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Abstract
We propose LLM-FP4 for quantizing both
weights and activations in large language mod-
els (LLMs) down to 4-bit floating-point val-
ues, in a post-training manner. Existing post-
training quantization (PTQ) solutions are pri-
marily integer-based and struggle with bit
widths below 8 bits. Compared to integer
quantization, floating-point (FP) quantization
is more flexible and can better handle long-tail
or bell-shaped distributions, and it has emerged
as a default choice in many hardware platforms.
One characteristic of FP quantization is that its
performance largely depends on the choice of
exponent bits and clipping range. In this re-
gard, we construct a strong FP-PTQ baseline
by searching for the optimal quantization pa-
rameters. Furthermore, we observe a high inter-
channel variance and low intra-channel vari-
ance pattern in activation distributions, which
adds activation quantization difficulty. We rec-
ognize this pattern to be consistent across a
spectrum of transformer models designed for
diverse tasks, such as LLMs, BERT, and Vision
Transformer models. To tackle this, we propose
per-channel activation quantization and show
that these additional scaling factors can be repa-
rameterized as exponential biases of weights,
incurring a negligible cost. Our method, for the
first time, can quantize both weights and acti-
vations in the LLaMA-13B to only 4-bit and
achieves an average score of 63.1 on the com-
mon sense zero-shot reasoning tasks, which is
only 5.8 lower than the full-precision model,
significantly outperforming the previous state-
of-the-art by 12.7 points. Code is available at:
https://github.com/nbasyl/LLM-FP4.

1 Introduction

Since the introduction of transformer architec-
ture (Vaswani et al., 2017), transformers have
superseded recursive neural networks, emerging
as the dominant architecture in numerous natu-
ral language processing (NLP) tasks (Kenton and

*These authors contributed equally to this work

Toutanova, 2019; Lewis et al., 2020). The trans-
formative impact of the transformer has been fur-
ther propelled by the emergence of models like
GPT (Brown et al., 2020; OpenAI, 2023), cata-
pulting the popularity of this architecture to new
heights. Meanwhile, the versatility of transformers
extends beyond NLP, encompassing diverse do-
mains such as vision (Dosovitskiy et al.; Touvron
et al., 2021), audio (Akbari et al., 2021), etc. This
trend towards a unified architecture for different
modalities represents a groundbreaking develop-
ment within the realm of deep learning.

However, the advancements in transformer per-
formance are accompanied by a corresponding in-
crease in model size and computational costs (Ka-
plan et al., 2020). This poses significant challenges
when attempting to leverage the full potential of
transformer models in use cases where memory
or computational resources are limited. Despite
the extensive research and widespread adoption
of transformers, the field of transformer compres-
sion remains relatively underexplored. To address
this gap, our study focuses on the compression
of transformers, especially through floating-point
post-training quantization techniques.

Post-training quantization (PTQ) offers the ad-
vantages of simple to use with minimal fine-tuning
requirements (Nagel et al., 2020; Cai et al., 2020).
Existing PTQ solutions for transformers primar-
ily focus on integer (INT) quantization (Liu et al.,
2021; Yuan et al., 2022), which can be effective
in certain scenarios but often break down when bit
widths are below 8 bit. On the other hand, floating-
point (FP) quantization has gained significant trac-
tion as a more flexible alternative, capable of better
accommodating various activation and weight dis-
tributions. In fact, FP8 has emerged as the default
choice in various hardware platforms, including the
NVIDIA H100.

Different from integer (INT) quantization, a par-
ticular challenge in floating-point (FP) quantiza-
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tion is how to select appropriate exponent bits and
scale parameters. Improper parameter choices can
lead to subpar or divergent quantization results. To
tackle this challenge, we introduce a robust recipe
for FP quantization, which leverage layer-wise re-
construction to jointly search for optimal exponent
bits and maximum values. Compared to previous
approaches that utilize gradient updates for expo-
nent bits (Kuzmin et al., 2022), our search-based
method proves to be more stable and consistently
delivers desirable quantization results, which estab-
lishes a strong baseline for FP-PTQ.

