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Abstract

Online sentiment analysis has emerged
as a crucial component in numerous data-
driven applications, including social media
monitoring, customer feedback analysis, and
online reputation management. Despite their
importance, current methodologies falter in
effectively managing the continuously evolving
nature of data streams, largely due to their
reliance on substantial, pre-existing labelled
datasets. This paper presents SentiStream,
a novel co-training framework specifically
designed for efficient sentiment analysis
within dynamic data streams. Comprising
unsupervised, semi-supervised, and stream
merge modules, SentiStream guarantees
constant adaptability to evolving data
landscapes. This research delves into the
continuous adaptation of language models
for online sentiment analysis, focusing
on real-world applications. Experimental
evaluations using data streams derived from
five benchmark sentiment analysis datasets
confirm that our proposed methodology
surpasses existing approaches in terms of both
accuracy and computational efficiency1.

1 Introduction

Online Sentiment Analysis (OSA) has established
its significance in the realm of sentiment
analysis, with its primary objective being the
identification of polarity in ceaselessly incoming
data streams (Capuano et al., 2021). This task
requires proficiency in two key aspects: online
adaptation and sentiment classification.

The requirement for online adaptation
arises from the ever-evolving characteristics
of real-time data streams, an effect commonly
known as concept drift (Webb et al., 2016).

∗Work done while the second author was interning at
SUTD IntelliStream Group.

†Corresponding author.
1Our code is available at https://github.com/

intellistream/SentiStream

This necessitates continuous model adaptation
to maintain effectiveness. Simultaneously,
sentiment classification, a core task within
natural language processing (NLP), has found its
cruciality in a myriad of sectors such as customer
feedback interpretation and public opinion
monitoring (Zhang et al., 2018). However, creating
an OSA approach that can simultaneously handle
online adaptation and sentiment classification
remains a challenging feat.

Previous research (Vashishtha and Susan,
2019; Rahnama, 2014; Smailović et al., 2014;
Go et al., 2009; Gautam and Yadav, 2014;
Haque et al., 2018; Ortigosa et al., 2014) has
indicated that supervised learning paradigms
can yield high accuracy in sentiment analysis.
Despite their strengths, these methods frequently
overlook the ceaseless accumulation of real-world
streaming data originating from varied sources like
literature (Zhu et al., 2015), news articles (Zellers
et al., 2019), and scientific papers (Lo et al., 2020).
The constant emergence of this dynamic streaming
data often leads to the concept drift effect, which
can impair the performance of traditional offline
methods (Luu et al., 2021). Continuous learning
attempts to tackle concept drift and adapt to the
ongoing data stream, but obtaining ground truth
labels for this streaming data is often arduous and
costly, which consequently limits the continuous
application of supervised techniques and reduces
their long-term efficacy.

In response to these challenges, we present
SentiStream, a co-training framework tailored
explicitly for efficient online sentiment analysis
of swift-flowing opinion data. This framework
consists of three modules: unsupervised, semi-
supervised, and stream merge. The unsupervised
module uses continuously adapted pre-trained
language models (PLMs) to distill knowledge
from unlabeled streaming data, coupled with
lexicon-based strategies to produce preliminary
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polarity labels. SentiStream harnesses semantic
and temporal information from text-based data
streams to incrementally retrain the PLMs, later
employing a nimble lexicon-based classification
method to generate polarity labels using the
updated PLMs. The semi-supervised module
constructs a weakly supervised classification model
with a small labeled dataset and continuously
retrains this model with pseudo-labels generated
by the stream merge module. The final stream
merge module consolidates outputs from the
preceding two modules, utilizing their confidence
scores to dynamically update the lexicon for the
unsupervised module, providing pseudo-labeled
data for semi-supervised learning and dynamically
fine-tuning the threshold for the semi-supervised
module.

We assessed the performance of SentiStream
on five benchmark sentiment analysis datasets
and juxtaposing its efficacy against several
unsupervised and semi-supervised benchmarks.
The experimental results confirm that our
methodology considerably outperforms existing
methods in tackling dynamic data streams for
online sentiment analysis tasks. Additionally,
SentiStream uses a lightweight model, ensuring
superior throughput and latency performance.

The major contributions of our work can be
summarized as:

• The development of SentiStream, a novel
co-training framework, devised specifically
for proficient online sentiment analysis within
dynamic data streams;

• An unsupervised module that amalgamates
the merits of continuously trained PLMs with
lexicon-based classification techniques;

• The implementation of a semi-supervised self-
learning strategy, devised to optimize the
usage of limited labelled data;

• The unification of outputs through a stream
merge technique, promoting collaborative
learning to continuously adapt to dynamic
stream data from various angles;

• The employment of lightweight models,
complemented by a series of optimizations,
to fulfill online deployment requirements.

2 Related Work

In this section, we provide an overview of relevant
literature on online sentiment analysis, continual
learning, and semi-supervised learning, thereby
laying the foundation for our proposed framework.

