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Abstract

Inexhaustible web content carries abundant
perceptible information beyond text. Un-
fortunately, most prior efforts in pre-trained
Language Models (LMs) ignore such cyber-
richness, while few of them only employ plain
HTMLs, and crucial information in the ren-
dered web, such as visual, layout, and style,
are excluded. Intuitively, those perceptible web
information can provide essential intelligence
to facilitate content understanding tasks. This
study presents an innovative Gestalt Enhanced
Markup (GEM) Language Model inspired by
Gestalt psychological theory for hosting het-
erogeneous visual information from the render
tree into the language model without requiring
additional visual input. Comprehensive experi-
ments on multiple downstream tasks, i.e., web
question answering and web information ex-
traction, validate GEM superiority.

1 Introduction

Web pages serve as crucial carriers for humans to
acquire and perceive information. Due to the sig-
nificant wealth of these documents, long-standing
efforts have been undertaken to address web under-
standing tasks (Chen et al., 2021; Hao et al., 2011;
Dong et al., 2014; Escudeiro and Escudeiro, 2009;
SnehaY. et al., 2012). However, understanding web
pages can be challenging for automated systems
compared to humans, as the design of layout and
visual style caters specifically to human perceptual
patterns, thereby facilitating comprehension.

Recently, the pre-trained Language Models
(LMs) (Li et al., 2022; Deng et al., 2022) advance
web understanding and demonstrate superior per-
formance on various related tasks by jointly pre-
training on text and markup information. Neverthe-
less, these models oversimplify web pages as plain
HTML1 (HyperText Markup Language) sequences

∗ Equal contribution.
† Corresponding author.

1https://en.wikipedia.org/wiki/HTML
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Figure 1: From the HTML code view, the page consists
of seven siblings <li>, which can be divided into three
groups from the visual perception view (represented
by differently colored boxes). By taking hierarchical
relationships of the visual view into account, the system
can answer the question "What is the key performance
of the Xperia?" better than only considering the sibling
relationship.

while neglecting the advantageous visual informa-
tion of rendered pages, such as style and layout,
which is essential for web understanding. Several
recent works investigate web pages as pictures of
screenshots (Xu et al., 2020b,a; Vishwanath et al.,
2018; Garncarek et al., 2020; Huang et al., 2022),
emphasizing the importance of the fixed layout of
the input image. However, the dynamic nature
of web page rendering can lead to significant ap-
pearance variations across devices and browsers,
resulting in the limited applicability of such mod-
els. Additionally, these methods require an OCR2

system to extract text with coordinates, which leads
to extra overhead and neglect the hierarchical infor-
mation provided by the markup language.

2https://en.wikipedia.org/wiki/Optical_charac
ter_recognition
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Regardless of render conditions, humans are ca-
pable of rapidly comprehending the content of ren-
dered web pages, which indicates that human visual
perception is an effective way to consume web se-
mantics (Xiang et al., 2007; Xu and Miller, 2016).
To leverage this advancement, we propose to en-
code visual information of web pages into the LM
flexibly via render-tree-enabled pre-training tasks.
It is inspired by human perceptive patterns rather
than taking visual features as input directly. Gestalt
psychological theory (Wertheimer, 1938; Koffka,
1955), a prominent cognitive model, explains the
human perceptive processes that elements with
similar visual styles and proximate locations are
commonly regarded to be of similar semantic func-
tions. For instance, as Figure 1 depicts, while the
seven nodes of a given web page are siblings in
the markup language, their different rendering ap-
pearances and positions categorize them into three
semantic blocks. Without visual awareness (i.e.,
only using HTML tags), it is challenging to answer
downstream questions like "What is the key perfor-
mance of Xperia?". However, when considering
the visual cues of the web page, particularly the
answer is comprised of nodes in the same row and
color, this question becomes rather achievable.

In this paper, we propose Gestalt Enhanced
Markup (GEM) language model designed to host
visual knowledge into the language model with-
out additional visual input requirement. The GEM
utilizes visual information of rendered web pages
solely during the pre-training, while during fine-
tuning or inference, the rendering is unnecessary.

To incorporate visual perception into language
models, two further pre-training objectives are pro-
posed, each relating to one Gestalt law. The one
is Same Textual Style Prediction (STSP), which is
based on the Gestalt laws of similarity that humans
tend to perceive objects with similar appearances as
a group. This task enlightens the language model
with an appearance perception to learn semantics.
On the other hand, the Proximate Nodes Predic-
tion (PNP) enables the model to understand the
relationships of elements from visual positions, not
only from the DOM3 (Document Object Model)
tree. The PNP task is proposed on the Gestalt prox-
imity law, according to which humans consider
objects close to each other perceptively coherent.
Our corpora are built from render trees of rendered

3https://en.wikipedia.org/wiki/Document_Objec
t_Model

web pages, which combine the DOM and CSSOM4

(CSS Object Model) that contain comprehensive
information about rendered web pages, including
textual, structural, and visual information. In prac-
tice, GEM can learn a strengthened representation
of markup language with the enhancement of visual
prior knowledge.