Furthermore, our investigation uncovers an in-
triguing pattern of activation distributions in trans-
formers, characterized by high inter-channel vari-
ance and low intra-channel variance. Similar pat-
terns are also observed in previous works (Xiao
et al., 2022; Dettmers et al., 2022), while we argue
that this pattern is inherent to transformer architec-
tures and not limited to specific tasks, as we have
observed consistent patterns not only in large lan-
guage models but also in BERT model and even
vision transformers. Motivated by these findings,
we introduce a novel pre-shifted exponent bias for
FP quantization of transformers. Concretely, we
leverage the per-channel activation variance com-
puted from calibration data and reparameterize
these scales as the exponential bias of the corre-
sponding FP quantized weight vectors. This ap-
proach effectively addresses the challenge posed
by high inter-channel variance while incurring neg-
ligible computational cost.

In summary, we study floating-point post-
training quantization (PTQ) for transformer archi-
tectures, and the contribution of this paper includes:
• We propose a search-based framework for de-
termining the optimal exponent bias and maximal
quantization value. This method outperforms ex-
isting techniques in terms of stability and perfor-
mance, establishing a strong baseline for floating-
point post-training quantization.
• We propose a novel technique, pre-shifted expo-
nent bias, which effectively addresses the challenge
of high inter-channel variance in the transformer
with negligible computational overhead.
• Experimental results demonstrate that the pro-
posed method yields the first usable FP4 weight
and activation quantized LLaMA-13B model with
mere 5.8-point degradation in zero-shot reasoning
tasks against the full-precision model, reducing the
gap by ∼70% compared to the previous SoTA.

• We further extend our method to BERT and vi-
sion transformers. It surpasses the previous best 4-
bit quantized BERT by 7.8 points on GLUE dataset
and achieves 31.4 points higher accuracy compared
to the previous SoTA ViT quantization method for
4-bit DeiT-S on ImageNet dataset.

2 Related Works

2.1 Post-Training Quantization
Model quantization can be mainly categorized
into quantization-aware training (QAT) and post-
training quantization (PTQ), depending on whether
it involves additional training for weight fine-
tuning or not. Most PTQ studies are primarily
focused on convolutional neural networks (CNNs)
(Nagel et al., 2020; Li et al., 2021; Wu et al., 2020;
Cai et al., 2020; Nagel et al., 2019). However, with
the growing popularity of transformer-based mod-
els, only a limited number of works (Bondarenko
et al., 2021; Yuan et al., 2022; Ding et al., 2022)
have been conducted to realize PTQ on transform-
ers. Moreover, the existing works primarily focus
on visual transformer models and exhibit inferior
performance when the bit width is below 8. There-
fore, in this work, we delve into the challenges of
the low-bit PTQ for language transformers.

2.2 Floating-Point Quantization
Floating-point (FP) quantization has emerged as a
promising alternative to integer quantization due
to its ability to handle long-tail distributions, and
offers increased flexibility (Kuzmin et al., 2022).
Additionally, modern GPUs such as H100 (Micike-
vicius et al., 2022) now support FP quantization.
Nonetheless, minimal research has been conducted
on FP quantization. Only (Kuzmin et al., 2022) pro-
poses a general FP8 quantization scheme primarily
for vision tasks, and (Zhang et al., 2023) adopts
a mixture of FP and INT formats quantization for
LLMs. In this work, we propose FPQ baseline as
a general guideline for low-bit floating-point PTQ
to compress language transformer models.