2.1 Sentiment Analysis

Online sentiment analysis has gained traction with
the escalating volume of user-generated content
on social media platforms and online forums.
MoodLens, a system developed by Zhao et al.
(2012), utilizes incremental learning to navigate
sentiment shifts and new terminology. In the realm
of online text messages, Fernández-Gavilanes et al.
(2016) introduced an unsupervised methodology,
leveraging sentiment features from lexicons. For
a more comprehensive approach, Iosifidis and
Ntoutsi (2017) employed semi-supervised learning,
drawing upon both labelled and unlabeled data,
via Self-Learning and Co-Training. The research
in offline sentiment analysis, particularly the
remarkable results attained through deep learning
architectures like CNNs and RNNs (Kim, 2014;
Zhang et al., 2015), and the contributions of
pretrained language models such as BERT and
GPT (Devlin et al., 2018; Radford et al., 2018),
are also worth noting. However, these offline
methodologies often falter in adapting to the
dynamic nature of online data streams, thereby
compromising their performance. This emphasizes
the need for specialized online sentiment analysis
methods that can adapt fluidly to evolving data
streams while maintaining performance levels.

2.2 Continual Learning

In contrast to traditional neural networks, which
are viewed as static knowledge entities prone to
catastrophic forgetting when knowledge expansion
efforts veer off the original task, continual
learning envisions networks capable of accruing
knowledge across different tasks without requiring
comprehensive retraining (De Lange et al.,
2021). Prior research has primarily sought to
address continual learning challenges within the
frameworks of incremental class and task scenarios.
The strategies used range from replay methods
(Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017;
Atkinson et al., 2018) and regularization-based
techniques (Kirkpatrick et al., 2017; Ahn et al.,
2019) to parameter isolation methods (Xu and Zhu,
2018; Fernando et al., 2017). In a noteworthy
contribution, Jin et al. (2021) deployed distillation-
based techniques for the continuous incremental
pre-training of language models across diverse
domain corpora. In the context of sentiment
analysis, Ke et al. (2021) explored aspect-based
sentiment analysis tasks across different domains
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through contrastive continual learning. However,
these approaches often fail to address the temporal
influence, as observed by Luu et al. (2021), where
data drift over time can negatively impact model
performance.

2.3 Semi-Supervised Learning

Semi-supervised learning, which involves model
building using both labelled and unlabeled data,
is of particular relevance in real-world scenarios
where unlabeled data is plentiful and readily
available, while labelled instances are relatively
scarce (Ouali et al., 2020). Internet tweets and
comments are prime examples that can greatly
benefit from semi-supervised learning techniques
(Silva et al., 2016). These techniques comprise a
variety of methods such as graph-based (Sindhwani
and Melville, 2008), wrapper-based (Li et al.,
2020), and topic-based (Xiang and Zhou, 2014).
More recent studies have delved into dynamic
thresholds for semi-supervised techniques (Sohn
et al., 2020; Wang et al., 2022), with Han
et al. (2020) applying these methods to sentiment
analysis. This research suggests an iterative auto-
labelling process anchored in a dynamic threshold
algorithm, which takes into account both the quality
and quantity of auto-labelled data when setting
thresholds for their selection.

3 Proposed Methodology

Our proposed method, SentiStream, consists of
two parallel sentiment classification modules and a
shared output co-trainer: an unsupervised module,
a semi-supervised module, and a stream merge
module. The overall structure is shown in Figure 1.

Problem Formulation: Our focus is on
effectively conducting sentiment analysis of
streaming opinion data in real-time. We define
the term input stream as a sequence of tuples,
referred to as S = T1, ..., TN , which arrive at our
system in chronological order. Each tuple, denoted
as T , consists of a finite number of sentences,
xi, forming T =(x1 ∼ xm). The sentiment
polarity is either positive or negative. Our goal with
SentiStream is to learn and identify the polarity
of T (x1 ∼ xm) ∈ S as soon as Ti arrives.

3.1 Unsupervised Module

Due to potential delays between training cycles,
the system might not be up-to-date with events and
emerging knowledge (Bubeck et al., 2023). To

combat this, we employ two elements: continual
pre-trained language model (PLM) training and a
dynamic lexicon-based classifier.

Continuous PLM Training: In our framework,
the PLMs are subject to continuous training, a
distinct departure from offline methods (Agarwal
and Mittal, 2016; Haque et al., 2018) where PLMs
can quickly fall behind as the vocabulary and
polarity models evolve. Such offline methods
necessitate periodic re-training with labelled
datasets, an approach that our framework sidesteps.
Our continual training ensures the PLMs remain
updated, and capable of labelling sentences that
contain even the most novel vocabulary.

The continual PLM training module leverages
rich semantic and temporal information from the
streaming textual data to incrementally train the
models. Specifically, the streaming data is used to
perpetually train the model using the pre-trained
loss function in an unsupervised manner. The
continuous learning aspect of our model means it
can learn and refine sentence representations over
time, thereby keeping in step with the evolving
nature of the data stream. This unique approach
allows the model to adapt more effectively to the
dynamic language used in current data streams,
ensuring it maintains relevance and accuracy.

Dynamic Lexicon-based Classifier: After
we’ve obtained the learned vector representations
of each word, we suggest leveraging text
similarity measures (Wang and Dong, 2020;
Vijaymeena M.K, 2016; Navigli and Martelli,
2019) to infer the sentiment polarity of an input
sentence. This is based on a list of reference
words with pre-established polarities (Lin and He,
2009), as opposed to relying on supervised training
progress for polarity identification.

Our lexicon contains various emotion
representations that we vectorize using our
model. Subsequently, we conduct a cosine
similarity computation (CSC) between the
vectorized input and the mean of either the positive
or negative reference words. The computed
aggregated mean is referred to as Mean(pos)
or Mean(neg). Ultimately, by comparing
Mean(pos) and Mean(neg), we infer the overall
polarity of the input tuple.