To validate GEM superiority, we conduct experi-
ments on two downstream tasks, i.e., web ques-
tion answering and web information extraction.
GEM consistently surpasses several strong base-
lines. Moreover, we verify the model architecture
adaptability of Gestalt objectives. In addition, we
compare the performance of GEM and large lan-
guage models (LLMs) (Brown et al., 2020; Ouyang
et al., 2022a; Chowdhery et al., 2022).

Our main contributions are as follows:

• The proposed GEM model introduces a render
tree as a powerful approach to enhance the pre-
training of language models with considerable
visual knowledge acquired from web pages.

• Based on Gestalt psychological theory, two
innovative Gestalt pre-training objectives have
been proposed to enable visual perception of
GEM, which has been proven beneficial for
various downstream tasks.

• The pre-trained model and code of GEM are
publicly available at GitHub5.

2 Preliminaries

2.1 Review of Gestalt Theory

Gestalt, a German word, is referred to "unified
whole". The Gestalt laws proposed by German
psychologist Max Wertheimer (Wertheimer, 1938)
describe how humans group elements in percep-
tion. Graphic designers use these laws to arrange
elements on web pages and other interfaces (Gra-
ham, 2008). Web pages that violate the Gestalt
laws result in comprehension difficulties due to mis-
matched semantic and perceived structures (Sani
and Shokooh, 2016). Thus, such pages are likely to
be phased out (Xiang et al., 2007). We can assume
modern pages are mostly well-designed and follow
Gestalt laws.

4https://www.w3.org/TR/cssom-1/
5https://github.com/AlibabaResearch/AdvancedL

iterateMachinery/tree/main/DocumentUnderstanding
/GEM
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This paper applies two Gestalt laws, similarity
and proximity, to enhance the LM with visual per-
ception, as detailed below.

• The Gestalt law of similarity. According
to this law, similar objects are perceptually
grouped (Wertheimer, 1938). In web pages,
the similarity is based on rendered appearance.
For instance, in Figure 2, the font color of
the upper two yellow-framed nodes is white,
forming a group related to the popularity of
the phone.

• The Gestalt law of proximity. This law states
that nearby objects are perceptually grouped
(Wertheimer, 1938). In web pages, proxim-
ity is measured by rendered positions. For
instance, in Figure 2, the lower two green-
framed nodes are close, creating a group that
highlights the key performance of the phone.

Based on this knowledge, pre-training tasks can
be developed according to the Gestalt laws, en-
abling the language model to simulate the percep-
tive processes of humans and better understand the
semantic relationships among web contents.

2.2 Render Tree

The render tree6 is of great significance in ren-
dering web pages, which is processed through
four steps. The first two steps parse HTML and
CSS7 (Cascading Style Sheets) documents to create
DOM and CSSOM trees, which are independent
objects describing content and style rules. In the
third step, DOM and CSSOM are merged into the
render tree by reserving all the visible DOM nodes
and mounting CSSOM style information to the cor-
responding node. Eventually, the browser traverses
the render tree, calculates each node’s exact size
and position, and transforms nodes to actual pixels
on the screen. In brief, the concept of render trees
contains comprehensive information on rendered
web pages, encompassing textual content, HTML
structure, stylistic, positional, and other visual in-
formation. In this study, render trees are employed
to build the corpora for pre-training.

6https://web.dev/critical-rendering-path-rend
er-tree-construction/

7https://en.wikipedia.org/wiki/CSS
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Figure 2: Illustrations of the Gestalt law of similarity
and proximity.

3 Methodology

3.1 Preparing Inputs

Web pages are easily gathered at scale, yet they
can not provide straightforward supervision for vi-
sual perception. Thus, several pre-processings are
conducted during pre-training. We filter out pages
that are non-renderable using headless chrome8

and render the remaining ones. Next, we randomly
sample a rendered page from the remaining pool,
which can avoid any bias towards certain websites
or domains and ensure the diversity of the data.
Additionally, selenium9 is applied to store HTML
containing only visible nodes and to record each
node’s specified CSS properties (required for pre-
training). Since many web pages retain thousands
of tokens, we truncate them into sub-pages em-
ploying sliding windows proposed by Deng et al.
(2022) . As shown in Figure 3, GEM takes HTML
as input, which is processed into text tokens and
corresponding XPath10 (XML Path Language) ex-
pressions. The CSS properties are utilized as the
ground truth for the Gestalt pre-training tasks that
are covered in section 3.2.

3.2 Pre-training Objectives

As Figure 3 depicts, we propose two Gestalt objec-
tives to inject visual awareness into the language
model. To preserve contextual and hierarchical
information, GEM also employs the markup objec-
tives proposed by Li et al. (2022). The ultimate pre-
training objective is the summation of the markup
objectives and the Gestalt objectives.