3 Preliminaries

3.1 Formulation of Floating-Point Variables
A standard floating-point number is represented as:

XFP = (−1)s2p−b(1+
d1
2

+
d2
22

+ ...+
dm
2m

) (1)

where s ∈ {0, 1} is the sign bit. di ∈ {0, 1} is ith

mantissa bit, m denoted number of mantissa bits.
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Figure 1: An illustration of floating-point (FP) quantization process using FP5 (E2M2) positive axis. The real-valued
clipped X ′′

R in Eq. 5 is rescaled by the real-valued scaling factor α̃. Then, the quantization step-size v is determined
by the range [2p, 2p + 1) in which X′′

R

α̃ falls (Eq. 9). Here, p ∈ {0, 1, ..., 2e−1} is the exponent bit value. Lastly, X

can be quantized to low-bit floating point values simply by XFP = α̃ · v ·
⌊
X′′

R

α̃·v

⌉
(Eq. 8).

p is an integer in [0, 2e − 1], and e denotes number
of exponent bits. b is an integer exponent bias. A
floating point with j number exponent bits and k
mantissa bits is denoted as FP format EjMk.

3.2 Floating-Point Quantization Process
In integer quantization, the real-valued variable XR

is quantized to an integer XINT with the following
formula:

XINT = α

⌊
Clip

(
XR

α
,Qmin, Qmax

)⌉
(2)

where ⌊·⌉ is the rounding function. XR is the
real-valued variable, α represents the full-precision
scaling factor, and Qmin, Qmax are the min/max
value of the quantization range. Similarly, a real-
valued variable XR can be converted to floating-
point XFP in two steps.
(1) Scale and clip. In FP quantization, we also
scale and clip the real-valued variable before quan-
tization as:

X ′
R = Clip(XR, Qmin, Qmax) (3)

where the min/max value range of signed floating-
point quantization can be calculated from Eq.1:

Qmax = −Qmin = (2− 2−m)22
e−b−1 (4)

Here the integer exponent bias b is another ad-
justable hyperparameter controlling Qmax and
Qmin, which has similar functionality as α. There-
fore, for simplicity, we reformulate Eq. 3 as:

X ′′
R = Clip

(
XR, Q̃min, Q̃max

)
, (5)

where

Q̃max = αQmax = α · (2− 2−m)22
e−b−1

= α · 2−b · (2− 2−m)22
e−0−1

= 2−b̃ · (2− 2−m)22
e−0−1

(6)

Note that we combine the tensor-wise real-valued
scaling factor α with integer exponent bias b to
form a new scaling factor α̃ = 2−b̃ = 2−b · α.
Here b̃ denotes a relaxed tensor-wise real-valued
exponent, and we can derive b̃ from the desired
clipping value Q̃max from Eq. 6 as:

b̃ = 2e − log2Q̃max + log2(2− 2−m)− 1 (7)

(2) Compare and quantize. Different from inte-
ger quantization, which simply utilizes the round-
ing function to convert the real-valued variables
to quantized ones, in floating-point quantization,
there is an additional step of comparing X ′′

R with
quantization levels and then quantize:

XFP = α̃ · v ·
⌊
X ′′

R

α̃ · v

⌉
(8)

where X ′′
R is clipped real-valued variable (Eq. 5),

α̃ is the tensor-wise floating-point scaling factor,
and v is an integer power of 2.

v=

{
2⌊log2|X

′′
R|+b̃⌋−m if ⌊log2|X′′

R|+b̃⌋≥1
21−m otherwise

(9)

Here we select the quantization level v according
to the magnitude of X′′

R
α̃ , which equals to X ′′

R · 2b̃.
Then the floating-point quantized variables can be
derived with Eq.8. The illustration of the quantiza-
tion process is in Fig. 1, detailed explanation can
also be found in (Micikevicius et al., 2022).

3.3 Floating-Point Matrix Multiplication

With the floating-point quantized variables, the ma-
trix multiplication is formulated as:

Oi,k
out = Xi,:

FPW
:,k
FP = α̃Xα̃

k
W
X̃i,:

FPW̃
:,k
FP (10)

Here in per-tensor activation quantization and per-
channel weight quantization, Xi,:

FP denotes ith row
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in the activation matrix and W:,k
FP denotes kth col-

umn in the weight matrix, such that each element
Oi,k

out in the output matrix is computed by the prod-
uct of two real-valued scalars α̃X and α̃k

W
times

the corresponding quantized activation and weight
vectors. We depict all the possible quantization
granularity options that support such efficient ma-
trix multiplication in Appendix D.