However, the reference table may become
obsolete over time. To address this issue, we
dynamically update the lexicon using sentences
from the stream merge module, where the model’s
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Figure 1: A workflow overview of SentiStream. The unlabelled data enters both the unsupervised and semi-
supervised modules, after which the results are merged and output via the stream merge module.

output confidence is high. The lexicon update
algorithm, detailed in Algorithm 1, autonomously
incorporates new words into the sentiment lexicon,
eliminating the need for manual annotation of new
data.

We establish a similarity threshold that offers a
balance between the need to add new words and the
risk of adding false positives to the reference table.
Hence, new words are only added to the reference
table if the cosine similarity between the lexicon
and the word surpasses the similarity threshold.

Through this dynamic update process, our
lexicon continuously reflects the prevailing ways
emotions are expressed in everyday language.
Our extensive experimental results demonstrate
that this approach not only significantly reduces
computational effort but also consistently
outperforms alternative methods in terms of
prediction accuracy.

3.2 Semi-Supervised Module
The semi-supervised module’s primary goal
is to efficiently utilize a limited amount of
labeled data alongside a substantial amount of
unlabeled data obtained from the streaming input,
thereby promoting semi-supervised learning. To
accomplish this, we use labelled data collected
from the stream merge module to identify instances
with high confidence, which are then used as
pseudo-labels for the continual training of the semi-
supervised classifier.

However, the ever-evolving nature of streaming
data environments can make the acquisition of

Algorithm 1 Lexicon Update
Input: Sentences S = {s1, s2, . . . sn}, Initial lexicon D =
{Dpos, Dneg}, Similarity threshold α

Output: Updated lexicon D′ = {D′
pos, D

′
neg}

Compute mean embedding of positive and negative lexicon.
µpos = 1

|Dpos|
∑

d∈Dpos
, µneg = 1

|Dneg|
∑

d∈Dneg

for each sentence s in S do
for each word w in s do

Calculate cosine similarity between w and µpos

if cos(w, µpos) > α then
Add w to D′

pos

end if
Calculate cosine similarity between w and µneg

if cos(w, µneg) > α then
Add w to D′

neg

end if
end for

end for

return D′ = {D′
pos, D

′
neg}

accurate and consistent pseudo-labels a challenging
task. If changes occur within the dataset, it may
be difficult for weakly supervised models to make
accurate decisions. Likewise, static thresholds may
not yield an adequate number of pseudo-labelled
data under these changing conditions.

Dynamic Threshold: In order to overcome
these challenges, we employ a dynamic threshold
approach, as proposed in the study by Zhang et al.
(2021). As shown in Algorithm 2, this method
adjusts the threshold for each class based on the
model’s current learning status. The learning
efficiency of a class is assessed by counting the
number of samples whose predictions surpass the
hard threshold, defined as the sum of the lower and
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upper thresholds. This count is then normalized
by the maximum value of either the positive or
negative learning effect or the number of low-
confidence labels. This approach is especially
useful in the early learning stages when the learning
effect is generally minimal, and a higher number
of low-confidence labels would naturally lead to a
more flexible threshold.

Following this, we utilize a non-linear function
to adjust the learning rate. Initially, this function
incrementally increases the threshold, but it
quickens the rise when both learning rates are high.
This method allows for a more seamless and logical
integration of data, thereby improving the quality
of the produced pseudo-labelled data.

Algorithm 2 Dynamic Threshold
Input: Pseudo labels P = {p1, . . . pn}, Confidence scores

C = {c1, . . . cn}, Learning effect λ = {λpos, λneg},
Fixed lower threshold α = {αpos, αneg}, Fixed upper
threshold β = {βpos, βneg},

Output: Filtered pseudo labels P ′ = {p′1, . . . p′m}
pos←∑

c>αpos+βpos
1

neg ←∑
c<−(αneg+βneg)

1

if pos+ neg > 0 then
δ ← max(|C| − (pos+ neg), pos, neg)
λpos ← (pos/δ)/(2− pos/δ)
λneg ← (neg/δ)/(2− neg/δ)

end if
for c← 1 to n do

if c ≤ −(αneg + βneg ∗ λneg) or c ≥ (αpos + βpos ∗
λpos) then

P ′ ← pc
end if

end for

return P ′ = {p′1, . . . p′m}

3.3 Stream Merge Module

The principal aim of the stream merge module is
to competently amalgamate data and yield reliable
pseudo-labelled data. To achieve this, we introduce
a stream merge method hinging on confidence
assessment. As depicted in Algorithm 3, this
method merges data streams generated by two
separate parts, selecting data points accurately
classified (with high confidence) by both models to
form pseudo-labels.

The algorithm dynamically adjusts the weights
for each model, basing its decision on its
previous prediction performance. A model
demonstrating a higher ratio of high-confidence
predictions will be allocated more weight in the
subsequent iteration, thereby potentially improving
its prediction accuracy while adapting to the

Algorithm 3 Stream Merge
Input: Unsupervised model’s predicted labels Ul =
Ul1 , . . . Uln , Unsupervised model’s predicted confidence
Uc = Uc1 , . . . Ucn , Semi-supervised model’s predicted
labels Sl = Sl1 , . . . Sln , Semi-supervised model’s
predicted confidence Sc = Sc1 , . . . , Scn Fixed confidence
threshold T , Adaptive weight for unsupervised prediction
Wu, Adaptive weight for semi-supervised prediction Ws

Output: Predictions P ′ = p′1, . . . p′m
for i← 1 to n do

if Uci > T and Sci > T then
if Uci > Sci then

P ′ ← Uli

else
P ′ ← Sli

end if
else

if Uci ∗Wu > Sci ∗Ws then
P ′ ← Uli

else
P ′ ← Sli

end if
end if

end for
Wu ←

∑n
i=1 Uci

>T

n

Ws ←
∑n

i=1 Sci
>T

n

return P ′ = {p′1, . . . p′n}

models’ performance over time. For every
data point, the algorithm checks whether both
models show high confidence in their predictions
(surpassing a threshold T). If so, the prediction
associated with the highest confidence score is
selected. Otherwise, the algorithm multiplies the
confidence scores by the adaptive weights for each
model, and the prediction with the highest weighted
confidence score is chosen.