The following two subsections elaborate on the
proposed Gestalt objectives respectively.

8https://developer.chrome.com/blog/headless-c
hrome/

9https://www.selenium.dev/
10https://en.wikipedia.org/wiki/XPath
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Figure 3: An overview of the proposed GEM. Given a rendered web page, a browser is utilized to obtain its render
tree and automatically extract HTML and CSS properties. The HTML is utilized as input, which is further processed
into text tokens and XPath expressions, while CSS properties are employed as supervision for two Gestalt objectives.
These objectives include Same Textual Style Prediction (STSP), based on the law of similarity, and Proximity
Node Prediction (PNP), based on the law of proximity. STSP equips the LM with visual-appearance perception by
predicting whether the textual styles of sampled node pairs are the same, while PNP facilitates the LM to perceive
visual-position relationships by learning whether sampled node pairs are proximate. Note that the markup objectives
of GEM are hidden in this figure.

3.2.1 Same Textual Style Prediction

The first Gestalt objective is Same Textual Style
Prediction (STSP), utilizing the Gestalt law of sim-
ilarity (see Section 2.1). The similarity of web ele-
ments is defined by their appearances, which con-
sist of size, background, and foreground (Xu and
Miller, 2016). For the sake of simplicity, hereafter,
those attributes are collectively called textual style.
Referring to CSS Reference11, we figure CSS prop-
erties of font, color, and background-color as
joint control of textual style.

In pre-training, the Gestalt law of similarity is
translated into classifying a pair of text nodes with
"same" or "not same" textual style. A given pair
of text nodes are considered the same style if all
textual-style-controlling CSS properties are the
same. For instance, in Figure 3, Node A and Node
B are assigned the "not same" label due to their
non-identical font size. We randomly sample node
pairs from one page, and the model is required to
classify the pairs with the features from the first
token of each node.

The STSP task provides supervision for textual-
style-similarity clues, which enables GEM to un-
derstand semantic relationships by incorporating
prior knowledge of textual-style design.

11https://www.w3schools.com/cssref/index.php

3.2.2 Proximate Nodes Prediction

Besides the textual style information, the visual-
position relationships of nodes are also essential
for visual awareness in web understanding. Hence,
the Proximate Node Prediction (PNP) objective is
proposed, leveraging the Gestalt law of proximity
(see Section 2.1). In web pages, the rendering re-
gions of nodes are extracted from the render tree to
evaluate their proximity. Notably, these rendering
regions incorporate the padding, which is the space
between the rendering border and content.

In pre-training, the proximity is interpreted by
comparing the position of nodes’ edges (i.e., left,
top, right, and bottom) that are calculated based
on their rendering regions. If any edges of two
nodes share the same value, they are considered
proximate. As an example in Figure 3, the bottom
edge of Node B and the top edge of Node C co-
incide, indicating they are proximate. Conversely,
Node A and Node B share no edges and thus are
non-proximate. We randomly sample node pairs
and ask the model to predict if they are proximate
using the features of the first token from each node.

Take a situation where nodes are far in the DOM
tree but visually close, providing a vital clue that
these nodes may be semantically related. The PNP
task enables GEM to consider the semantic relation-
ships among nodes utilizing the prior knowledge
of proximity design apart from the structure of the
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DOM tree.

4 Experiment

4.1 Pre-training Setups

4.1.1 Data
Our corpora are built from the Common Crawl12

dataset. We derive approximately 2 million train-
ing samples from 100k renderable web pages by
pre-processing. Details of the data pre-processing
are available in Section 3.1. We recognize the pos-
sibility of noisy samples in our corpus that don’t
adhere to the Gestalt principles. However, such
instances are minimal since, as demonstrated by
Xiang et al. (2007), web pages that contradict the
Gestalt principles typically experience short lifes-
pans on the internet. In order to ensure fairness,
we remove all the web pages that appear in the
downstream task datasets. The settings of markup
objectives follow Li et al. (2022). In both the STSP
and PNP tasks, we initially traverse and label all
node pairs in a given training sample as positive
or negative, and store them in separate pools. Sub-
sequently, we randomly sample 100 samples from
each pool (totaling 200 samples) for pre-training. If
either pool has fewer than 100 samples, we employ
oversampling to guarantee data balance. Using this
approach, each node pair has an equal probability
of being labeled as “same” in STSP and as “proxi-
mate” in PNP.