4 Method

In this section, we begin by introducing our joint
format and max value search, which establishes
our strong baseline and already achieves state-of-
the-art results at 8-bit and 6-bit quantization. Then
we present an efficient pre-shifted exponent bias
to tackle the catastrophic high inter-channel activa-
tion variance in transformer models and push the
quantization limit to 4-bit.

4.1 Joint Format and Max Value Search

The objective of post-training quantization is to
minimize the perturbation (δX = XFP − XR)
introduced by quantization to the pre-trained real-
valued network:

min E[L(XR + δX)− L(XR)] (11)

In this study, we adopt the setting presented in
(Choukroun et al., 2019; Wu et al., 2020), which
assumes a positive correlation between the change
in the intermediate output of the quantized model
and Eq. 11. Therefore, minimizing the distance
between the intermediate output of the quantized
layer (Ô) and the output of the original layer (O)
leads to minimize Eq. 11. Hence, the objective loss
metric is formulated as:

min (Ô−O)2 (12)

which is used to search for the optimal FP quantiza-
tion function in the following proposed framework.

The challenges in FP quantization arise from its
sensitivity to the quantization format and clipping
range. Undesirable format selection will result in a
catastrophic error rate. In addition, we observe that
the optimal clipping range varies depending on the
format used. Previous work (Kuzmin et al., 2022)
on floating-point (FP) quantization-aware training
(QAT) proposed to learn both the FP format and
maximum value with gradients. However, we find
this method suffers from over-fitting in PTQ, with
accuracy being even worse than naïve MinMax

method, details can be found in Appendix E. In-
stead, we propose a search-based algorithm that
jointly determines the optimal format and its asso-
ciated clipping range to address this challenge.

The searching process is conducted layer by
layer with the metric of minimizing Eq. 12. The
output of matrix multiplication corresponding to
each sub-module is denoted as O = XY, where
Y can be either a weight tensor W or another acti-
vation tensor.

The search space of q-bit FP format includes all
formats except for the format with an exponent bit
equal to 0, as the quantization of the format with
an exponent bit equal to 1 already degenerates to
INT quantization. We search for the real-valued ex-
ponent bias b̃, which equals to the logarithm of the
scaling factor. We initialize b̃X and b̃Y from Eq. 7
with Qmax equals the maximum value of |XR| and
|YR|, respectively. We then define the search space
of b̃X and b̃Y by linearly dividing [γ1 b̃

init
X

, γ2 b̃
init
X

]

and [γ1 b̃
init
Y

, γ2 b̃
init
Y

] into k intervals, where γ1 and
γ2 are empirically set to 0.01 and 1.2, and k = 100.

The search process is outlined in Alg.1. We
search the quantization scheme in all the matrix
multiplication layers in parallel following (Yuan
et al., 2022; Bai et al., 2022). The algorithm can be
divided into two parts. (1) Do forward propagation
to store the intermediate raw output of each layer
l. (2) Iteratively update the optimal format and bi-
ases for each layer for three rounds by minimizing
the reconstruction metric (Eq. 12). We name this
search-based framework as Floating Point Quanti-
zation Baseline (FPQ baseline), and it can already
achieve state-of-the-art results on both 8-bit and 6-
bit settings.

4.2 Pre-Shifted Exponent Bias

In transformer architectures, we observed an in-
triguing phenomenon of high inter-channel vari-
ance. As shown in Fig.2, the magnitudes of values
within the same channel are close to each other
but exhibit significant differences across different
channels. This phenomenon is not only observed
in language models (i.e., LLaMA and BERT) but
also significant in vision transformer models. Since
outlier channels are often orders of magnitude big-
ger than the rest, they will dominate the quantiza-
tion precision of the quantized tensor, resulting in
less representation capacity for those channels with
smaller magnitudes (Xiao et al., 2022). This makes
tensor-wise or token-wise scaling factor insufficient
for accurate activations quantization.
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Algorithm 1 FPQ baseline

1: Input: Calibration dataset, Full-precision Model M ,
Quantization format search space RX (e.g., RX =
{E3M0, E2M1, E1M2} for FP4), number of round
n = 3,

2: Output: FP q Quantized model
3: for l in 1st to Lth layer in M do
4: Forward & collect raw output Ol = XlY l of layer l;
5: end for
6: for l in 1st to Lth layer in M do
7: Initialize the FP format search space w.r.t Xl and Y l

as RX = {r1
X
, r2

X
, ..., rt

X
} and RY = {r1

Y
, r2

Y
, ....rt

Y
}.