This approach prioritizes labels with high
confidence, which generally lead to correct labels,
while also addressing the issue of inaccurate
low-confidence labels. By multiplying the
model’s weight with low-confidence predictions,
the algorithm ensures that even when predictions
have low confidence, the highest-performing model
is given more importance. This, in turn, contributes
to making the overall prediction process more
consistent and logical.

4 Experimental Setup

4.1 Datasets
In conducting our evaluation, we employed two
distinct types of datasets to thoroughly assess
the adaptability of SentiStream to dynamic
data streams, each labeled according to specific
classification rules. These datasets are delineated
as follows:
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YelpLMRDSST-2

Figure 2: Data stream (Yelp → LMRD → SST-2)

4.1.1 Multi-domain Evolving Datasets
Formulated by amalgamating three well-known,
large-scale datasets, this construction simulates
a dynamic data stream featuring evolving
characteristics, thereby reflecting real-world data
fluctuations across multiple domains and temporal
spans.

Yelp Review Polarity (Zhang et al., 2015) was
derived from the Yelp Dataset Challenge in 2015.
Reviews were labeled as either positive, if they
received 3 or 4 stars, or negative, if they received 1
or 2 stars.

Large Movie Review (LMRD) (Maas et al.,
2011) was collected by the Artificial Intelligence
Laboratory at Stanford University. This dataset
contains movie reviews along with their associated
binary sentiment polarity labels, serving as a
benchmark for sentiment classification.

Stanford Sentiment Treebank-2 (SST-
2) (Socher et al., 2013) collected by Stanford
University researchers. It consists of movie
reviews extracted from Rotten Tomatoes parsed
using Stanford parser with sentiment labels.

We evenly sample data from the three datasets,
merging them in three different orders (1,Yelp →
LMRD → SST-2; 2,LMRD → SST-2 → Yelp; 3,
SST-2 → Yelp → LMRD) to simulate real-world
data drift, with one of these scenarios illustrated in
Figure 2.

4.1.2 Longitudinal Singular Domain Datasets
Incorporates two datasets with a longitudinal
perspective within a single, consistent domain,
providing insight into how SentiStream handles
changes and shifts over time within the same data
source

Sentiment140 (Go et al., 2009) was compiled
using the Twitter API, encompassing a balanced
distribution of 1.6 million tweets, expressed
sentiments, and recorded in chronological order
from April 6, 2009, to June 25, 2009.

Amazon Fashion, a subset of the Amazon
Review Data (Ni et al., 2019) and consists of
customer reviews for fashion products available

on Amazon. These reviews were collected in
chronological order in quarterly periods from 2010
to 2018.

4.2 Language Model Set

In this paper, we select some lightweight
language model to achieve lower latency and
higher throughput, in line with the industry’s
deployment preference for simple and efficient
models. Galke and Scherp (2021) showed
that combining a bag-of-words model with
WideMLP resulted in exceptional performance
in text classification tasks. Characterized
by a single wide hidden layer, WideMLP
outperforms numerous contemporary models in
inductive text categorization. Furthermore,
training large language models (e.g. BERT,
GPT) on streaming data involves additional
complexities and constraints, which we will
discuss in Section 7. Therefore, here we
choose Word2Vec (Mikolov et al., 2013) and
Hierarchical Attention Networks (Yang et al.,
2016) as the base models for unsupervised and
semi-supervised learning, respectively. We also
include BERT (Devlin et al., 2018) as a large-scale
model for comparative testing.

4.3 Baselines

We compare the performance of the proposed
model with diverse types of baselines such as
random, supervised and self-supervised methods.

• Random: At first, we present a random
baseline where the predictions are generated
using a uniform distribution. This will provide
us with a lower bound for our evaluation.

• Supervised: We train a supervised model by
using 0.5% of the entire dataset as the training
set. We chose BERT and HAN as the two base
models for our experiments. This will provide
us with an upper bound for our evaluation.

• Self-supervised: The self-supervised
framework used by (Iosifidis and Ntoutsi,
2017) employed co-training to improve the
model performance.

• Weakly-supervised: We select a weakly-
supervised framework (CL-WSTC (Li et al.,
2023)) that considers the scenario of continual
learning for comparison. They employ BERT
as the foundational model.
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5 Experimental Evaluation

In this section, we study the performance of the
different algorithms on three datasets, compare
them with different baselines, and discuss the
qualitative analysis of our model’s performance.