4.1.2 Implementation
We set up GEM following the MarkupLMbase and
initialize it with the pre-trained weight provided by
Li et al. (2022). Additionally, we also implement
a RoBERTabase-based GEM named "GEM-R" on
the same corpora. MarkupLM enhances RoBERTa
by incorporating a new XPath embedding layer to
model HTML structures. GEM-R is pre-trained us-
ing the MLM objective and the Gestalt objectives.
As in the GEM, we utilize the first token features as
the node features in GEM-R. The input format of
GEM-R is the same as T-PLM (Chen et al., 2021),
i.e., pure text extracted from HTML. Our imple-
mentation uses Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e-5 and a batch size
of 128 training samples with a maximum of 384
tokens. The pre-training is done on 8 Nvidia-V100
GPUs for 300K steps. We evaluate the pre-training
performance in the Appendix A.5.

12https://commoncrawl.org/

4.2 Fine-tuning

We experiment on two downstream tasks to eval-
uate GEM: web question answering and web in-
formation extraction. Note that both GEM and
GEM-R do not require rendered web pages in fine-
tuning.

4.2.1 Web Question Answering
Web question answering is a task that automati-
cally answers questions about a given web page,
which requires a system to comprehensively under-
stand the spatial and logical structure of the web
page. We employ the Web-based Structural Read-
ing Comprehension (WebSRC) dataset (Chen et al.,
2021) to verify the ability of GEM. WebSRC con-
tains 400K question-answer pairs from 6.5K web
pages and provides corresponding HTML source
codes, screenshots, and metadata. The answers are
either text spans on pages or yes/no. We follow
previous work (Li et al., 2022) to take WebSRC
as a typical extractive reading comprehension task,
in which the token representations are fed into an
output layer to predict the start and end indexes
of the answer (Devlin et al., 2019). The evalua-
tion metrics are Exact match (EM), F1 score (F1),
and Path overlap score (POS), as defined in the
original paper (Chen et al., 2021), where POS is
a tag level metric that measures the accuracy of
locating HTML tags. We follow Li et al. (2022) to
conduct the experiment on the official train/dev sets
and report the results on the development set. We
fine-tune the pre-trained LMs for 10 epochs with a
batch size of 32, and the learning rate is 1e-5.

4.2.2 Web Information Extraction
We use the Structure Web Data Extraction (SWDE)
dataset (Hao et al., 2011) to evaluate GEM, a real-
world web page collection for automatic informa-
tion extraction on the web. The SWDE consists of
over 124k web pages from 80 websites of 8 verti-
cals (10 websites per vertical). The task requires
the model to extract the values for several given
attributes (3 to 5 different attributes according to
the vertical) from a page. In the actual application
scenario, due to labor costs, only limited labeled
data can be obtained for a given vertical. However,
the system is required to work on a much larger
website set. Thus, we evaluate GEM on each ver-
tical independently with a few-shot setting, where
50% of websites are training data, and the rest are
testing data. Note that websites in the testing set
are unseen during training. Precision, Recall, and
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Category Model EM F1 POS

Pure
Text

T-PLM 52.12 61.57 79.74
RoBERTabase 51.89 62.48 80.11
RoBERTabase* 52.56 62.61 80.38
GEM-R 54.88 64.81 81.60

HTML
(H)

H-PLM 61.51 67.04 82.97
MarkupLMbase 66.67 73.74 87.47
MarkupLMbase* 66.83 73.24 86.63
GEM 69.12 75.93 88.41

H+Visual V-PLM 62.07 66.66 83.64

Table 1: Web question answering results on the Web-
SRC dataset, categorized by input modality. "*" means
further pre-training on our corpora with the original
objective only. Underlined figures represent the best re-
sults of the text input group, while bold figures indicate
the best results of all models.

F1 score on page level are evaluation metrics on
this task, following Hao et al. (2011). To make
a fair comparison, we follow Zhou et al. (2021)
to pre- and post-process data. The results of each
vertical are the average of 10 training set permuta-
tions. The final experiment results are obtained by
taking the average of all 8 verticals. We fine-tune
the pre-trained LMs for 10 epochs with a batch size
of 64, and the learning rate is 2e-5.

4.3 Results

4.3.1 Web Question Answering
The results of web question answering are shown
in Table 1. Several baselines are compared, which
are categorized into three groups based on their in-
put modality: (1) Pure Text: T-PLM, RoBERTa,
and GEM-R utilize non-structural pure text by
deleting all HTML tags follow Chen et al. (2021);
(2) HTML: H-PLM, MarkupLM, and GEM take
HTML as input, using different per-processing
methods, where H-PLM follows Chen et al. (2021)
and MarkupLM, GEM follow Li et al. (2022). (3)
HTML+Visual: V-PLM (Chen et al., 2021) lever-
ages both HTML and screenshots as inputs. Since
GEM does not have visual input, other strong mod-
els containing visual features or metadata attained
by rendered web pages (e.g., coordinates of ele-
ments) are not included.

As depicted in the results, GEM consistently sur-
passes other baselines. The gap between GEM and
MarkupLM* illustrates the effectiveness of incor-
porating visual awareness through Gestalt tasks.