8: Initialize bias b̃i
X
, b̃i

Y
with Eq.7 for each format can-

didate riX ∈ RX and ri
Y

∈ RY .
9: Generate search space of b̃X in t formats to be

[γ1 b̃
init
X

, γ2 b̃
init
X

] and b̃Y to be [γ1 b̃
init
Y

, γ2 b̃
init
Y

].
10: for 0 to n do
11: Search for b̃i

X
w.r.t each ri

X
that minimizes Eq.12

12: Search for ri
X

∈ RX that minimizes Eq.12
13: Search for b̃i

Y
w.r.t each ri

Y
that minimizes Eq.12

14: Search for ri
Y

∈ RY that minimizes Eq.12
15: end for
16: end for

However, applying per-channel scaling factors
for activations poses challenges to efficient matrix
multiplication, because the scaling factor is not
a shared constant along the multiplication direc-
tion and cannot be extracted as Eq. 10. To address
this challenge, we introduce pre-shifted exponent
bias, which allows us to calculate per-channel scal-
ing factors from activations. These scaling factors
are then re-parameterized as the exponent biases
of the corresponding weights. This method effec-
tively handles high inter-channel variance while
maintaining nearly identical efficiency to per-tensor
quantization.

Recalling in Eq. 7, we extracted the tensor-wise
integer exponent bias b and times it with real-
valued scaling factor α and becomes a new scaling
factor α̃ = 2−b̃ = 2−b · α. Then, the floating-point
quantization formula in Eq. 13 becomes:

XFP=2−b̃(−1)s2p−0(1+
d1
2
+
d2
22

+...+
dm
2m

) (13)

We note that after the bias is absorbed in the scal-
ing factor, the original bias term (bori) in the FP
formula is always zero. In dealing with the inter-
channel variance, we devise an innovative usage
of this integer exponent bias: we set it to be a per-
channel variant (bori ∈ Zc).

Then the calculation of the channel-wise integer
bias vector (bori) is very straightforward. We first
calculate the initial per-channel real-valued scal-
ing factor (2−b̃j ) from the per-channel maximum

Figure 2: Magnitude of the output activations of the
feed-forward network blocks in LLaMA-7B, BERT, and
DeiT.

values:

b̃j=2e−log2(max(|X:,j
R |))+log2(2−2−m)−1 (14)

Here X:,j
R denotes the jth channel in the activation

matrix. Then we separate b̃ to a tensor-wise real-
valued scaling factor plus a channel-wise integer
scaling factor:

b̃ = ρ̃+ bori

= ρ̃+ clip(⌊b̃− ρ̃⌉, 0, 2e−1)
(15)

where ρ̃ ∈ R1, bori ∈ Zc. Then the formula for
one of the entries in the jth channel of X can be
rewrote as follows:

XFP=2−b̃j (−1)s2p−0(1 +
d1
2

+ ...+
dm
2m

)

=2−ρ̃(−1)s2p−bori
j (1 +

d1
2

+ ...+
dm
2m

)

(16)
Note that the bias bori is constrained to integers
within [0, 2e − 1], compatible with the standard
floating-point number calculation. Nevertheless,
adding different biases for each channel during
inference may still cause some extra hardware
operations. Thus, we re-parameterized the per-
channel activation bias into a weight tensor and
pre-computed the weights using the calibration set.
This way, the exponent biases shifting only hap-
pens in the calibration stage. Then, an element in
jth channel of activation tensors X becomes:

XFP=2−ρ̃(−1)s2p−0(1+
d1
2
+...+

dm
2m

) (17)
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Figure 3: Overview of pre-shifted exponent bias method: (a) Search phase: The real-valued channel-wise
scaling exponent bias for activations (b̃j) is partitioned into a real-valued tensor-wise exponent bias (ρ), and the
integer-based channel-wise exponent bias (b̃ori

j ). (b) Reparameterization and weight pre-computation: Once the
optimal values are determined on the calibration set, b̃ori

j are re-parameterized into the weight tensor. The weights
are pre-computed to apply the bias, therefore this is a one-time cost. (c) Inference phase: The method leverages
efficient matrix multiplication between low-bit floating-point matrices.

and the corresponding weight element in jth row
of the weight tensor W becomes:

WFP=2−b̃W(−1)s2p−bori
j (1+

d1
2
+...+

dm
2m

) (18)

As result, efficient matrix multiplication in Eq.10
is reformulated as:

Oi,k
out=Xi,:

FPW
:,k
FP = α̃Xα̃

k
W
X̃i,:

FP(β⊙W̃:,k
FP) (19)

where ⊙ is the element-wise multiplication, β =
2−bori

and (β ⊙ W̃:,k
FP) can be pre-calculated

and stored in low-bit FP format. We depict the
overall pre-shifted exponent bias method in Fig.3.
This method applies to quantizing all the fully-
connected layers. During the search process, we
initialize ρ̃X as the minj(b̃j). Then, we fixed b̃X

to be the bias calculated from the Eq. 14 and search
for the optimal ρ̃X from [γ1 ρ̃

init
X

, γ2 ρ̃
init
X

].
Combining pre-shifted exponent bias method

with the joint format and max-value search
framework(FPQ baseline), we name our method
as (FPQ), short for Floating Point Quantization.

5 Experiments

To validate the effectiveness of the proposed
method, we conduct experiments on LLaMA (Tou-
vron et al., 2023) and BERT (Devlin et al., 2019)
models in 5.2.1 and Sections 5.2.2. Further, in
Section 5.2.3 we show that our method also gen-
eralizes well to vision transformer architectures.
We present ablation studies on the calibration size

and search range in Section 5.3, and analyze the
hardware costs of implementing FP operators in
Section 5.4.

5.1 Experiments Details
We adopt per-tensor quantization for activation and
per-channel quantization for weight. We employ
layer reconstruction following the settings of (Yuan
et al., 2022; Nagel et al., 2020), and parallel quanti-
zation based on the approach outlined in (Bai et al.,
2022; Yuan et al., 2022). A more detailed discus-
sion regarding our implementation decisions can
be found in Appendix F. For LLaMA models, we
quantize all the weight and activation tensors in
fully-connected layers for a fair comparison with
previous work (Xiao et al., 2022; Liu et al., 2023).
For BERT and ViT models, both fully-connected
layers and activation-activation multiplication ten-
sors in the self-attention module are quantized.
Note that for FPQ on BERT (Devlin et al., 2019)
and ViTs models, the reconstruction metric Eq. 12
is substituted with a Hessian approximation loss
metric. This substitution is further detailed in Ap-
pendix A.

5.2 Main Results
5.2.1 LLM Zero-Shot Reasoning
We evaluate the effectiveness of FPQ for LLaMA-
7B/ LLaMA-13B (Touvron et al., 2023) on com-
mon sense zero-shot reasoning tasks. For the cali-
bration data, we sample 32 random segments with
2048 tokens length from the C4 (Raffel et al., 2020)
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Quant Method #Bits (E/W/A) # Calib BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c Avg.