5.1 Evaluation Framework

We evaluate our framework within an end-to-
end setup for real-time sentiment classification,
with throughput, latency, accuracy, and streaming
data adaptation serving as primary performance
indicators. The task requires processing text
data within specific time intervals and assigning
the appropriate emotion labels. To verify the
effectiveness of our framework, we will run
experiments on integrated data streams. We
designate 0.5% of the ongoing data stream as
training data for our semi-supervised model and
other supervised model, while the remaining
portion is utilized as test data. This enables us to
assess the performance at each stage and the overall
performance. An ablation study provides insights
into the unique effects of various optimizations, but
due to space constraints, this has been relocated to
Appendix A.1.

5.2 Evaluation Metrics

We evaluate the system with five performance
metrics.

Throughput. High throughput is a necessity to
manage large-volume data streams. For instance,
in the event of significant happenings, opinions
on social media may suddenly surge. Thus, we
measure throughput as the maximum number of
input tuples per second that the system can sustain.

Latency. We measure the 95% latency as the
elapsed time from when the input tuple arrives
to when the corresponding classification result is
produced. It is an important indicator to denote the
system’s responsiveness.

Accuracy. We define prediction accuracy as
the ratio of correct predictions (the sum of true
positives and true negatives) to the total number of
tuples processed.

F1-score & AUC. To evaluate the accuracy of
the prediction in a workload with class imbalance,
we also use the F1-score and AUC, which is the
harmonic mean of precision and recall.

Method Latency(ms) Throughput

Self-supervised 2.43 409
Weakly-supervised 584.75 9
Supervised (BERT) 53.17 162

SentiStream 0.67 1471

Table 1: End-to-end evaluation of the throughput and
latency

5.3 Experimental Results and Analysis

5.3.1 End-to-end comparison
Latency and Throughput: In Table 1, we can
see that SentiStream surpasses self-supervised
and weakly-supervised methods, in terms of
latency and throughput. The BERT model’s
latency is nearly 100 times that of SentiStream.
Moreover, the difference in throughput is especially
pronounced, with SentiStream outperforming the
BERT model by nearly an order of magnitude. This
discrepancy can be ascribed to the stark contrast
in the number of model parameters utilized by
SentiStream compared to those used by the BERT
model. As for the weakly-supervised method, it
was initially developed without considering latency
and throughput. Consequently, its approach tends
to prioritize future accuracy enhancements, even if
it potentially compromises latency and throughput.

5.3.2 Multi-domain Evolving Datasets
Overall Performance: Table 2 presents a
comprehensive summary of our experimental
results. Our framework, SentiStream,
consistently exhibits excellent performance,
occasionally even matching the supervised
BERT baseline. In addition, the sentistream
approach is always excellent with the supervised
HAN and word2vec models. In terms of the F1
score, SentiStream substantially outperforms its
counterparts, thereby showcasing the power of its
co-training strategy for handling unbalanced data.
The performance of the unsupervised component
is particularly noteworthy, underscoring the bag-
of-words model’s ability to produce satisfactory
results, even in less complicated text classification
tasks. As the data suggests, SentiStream’s
performance improves with extended offsets.

Adaptation to Streaming Data: Figure 3
presents the dynamic performance of accuracy
across the entire datasets, assessing the continual
learning capability of our method. Initially, during
the Yelp dataset stage, supervised learning shows
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Method Yelp(%) LMRD(%) SST-2(%) Total(%) F1 AUC

Random 49.68 % 50.12 % 50.07 % 50.16 % 51.07 % 50.19 %
Self-supervised 64.74 % 49.81 % 44.77 % 57.07 % 45.74 % 47.66 %

Weakly-supervised 66.11 % 51.97 % 40.91 % 52.94 % 42.19 % 45.11 %
Supervised (W2V) 75.42 % 60.64 % 57.65 % 65.79 % 65.00 % 73.44 %
Supervised (HAN) 75.38 % 65.91 % 50.24 % 63.01 % 68.13 % 74.85 %
Supervised (BERT) 86.07 % 78.19 % 46.48 % 70.25 % 72.60 % 78.99 %

Us module [3.1] 81.60 % 77.41 % 76.23 % 78.79 % 79.01 % 82.84 %
Ss module [3.2] 79.80% 68.63 % 73.88 % 74.98 % 70.49 % 82.20 %
SentiStream 81.73 % 77.36 % 76.22 % 78.82 % 79.02 % 84.97 %

Table 2: Yelp, LMRD, and SST-2 correspond to the three parts of the merged dataset, Total indicates the average
performance of the model in the three orders. F1 refers to the overall F1 score, and the average latency and
throughput are also provided. For different methods, the first three are the baselines we have listed in section 4.3,
followed by the results for the unsupervised module, semi-supervised module, and our framework in section 3.

remarkable performance, primarily due to the
powerful capabilities intrinsic to BERT. However,
when concept drift occurs, supervised learning
fails to adapt and learn continuously (as it requires
annotated data for model fine-tuning), leading to a
decline in performance. This downward trend in
performance becomes significantly evident during
the final task involving the SST-2 dataset.

Surprisingly, methods expected to demonstrate
substantial continual learning capabilities, such
as self-supervised learning and weakly supervised
learning, did not meet the anticipated performance
metrics. The underlying model for self-supervised
learning is Bayesian, which might be too simple to
effectively mine and extract valuable information.
Upon closer examination of weakly supervised
learning, a major issue was identified: the model’s
failure to properly integrate seed words during
its operation in the online sentiment classification
task. This problem is critical given the significant
influence these seed words have on the model’s
performance.