Category Model P R F1

Non-PLM
-based

SSM - - 74.10
FreeDOM-Full - - 92.56
SimpDOM - - 93.75

PLMs
with

pure text

RoBERTabase
95.31
(±1.26)

93.55
(±1.99)

94.05
(±1.80)

RoBERTabase*
95.43
(±1.62)

93.46
(±2.34)

94.09
(±2.15)

GEM-R
95.91
(±1.25)

94.05
(±1.77)

94.57
(±1.60)

PLMs
with

HTML

MarkupLMbase
95.99
(±1.49)

95.16
(±1.70)

95.57
(±1.65)

MarkupLMbase*
96.04
(±1.54)

95.14
(±1.87)

95.59
(±1.81)

GEM
96.84
(±1.42)

95.66
(±1.59)

96.04
(±1.53)

Table 2: Evaluation results on web information extrac-
tion task (SWDE dataset), categorized by method type.
Some P (Precision) and R (Recall) values are left blank
due to unreported in original papers. Each value is re-
ported as "mean ± standard deviation" calculated from
80 experiments. "*" stands for the model further pre-
trained on our corpora with its original objective only.
Underlined figures represent the best results of the text
input group, while bold figures indicate the best results
of all models.

Moreover, GEM-R achieves the best results among
all models with text input, indicating the robust
adaptability of the Gestalt tasks in model archi-
tecture. Notably, GEM-R does not incorporate
an XPath embedding layer and relies solely on
non-structural pure text as input, suggesting that
Gestalt tasks can capture visual information with-
out the explicit incorporation of HTML structure.
Additionally, unlike V-PLM, which relies on input
screenshots for visual perception, GEM solely uti-
lizes HTML as input and does not require rendered
web pages during fine-tuning and inference, which
provides significant deployment convenience ad-
vantages while preserving visual perception.

4.3.2 Web Information Extraction
The results of web information extraction are in
Table 2, where the compared models are classified
into three groups: (1) Non-PLM-based methods:
SSM (Carlson and Schafer, 2008), FreeDOM-Full
(Lin et al., 2020), SimpDOM (Zhou et al., 2021);
(2) PLMs with pure text as input: RoBERTa, GEM-
R are detailed in Section 4.3.1; (3) PLMs with
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WebSRC Challenge Set

Model EM F1 POS

GEM 67.04 72.69 87.00
GPT-3.5-turbo 66.99 71.92 68.43
Llama2 25.91 31.54 37.97
Llama2-FT 48.95 53.50 65.17

SWDE Random Subsets

Precision Recall F1

GEM 97.06 96.09 96.36
GPT-3.5-turbo 28.61 25.93 26.18
GPT-3.5-turbo* 27.54 26.61 26.35
Llama2 25.98 26.10 26.04
Llama2* 26.27 26.10 26.06

Table 3: Performance comparison of LLMs and GEM
on downstream tasks, with retested results for GEM
on WebSRC Challenge Set and SWDE Random Set.
"Llama2-FT" denotes Llama2 fine-tuned on the Web-
SRC training set. The prompt of "*" is limited to the
text of nodes.

HTML as input: MarkupLM and GEM, which are
the same as Section 4.3.1.

GEM achieves similar results on web infor-
mation extraction as on web question answering.
GEM outperforms all baselines, and GEM-R is the
best model in the "PLMs with pure text" group.
The improvement achieved by GEM is significant,
considering that the baselines demonstrate remark-
able performance, and each value in Table 2 is the
average of 80 experiments. Another notable obser-
vation is that Gestalt tasks decrease the standard
deviation of the results, indicating that incorporat-
ing visual perception can enhance the robustness
of models.

4.4 Discussion on Large Language Model
(LLM)

Recently, large language models (LLMs) have been
gaining adoption in different domains. Hence,
we assess LLM on both downstream tasks, as
shown in Table 3. We compare two baselines:
GPT-3.5-turbo (Ouyang et al., 2022b;
Brown et al., 2020) and Llama2 (Touvron
et al., 2023). GPT-3.5-turbo represents one of
the current state-of-the-art LLMs and is accessible
via the OpenAI API13. On the other hand, Llama2
is a prevalent open-source large model in academia.

13https://platform.openai.com/

The specific pre-trained model weight we utilize,
Llama-2-7b-chat-hf, is available on Huggingface14.

The objective of the Web Question Answering
task (with the WebSRC dataset) is to explore the
model’s capacity to comprehend the spatial and
logical structure of a given web page. LLM, host-
ing an extensive knowledge repository, can answer
general questions (Petroni et al., 2019), regardless
of the given web page. To fit the project scope,
we employ a subset from WebSRC, tagged as the
"challenge set", by eliminating questions that GPT-
3.5 can respond to correctly based solely on the
question content. The challenge set comprises over
5,000 questions, with further details provided in
Appendix A.1.

