• RequestForInstruction: Hello, what
can I help you with today?

• Instruction: This is filled in with the
description field from the task definition,
for example Make coffee or Put all Forks
in any Sink.

• RequestStep: Done. What should I do
next?

• Step: This is filled it from the
condition_failure_desc field from
the TEACh task definition. For example, The
Mug does not have coffee. or The Fork
must be placed in a Sink.

• RequestForObjectLocationAndOtherDetails:
Where can I find a/an ⟨object⟩? where
⟨object⟩ is identified from the task step.

• InfoOnObjectDetails: You can find a/
and ⟨object⟩ in/on a/an ⟨object⟩ near
a/an ⟨object⟩ where the reference objects
are identified using location information in the
simulator.

• FeedbackPositive: Great! We’re all
done.

If an ExecuteStep action is sampled, we then
synthesize the plan for the property to be changed
as part of the current task step using Table 8. This
is then executed using assisted execution (Section
4, Appendix C) to obtain the final sequence of en-
vironment actions. If this produces the desired
object state change, dialogue simulation contin-
ues; otherwise, it is terminated by entering the
follower_stuck state. Our final implementation
of dialogue simulation successfully simulates a dia-
logue that completes the task in 35.4% of the initial
states in the TEACh dataset.

Desired
Out-
come

Plan

Clean-
ing

(Pickup, ⟨TARGET⟩), (Place,
Sink), (ToggleOn, Faucet),
(ToggleOff, Faucet), (Pickup,
⟨TARGET⟩), (Pour, Sink)

Making
Coffee

(Pickup, ⟨TARGET⟩), (Place,
CoffeeMachine), (ToggleOn,
CoffeeMachine)

Slicing
(Pickup, Knife), (Slice,
⟨TARGET⟩), (Place, CounterTop)

Toast-
ing
Bread

(Pickup, ⟨TARGET⟩), (Place,
Toaster), (ToggleOn, Toaster),
(Pickup, ⟨TARGET⟩), (Place,
CounterTop)

Cook-
ing

(Pickup, ⟨TARGET⟩), (ToggleOff,
Microwave), (Open, Microwave),
(Place, Microwave), (Close,
Microwave), (ToggleOn,
Microwave), (ToggleOff,
Microwave), (Open, Microwave),
(Pickup, ⟨TARGET⟩), (Close,
Microwave), (Place,
CounterTop)

Placing
(Pickup, ⟨TARGET⟩), (Place,
⟨DESIRED_VALUE⟩)

Boiling

(Pickup, ⟨TARGET⟩), (Place,
Bowl), (Pickup, Bowl), (Place,
Sink), (ToggleOn, Faucet),
(ToggleOff, Faucet), (Pickup,
Bowl), (ToggleOff, Microwave),
(Open, Microwave), (Place,
Microwave), (Close, Microwave),
(ToggleOn, Microwave),
(ToggleOff, Microwave), (Open,
Microwave), (Pickup, ⟨TARGET⟩),
(Close, Microwave), (Place,
CounterTop)

Fill
With
Water

(Pickup, Cup), (Place, Sink),
(ToggleOn, Faucet), (ToggleOff,
Faucet), (Pickup, Cup), (Pour,
⟨TARGET⟩)

Turn On (ToggleOn, ⟨TARGET⟩)
Open (Open, ⟨TARGET⟩)

Table 8: Plans to accomplish object state changes

6131