On the contrary, SentiStream displays
exceptional performance, consistently adapting to
the evolving data distribution inherent to the data
stream, thus promoting continuous performance
improvement. A prime example is SentiStream’s
progressively improving performance throughout
the SST dataset. It also demonstrated notable
resilience in dealing with data drift. Such
adaptability is particularly important in real-world
scenarios where concept drift can occur in more
complex forms.

Y_1 Y_2 Y_3 Y_4 Y_5 Y_6 L_1 L_2 L_3 L_4 L_5 L_6 S_1 S_2 S_3 S_4 S_5 S_6

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy Across Datasets

Self-supervised
Supervised(Bert)
SentiStream

Figure 3: Performance in Multi-domain Stream data,
Y is Yelp dataset, L is LMRD dataset, S is SST
dataset. Each dataset has six sequential accuracy values,
representing the progressive adaptation in the stream
data.

5.3.3 Longitudinal Singular Domain Datasets

Overall Performance: With regard to
the aggregate performance, SentiStream
exhibits outstanding proficiency on both the
Sentiment140 and Amazon Fashion datasets.
Notably, SentiStream outperforms its rivals in
metrics such as ACC, F1-score, and AUC.

Adaptation to Streaming Data: As illustrated
in Figures 4 and 5, there are notable performance
shifts over time for the self-supervised, supervised,
and SentiStream methodologies. In the context
of Figure 4, SentiStream markedly distinguishes
itself from the other two approaches. On the
other hand, in Figure 5, early self-supervised
and supervised methods initially lead the pack.
However, as the data distribution shifted, for
instance during the 2013-Q3 quarter, SentiStream
leveraged its superior adaptability and took a
comprehensive lead. In summary, SentiStream
showcases commendable average performance
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Dataset Method ACC(%) F1 AUC

Sentiment140

Self-supervised 63.75 % 63.07 % 66.26 %
Weakly-supervised 53.51 % 52.71 % 49.23 %
Supervised (W2V) 66.09 % 65.78 % 60.31 %
Supervised (HAN) 64.87 % 68.91 % 61.88 %
Supervised (BERT) 59.90 % 66.58 % 61.96 %
SentiStream 67.81 % 67.56 % 72.21 %

Amazon Fashion

Self-supervised 78.03 % 87.65 % 52.07 %
Weakly-supervised 64.27 % 51.17 % 49.95 %
Supervised (W2V) 78.11 % 87.71 % 64.56 %
Supervised (HAN) 74.81 % 80.12 % 69.39 %
Supervised (BERT) 76.01 % 82.71 % 50.00 %
SentiStream 85.47 % 90.03 % 93.50 %

Table 3: Performance comparison of different methods for Sentiment140 and Amazon (Fashion).

and robust adaptability to streaming data in
Longitudinal Singular Domain Datasets.

6 Conclusion

This paper introduced SentiStream, an adaptive
co-training framework that efficiently tackles
concept drift, latency, and throughput issues
in dynamic data streams for online sentiment
analysis. Through its integrated unsupervised,
semi-supervised, and stream merge modules,
SentiStream effectively manages continuous data
stream evolution, a major challenge for existing
methods. Continuous training and dynamic
dictionary updates enhance SentiStream’s
adaptability to ever-changing data streams, proving
its potential applicability in real-world scenarios.
Experimental results demonstrated SentiStream’s
promising performance in online sentiment
analysis across various data-driven applications.
As a highly adaptable and efficient solution,
SentiStream addresses the growing demand for
real-time sentiment analysis in evolving online
environments and data streams. Future work can
build on this foundation, extending the application
of the SentiStream framework to other dynamic,
data-driven domains.

7 Limitation

A primary limitation of our study is the lack
of integration with popular large-scale language
models (e.g., GPT4 (OpenAI, 2023)). However, it
is worth noting that employing these models entails
increased computational resources and latency.
Moreover, current large-scale language models

cannot be trained on streaming data, presenting
various challenges, such as computational resource
utilization, real-time updates, data instability,
hyperparameter tuning, storage and management,
and system stability and reliability. Bubeck
et al. (2023) also emphasizes the importance of
continuous learning for LLM and indicates the need
for further research and improvement, while our
work can be seen as an initial, yet important attempt
towards such a goal. Another practical issue is the
absence of publicly available corpora categorized
by domain or year, along with corresponding
sentiment classification test sets. Moving forward,
we aim to address this limitation by working with
genuine large-scale language models trained on
streaming data, showcasing their effectiveness in
more complex tasks.
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A Appendix

A.1 Ablation Study
To assess the contribution of each proposed
method in improving the performance of our
semi-supervised learning model, we conducted an
ablation study, as shown in Table 7. The study
aimed to evaluate the contributions of dynamic
lexicon update and dynamic threshold, as well as
their combination, in enhancing sentiment analysis
performance. The study consisted of four model
variations, namely the baseline model, the model
with dynamic lexicon update, the model with
dynamic threshold, and the model combining both
dynamic lexicon update and dynamic threshold.

By conducting this experiment, we sought
to provide empirical evidence regarding the
effectiveness of these methods and their impact on
sentiment analysis performance. Understanding
the contributions of dynamic lexicon update
and dynamic threshold, both individually and in
combination, can guide the development of more
accurate and robust sentiment analysis models,
especially in scenarios with limited labeled data
availability.

Baseline Model: The baseline model served as
starting point for comparison. It employed a fixed
threshold method with the upper threshold set to 0.8
for filtering pseudo labels and did not incorporate
dynamic lexicon update or dynamic threshold.