The prompt template for WebSRC employs in-
context learning (Brown et al., 2020), incorporating
a task description, selected demonstrations, and a
test instance. For each question-page pair, we ran-
domly select n demonstrations from the same verti-
cal to ensure semantic relevance. Due to the token
limit, we set n to 3. Further details are available in
Appendix A.2. Additionally, to address discrepan-
cies in training data, we fine-tune Llama2 using the
WebSRC training set. Further details about Llama2
fine-tuning are in the Appendix A.3.

As shown in Table 3, GEM and GPT-3.5 achieve
comparable performance on Exact Match and F1
score, on POS, GEM significantly outperforms
GPT-3.5. Regarding Llama2, whether or not it un-
dergoes fine-tuning, GEM significantly surpasses it.
The fine-tuning outcomes align with expectations
that fine-tuning improves Llama2’s performance
on the WebSRC dataset. The experimental results
highlight GEM’s superiority in consuming HTML
structural information and validate LLM’s inca-
pability to provide answers despite access to the
highly pertinent web page, mainly attributed to the
LLM’s lack of comprehension and familiarity with
the HTML structure.

For the web information extraction experiment
using the SWDE dataset, considering that the
SWDE requires 80 experiments and its web pages
are of considerable length, we, due to limited re-
sources, randomly select 800 samples for testing
and do not conduct experiments on fine-tuning
Llama2. The prompt template adheres to the in-
context learning principle, with 3 randomly se-
lected demonstrates. All web pages in the prompt

14https://huggingface.co/meta-llama/Llama-2-7b
-chat
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Dataset
Objectives WebSRC SWDE

# Markup STSP PNP EM F1 POS P R F1

1 ✓ 66.83 73.24 86.63
96.04
(±1.54)

95.14
(±1.87)

95.59
(±1.81)

2 ✓ ✓ 67.78 74.27 87.55
96.58
(±1.10)

95.26
(±1.49)

95.64
(±1.39)

3 ✓ ✓ 67.58 74.15 86.68
96.62
(±1.20)

95.48
(±1.73)

95.81
(±1.64)

4 ✓ ✓ ✓ 69.12 75.93 88.41
96.84
(±1.42)

95.66
(±1.59)

96.04
(±1.53)

Table 4: Ablation study on the WebSRC and SWDE dataset. "STSP" and "PNP" stand for Same Textual Style
Prediction and Proximate Nodes Prediction. "Markup" denotes the original pre-training objectives of MarkupLM.
The results on the SWDE dataset are reported as "mean ± standard deviation" over 80 experiments.

(a) Attention activation of MarkupLM 

(2) Attention activation of GEM 

(2a) the Rendered Web Page (2b) HTML 

(1a) the Rendered Web Page 

(1) Attention activation of MarkupLM 

(1b) HTML 
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Figure 4: Visualization of node-level self-attention
weights between the green node and other nodes, shown
in both the rendered page and HTML (model’s input).

undergo pre-processing according to Zhou et al.
(2021), producing XPath-text node pairs. Note that
the pre-processed web content consists of a set of
segments rather than the entire web page, which is
consistent with the input of the baselines described
in Section 4.3.2. Moreover, to eliminate XPath’s
potential noise, we conduct an experiment with the
restriction that only the text of nodes is provided.
The prompt template details are in Appendix A.4.
Experiment results confirm LLM’s incapability for
HTML structure comprehension.

4.5 Ablation Study

To further investigate the effectiveness of GEM, we
perform a series of ablation experiments, as shown

in Table 4. The models with different objectives
are pre-trained in the same settings as in Section
4.1.2. Experiment results validate our hypothet-
ical proposition: both style and positional infor-
mation extracted from rendered web pages benefit
web understanding. For Instance, in terms of the
EM metric on the WebSRC, the proposed STSP
shows an improvement of 0.95%, while the im-
provement achieved with the PNP is 0.75%. Mean-
while, the resonance between positional (PNP) and
style (STSP) tasks and multi-task co-training can
be vital to enhance the model performance. The
models trained by an individual Gestalt task, with-
out investigating multi-view landscapes, can hardly
achieve superiority compared to the #4 model with
holistic perception.

4.6 Attention Maps Visualization

To further investigate the effect of injected visual
awareness, we choose a case in WebSRC as an
example and visualize the attention activation be-
tween the green node and other nodes in the last
layer of the encoder. The checkpoints we used are
#1 and #4 in Table 4, which have not been fine-
tuned. Both MarkupLM and GEM utilize HTML
as their input, and to facilitate understanding, we
provide visualizations on the rendered pages, as
shown in Figure 4. The color blocks are manually
painted using the activation of the first token of
each node, which serves as the node representa-
tion in pre-training. MarkupLM essentially relies
on the DOM tree since the high activation nodes
are sequential in HTML code (shown in Figure 4
1b). In contrast, GEM incorporates additional vi-
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sual prior knowledge beyond the DOM tree. Even
without visual input, GEM pays more attention to
nodes that are close to the green node, as well as
those with similar textual styles (as displayed in
Figure 4 2a). Visualization results demonstrate that
the Gestalt tasks modify the attention mechanisms
as intended. GEM’s attention map aligns with the
web page’s visual appearance, indicating that GEM
can establish connections between visual and struc-
tural/semantic information of the DOM tree. The
attention mechanism of GEM is beneficial for web
understanding, as verified in Section 4.3.1.

5 Related Work

Web pages contain rich perceptible information be-
yond text. Extracting this information is crucial
for web understanding but also challenging. Pre-
vious works on this task mainly use rule-based
modules (Soderland, 1999; Cohen et al., 2002; Gul-
hane et al., 2011; Hao et al., 2019), which are not
robust to different websites.

Representation learning for plain text documents
has been well-studied. Pre-trained Language Mod-
els (PLMs), which use text encoders with self-
supervised objectives, achieve remarkable perfor-
mance on numerous NLP tasks (Devlin et al., 2019;
Liu et al., 2019; Lewis et al., 2019). Some recent
works extend these methods to web pages by taking
HTML documents as input and encoding seman-
tic information with specific pre-training tasks (Li
et al., 2022; Deng et al., 2022).

However, these models ignore the visual features
of web pages, which are essential for understanding
them. Some other works address this issue by treat-
ing web pages as images of screenshots (Xu et al.,
2020b,a), but they lost the hierarchical structure of
HTML. Zhao et al. (2022) and Xie et al. (2021)
incorporate coordinates of web elements into the
input along with the HTML. However, they all rely
on the fixed layout of the input image, which could
vary with different devices and browsers. There-
fore, these models have limited applicability.

Our work diverges from prior attempts in two
crucial areas: First, we model web pages by lever-
aging both HTML documents and render trees, pro-
viding the LM with visual perception. Addition-
ally, we harness knowledge from web page visual
aspects by encoding it into the text representation
rather than using visual information as input.

Recent developments in LLMs (Brown et al.,
2020; Ouyang et al., 2022a; Chowdhery et al.,

2022) ushered in a new age of AI applications.
While these advances have demonstrated a remark-
able capacity, there remains an acute need for a
comprehensive evaluation of their application to
web understanding.

6 Conclusion

This paper presents GEM, a Gestalt Enhanced
Markup (GEM) Language Model that leverages
Gestalt psychological theory. GEM innovatively
enriches the language model with heterogeneous
visual information from render trees of web pages
without requiring visual modality input. As part of
this innovation, two distinctive Gestalt pre-training
objectives are formulated in order to codify visual
qualities such as style and position within the lan-
guage model. Evaluations of different downstream
tasks and backbones show that GEM can learn a
stronger representation of markup language with
visual knowledge enhancement.

Limitations

Despite the success of the model GEM, some draw-
backs need to be addressed in the future. Primarily,
the proposed model relies on the render trees of
web pages, which may not be immediately avail-
able or perfectly precise for certain complex or
advanced web pages. Additionally, the potential of
large language models (LLMs) is undeniable, and
there is much incentive to exploit it. This paper
refrains from integrating GEM with LLMs, as it
represents a challenging prospect that requires ex-
tensive research. We aim to delve more deeply into
this problem and make pioneering progress in our
future research.
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A Appendix

A.1 WebSRC Challenge Set Selection
Due to limited cost, we randomly select 18,131
questions from the WebSRC development set,
which contains 52,826 samples. We utilize the
prompt defined in Table 5 to query GPT-3.5 and
then compared the responses to the ground truth by
calculating their similarity using the formula:

similarity =
lr + lg − d

lr + lg

where lr and lg are the lengths of the responses and
ground truth, whereas d denotes the Levenshtein
Distance (Levenshtein, 1966) between them.

Ultimately, we select 5,324 questions with a sim-
ilarity below 20% for the challenge set.

A.2 The Prompt Template of WebSRC
To evaluate LLM on WebSRC, we define the
prompt template as shown in Table 7.

A.3 Details of Fine-tuning Llama2 on
WebSRC

We fine-tune Llama2 model utilizing Parameter-
Efficient Fine-Tuning (PEFT) and Low-Rank Adap-
tation (LoRa) (Hu et al., 2021) techniques with the
entire training set of WebSRC. The fine-tuning is
done on 2 NVIDIA A100 GPUs for 1 epoch.

A.4 The Prompt Template of SWDE
To evaluate LLM on SWDE, we define the prompt
template as shown in Table 8. In order to facilitate
understanding, a web page is sampled from the
"auto" vertical, and the values of all slots in the
sampled web page are presented in Table 9.