Model with Dynamic Lexicon Update: In this
variation, we introduced dynamic lexicon update
to the baseline model while maintaining fixed
threshold for pseudo label filtering. It is aimed to
leverage an evolving lexicon to enhance sentiment
classification. Similarity threshold (α) was varied
to explore its impact on the model’s performance.
Specifically, we experimented with three values of
α: 0.7, 0.8 and 0.9.

Model with Dynamic Threshold: This
variation incorporated dynamic thresholding into
the baseline model, but did not involve lexicon
updates. It allowed for adaptively adjusting the
threshold for pseudo label filtering based on the
model’s predictions. We examined the effects of
different upper threshold values (T) on the model’s
performance. The same three values of T (0.7,
0.8, and 0.9) used in the previous variation were
employed.

Model with Combined Dynamic Lexicon
Update and Dynamic Threshold: In the final
variation, we combined both dynamic lexicon

update and dynamic threshold in the baseline
model. This comprehensive approach aimed
to leverage the benefits of both techniques
simultaneously. For this variation, we fixed the
similarity threshold at 0.9 and the upper threshold
at 0.8.

The results clearly demonstrate that the
combined model outperforms the other variations,
indicating the effectiveness of leveraging both
dynamic lexicon update and dynamic thresholding
for improved sentiment analysis performance.

A.2 Device Setting
This is information about the device currently used
in the experiment.

CPU i7-13700ks
Memory 64GB

GPU A6000

Table 4: The table shows the device information.

A.3 Word List
Table 5 shows the initial word list, used in
Algorithm 1.

Positive

brilliant bliss excellent fantastic
super masterpiece admire cool
amuse love wonderful best great
rejoice beautiful awesome fun

Negative

terrible awful unwatchable bad
disgust boring stupid bullshit
abuse outrage rubbish worst
awkward disappointing fraud

Table 5: Reference table used in our experiments

A.4 Distribution of Sentiments in Datasets

Dataset Negative Positive
Yelp 40227 39773

LMRD 24698 24884
SST-2 30076 37779

Sentiment140 800000 800000
Amazon Fashion 170924 610225

Table 6: Sentiment distribution in datasets

A.5 Additional Results
A.5.1 More Training Data Evaluation Results
We used more as (1%) of the total training data,
although this is probably the more rare case. In the
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Baseline Lexicon Update Dynamic Threshold Final

α=0.7 α=0.8 α=0.9 T=0.7 T=0.8 T=0.9

Us module
acc 72.57 % 61.13 % 72.65 % 78.20 % 71.56 % 72.40 % 72.45 % 78.83 %
f1 73.67 % 68.76 % 75.87 % 78.91 % 72.42 % 73.45 % 73.59 % 79.66 %

Ss module
acc 72.13 % 68.44 % 72.13 % 74.18 % 71.26 % 72.92 % 69.36 % 74.90 %
f1 69.36 % 63.70 % 69.96 % 71.25 % 63.61 % 72.57 % 64.87 % 71.99 %

SentiStream
acc 72.95 % 64.82 % 73.99 % 77.06 % 70.98 % 73.75 % 70.20 % 78.94 %
f1 71.33 % 70.46 % 76.54 % 77.70 % 71.24 % 72.88 % 66.48 % 79.60 %

Table 7: Ablation study of different model variations. The table shows the accuracy and F1 score achieved by each
variation under different experimental conditions, such as lexicon update with varying similarity threshold (α) and
dynamic threshold with varying upper threshold (T).

Method Yelp(%) LMRD(%) SST-2(%) Total(%) F1 AUC Latency(ms) Throughput

Random 49.88 % 50.45 % 50.26 % 50.10 % 50.94 % 50.06 % – –
Self-supervised 68.92 % 49.83 % 44.69 % 55.66 % 32.19 % 46.81 % 2.42 480

Supervised 90.82 % 81.83 % 65.98 % 79.55 % 79.88 % 87.83 % 54.85 155
Us module [3.1] 83.41 % 76.56 % 76.16 % 79.16 % 80.14 % 82.96 % – –
Ss module [3.2] 82.19% 68.10 % 74.00 % 75.77 % 75.89 % 82.22 % – –
SentiStream 83.50 % 76.52 % 76.00 % 79.12 % 80.06 % 84.98 % 0.77 1292

Table 8: The primary distinction between the current table and Table 2 lies in the volume of training data utilized:
the present table incorporates 1% more training data, albeit such instances are uncommon. In practical settings,
acquiring a substantial amount of labeled data for training, particularly within streaming contexts, is problematic.
Real-time manual labeling is virtually infeasible.

results, the supervised effect of BERT is better due
to having more training data, but still inevitably
followed by a significant drop on the SST-2 dataset
as indicated in table 8.

A.5.2 Multi-domain Evolving Datasets
We conducted comprehensive experiments
involving various combinations of datasets to
evaluate the performance of our method compared
to different baselines. Notably, our method
consistently outperformed the alternative baselines
in all combinations. Specifically, we examined the
Yelp → LMRD → SST-2, LMRD → SST-2 →
Yelp and SST-2 → Yelp → LMRD combinations,
as illustrated in Table 9, Table 10, Table 11
respectively. The superior effectiveness of our
method in addressing the research problem is
demonstrated by its consistent performance across
various dataset arrangements.