A.5 Pre-training Performance Evaluation
We evaluate the pre-training performance of the
two innovative pre-training tasks, STSP and PNP,
both of which are binary classification tasks. For

Prompt Here is a question from a web
page titled {Title} Question: {Ques-
tion} You need to answer the ques-
tion. The format of your reply: an-
swer:[ANSWER]. And do not reply
to other content.

Slots
Title The title of the given

web page from Web-
SRC.

Question The question about the
given web page from
WebSRC.

Table 5: The prompt for WebSRC Challenge Set selec-
tion.

Task P R F1

STSP 61.70 76.24 65.15
PNP 72.33 65.59 84.60

Table 6: Pre-training performance evaluation on held-
out training data.

a comprehensive evaluation, we reserve a subset
of the training data as the evaluation set. We use
classification metrics, and the results are presented
in the Table 6.
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Prompt Here is a question and its corresponding page.
You need to answer the question, and the ANSWER are either text spans on page
or yes/no. You need to answer the TID, which is the deepest tag in the DOM tree
which contain all the answer. For yes/no question, there is no tag associated with
the answer, so the TID is -1.You also need to answer the STARTING_INDEX of the
answer, which is the char offset of the answer from the start of the content of the tag
specified by TID. Note that before counting this number, we first eliminate all the
inner tags in the specified tag and replace all the consecutive whitespaces with one
space. For yes/no questions, STARTING_INDEX is 1 for answer "yes" and 0 for
answer "no".
The format of your reply: answer: [ANSWER] tid: [TID] starting_index: [START-
ING_INDEX]. And do not reply other content.
Here are some demonstration:
{Demonstrates}
Here is the question and its corresponding page:
Question:{Question} Page:{Page}
—
reply:

Slots Question Question about the given web page from WebSRC.
Page HTML souce code of the given web page from WebSRC.
Demonstrates The selected demonstration with its ground truth response.

Table 7: The prompt for evaluating LLM on WebSRC.

Prompt You are a web scraper, you will extract the values of {Attributes} from a given web
page segment.
You are not allowed to use any tools, you can only use the information in the input
JSON object.
The web page is provided in the form of a JSON object, which contains several
key-value pairs. Each key is a INDEX, and each value is another JSON object that
has two fields: "XPATH" and TEXT. The "XPATH" field is a string that represents
the location of an element in an HTML document. The "TEXT" field is a string that
contains the text content of that element.
The format of the answer, and do not reply other content: {Answer_Format}.
Here are some demonstrations:
{Demonstrates}
Here is the given web page segment.
JSON object: {Web_Page}
—
reply:

Slots Attributes Given attributes in the current vertical.
Answer_Format Response in the format based on the given attributes.
Demonstrates The selected demonstration with its ground truth response.
Web_Page The web page is provided in the form of a JSON object, which

contains several key-value pairs. Each key is a INDEX, and each
value is another JSON object that has two fields: "XPATH" and
"TEXT".

Table 8: The prompt for evaluating LLM on SWDE.

6144



Attributes model", "price", "engine", "fuel_economy"
Web_Page {1: {"XPATH": "/ html/ body/ div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/ div[1]/ div[1]/

div[1]/ h1/ br[1]", "TEXT": "2011 Kia Sportage"}, 2: {"XPATH": "/ html/ body/
div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/ div[1]/ div[1]/ div[2]/ div[1]/ div[2]/ div[1]/
table/ tr[1]/ td[2]/ b", "TEXT": "18, 295−24,795"}, 3: {"XPATH": "/ html/ body/
div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/ div[1]/ div[1]/ div[2]/ div[1]/ div[2]/ div[1]/
table/ tr[2]/ td[2]", "TEXT": "17, 930−23,280"}, , ... 36: {"XPATH": "/ html/ body/
div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/ div[4]/ div[6]/ div/ div[4]/ table/ tr[5]/ td[1]",
"TEXT": "2011 Kia Sportage"}}

Answer_Format model": [INDEX1, INDEX2, ..., INDEXn] or []; "price": [INDEX1, IN-
DEX2, ..., INDEXn] or []; "engine": [INDEX1, INDEX2, ..., INDEXn] or [];
"fuel_economy":[INDEX1, INDEX2, ..., INDEXn] or [].

Demonstrates JSON object: {1: {"XPATH": "/ html/ body/ div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/
div[1]/ div[1]/ div[1]/ h1/ br[1]", "TEXT": "2010 Toyota Sequoia"}, ... 20: {"XPATH":
"/ html/ body/ div[2]/ div[3]/ div/ table/ tr/ td[2]/ div[1]/ div[4]/ div[3]/ table/ tr[17]/
td[2]", "TEXT": "19"}}
—
reply:
model":[1]; "price":[2, 9]; "engine":[13]; "fuel_economy":[19, 20]

Table 9: The values of all slots in a web page sampled from "auto" vertical. The "Web_Page" and "Demonstrates"
values are partially hidden due to space limitations.
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