A.5.3 Longitudinal Singular Domain Datasets
Table 12 and Table 13 present the ACC, F1, AUC,
throughput, and latency metrics for longitudinal
singular domain datasets. Figure 4 and 5 depict
the temporal trends of supervised, semi-supervised,
and SentiStream performance on Longitudinal
Singular Domain Datasets, specifically Sentiment
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Figure 4: Performance in Longitudinal Stream data
(Sentiment 140).
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Figure 5: Performance in Longitudinal Stream data
(Amazon Fashion).

140 and Amazon Fashion. The SentiStream
demonstrates notable average performance and
robust adaptability to streaming data within these
datasets.
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Method Yelp(%) LMRD(%) SST-2(%) Total(%) F1 AUC

Random 49.68 % 50.12 % 50.07 % 50.16 % 51.07 % 50.19 %
Self-supervised 64.74 % 49.81 % 44.77 % 57.07 % 45.74 % 47.66 %

Weakly-supervised 66.11 % 51.97 % 40.91 % 52.94 % 42.19 % 45.11 %
Supervised (W2V) 75.42 % 60.64 % 57.65 % 65.79 % 65.00 % 73.44 %
Supervised (HAN) 75.38 % 65.91 % 50.24 % 63.01 % 68.13 % 74.85 %
Supervised (BERT) 86.07 % 78.19 % 46.48 % 70.25 % 72.60 % 78.99 %

Us module [3.1] 81.60 % 77.41 % 76.23 % 78.79 % 79.01 % 82.84 %
Ss module [3.2] 79.80% 68.63 % 73.88 % 74.98 % 70.49 % 82.20 %
SentiStream 81.73 % 77.36 % 76.22 % 78.82 % 79.02 % 84.97 %

Table 9: Performance comparison of different baselines for Yelp → LMRD → SST-2 combination.

Method LMRD(%) SST-2(%) Yelp(%) Total(%) F1 AUC

Self-supervised 73.95 % 69.08 % 50.83% 62.85 % 53.43 % 43.78 %
Weakly-supervised 51.48 % 51.37 % 43.91 % 47.59 % 44.55 % 43.61 %
Supervised (W2V) 73.79 % 62.11 % 72.18 % 69.02 % 69.45 % 74.75 %
Supervised (HAN) 73.14 % 56.91 % 74.64% 70.42 % 69.16 % 77.24 %
Supervised (BERT) 80.42 % 56.17 % 83.49 % 73.36 % 70.16 % 90.73 %

Us module [3.1] 76.59 % 75.69 % 83.02 % 78.49 % 79.83 % 82.66 %
Ss module [3.2] 74.48% 74.97 % 79.86 % 76.84 % 78.32 % 84.03 %
SentiStream 76.63 % 76.76 % 83.05 % 79.34 % 80.19 % 86.26 %

Table 10: Performance comparison of different baselines for LMRD → SST-2 → Yelp combination.

Method SST-2(%) Yelp(%) LMRD(%) Total(%) F1 AUC

Self-supervised 68.43 % 49.81 % 50.12% 56.23 % 63.35 % 48.80 %
Weakly-supervised 55.19 % 45.57 % 49.13 % 49.92 % 45.64 % 45.98 %
Supervised (W2V) 55.69 % 49.72 % 50.15 % 51.91 % 68.35 % 50.74 %
Supervised (HAN) 53.96 % 49.81 % 48.67% 49.99 % 68.75 % 49.79 %
Supervised (BERT) 72.30 % 60.81 % 66.12 % 66.41 % 71.48 % 63.58 %

Us module [3.1] 61.13 % 83.82 % 81.27 % 75.40 % 76.72 % 75.32 %
Ss module [3.2] 53.21 % 71.23 % 67.26 % 64.04 % 58.34 % 75.18 %
SentiStream 61.13 % 83.88 % 82.71 % 75.91 % 76.73 % 79.38 %

Table 11: Performance comparison of different baselines for SST-2 → Yelp → LMRD combination.

Method ACC(%) F1 AUC Latency(ms) Throughput(tuples/s)

Random 49.95 % 40.79 % 49.95 & – –
Self-supervised 63.75 % 63.07 % 66.26 % 3.57 412

Weakly-supervised 53.51 % 52.71 % 49.23 % 419.61 19
Supervised (W2V) 66.09 % 65.78 % 60.31 % 0.01 54276
Supervised (HAN) 64.87 % 68.91 % 61.88 % 0.03 17853
Supervised (BERT) 59.90 % 66.58 % 61.96 % 36.90 242

Us module 67.73 % 66.46 % 69.05 % – –
Ss module 64.46 % 67.96 % 71.51 % – –

SentiStream 67.81 % 67.56 % 72.21 % 0.21 4518

Table 12: Performance comparison of different baselines for Sentiment140.

Method ACC(%) F1 AUC Latency(ms) Throughput(tuples/s)

Random 50.06 % 61.02 % 50.07 % – –
Self-supervised 78.03 % 87.65 % 52.07 % 2.20 453

Weakly-supervised 64.27 % 51.17 % 49.95 % 538.90 14
Supervised (W2V) 78.11 % 87.71 % 64.56 % 0.02 43447
Supervised (HAN) 74.81 % 80.12 % 69.39 % 0.03 15132
Supervised (BERT) 76.01 % 82.71 % 50.00 % 46.07 227

Us module [3.1] 83.02 % 89.18 % 87.17 % – –
Ss module [3.2] 82.93 % 86.86 % 92.29 % – –
SentiStream 85.47 % 90.03 % 93.50 % 0.28 3511

Table 13: Performance comparison of different baselines for Amazon (Fashion).
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