LLaMA-7B Full-precision 16/16/16 - 75.1 78.7 56.9 69.9 75.3 41.9 66.3

MinMax INT Quant 8/8/8 32 64.3 66.8 40.5 57.4 59.0 29.6 52.9
MinMax FP Quant (E4M3) 8/8/8 32 74.9 78.6 56.8 69.5 75.5 41.6 66.1

SmoothQuant (Xiao et al., 2022) 16/8/8 512 74.0 77.5 55.0 69.6 74.4 37.4 64.6
FPQ baseline 8/8/8 32 75.8 78.3 55.9 69.5 75.6 41.3 66.1

FPQ 8/8/8 32 75.6 78.2 56.6 70.2 74.6 40.7 66.0

MinMax INT Quant 4/4/16 32 64.1 76.1 51.6 66.3 72.4 40.0 61.7
MinMax FP Quant (E2M1) 4/4/16 32 73.0 77.9 55.2 69.1 73.6 40.9 64.9
GPTQ (Frantar et al., 2023) 4/4/16 128 73.3 77.9 54.9 67.9 72.7 37.4 64.0

FPQ baseline 4/4/16 32 74.8 77.9 55.6 69.5 75.2 41.0 65.7
FPQ 4/4/16 32 74.2 77.8 55.8 69.9 74.9 40.4 65.5

MinMax INT Quant 4/4/8 32 50.4 56.5 27.9 46.5 36.1 21.2 39.7
MinMax FP Quant (E2M1/E4M3) 4/4/8 32 73.0 77.5 55.0 69.3 73.6 40.9 64.9

FPQ baseline 4/4/8 32 75.0 77.6 55.9 69.9 74.3 39.4 65.3
FPQ 4/4/8 32 75.0 77.7 55.5 69.8 74.5 39.9 65.4

MinMax INT Quant 4/4/4 32 54.1 51.7 25.6 49.8 24.7 22.9 38.1
MinMax FP Quant (E2M1) 4/4/4 32 47.3 53.1 25.7 50.7 25.1 22.4 37.4

SmoothQuant (Xiao et al., 2022) 16/4/4 512 54.1 62.8 41.5 52.6 50.6 32.9 49.1
LLM-QAT (Liu et al., 2023) 16/4/4 (QAT) 63.5 64.3 55.6 52.9 50.3 30.2 52.8

FPQ baseline 4/4/4 32 57.4 56.6 30.2 51.1 37.7 23.2 42.7
FPQ 4/4/4 32 64.2 73.5 47.8 63.7 65.9 33.6 58.1

LLaMA-13B Full-precision 16/16/16 - 77.9 79.2 59.9 72.6 77.4 46.4 68.9

MinMax INT Quant 8/8/8 32 60.6 69.6 46.0 61.5 63.3 32.8 55.6
MinMax FP Quant (E4M3) 8/8/8 32 78.0 79.1 60.0 72.3 77.2 47.1 68.9

SmoothQuant (Xiao et al., 2022) 16/8/8 512 76.5 78.0 58.0 72.1 76.3 45.5 68.2
FPQ baseline 8/8/8 32 78.0 79.1 59.9 72.3 77.2 47.1 68.9

FPQ 8/8/8 32 78.1 78.5 59.1 72.4 76.4 46.1 68.4

MinMax INT Quant 4/4/8 32 52.1 65.0 36.4 53.9 52.3 29.0 48.1
MinMax FP Quant (E2M1/E4M3) 4/4/8 32 78.0 78.9 58.0 71.6 76.0 44.8 67.9

FPQ baseline 4/4/8 32 76.2 78.2 57.9 71.9 75.1 43.9 67.2
FPQ 4/4/8 32 76.4 78.5 58.2 72.1 75.2 44.7 67.5

MinMax INT Quant 4/4/4 32 54.5 52.7 25.5 51.1 25.3 22.1 38.5
MinMax FP Quant (E2M1) 4/4/4 32 45.8 51.7 25.5 49.5 25.0 22.8 36.7

SmoothQuant (Xiao et al., 2022) 16/4/4 512 57.6 61.3 56.0 52.6 49.9 25.1 50.4
FPQ baseline 4/4/4 32 54.3 57.7 35.7 52.2 41.1 25.7 44.5

FPQ 4/4/4 32 71.9 74.8 53.3 66.7 71.7 39.9 63.1

Table 1: Zero-shot performance on common sense reasoning tasks with LLaMA (Touvron et al., 2023) models. We
denote E/W/A as the bit-width of word embeddings, model weight and activations, respectively.

dataset following the setting of GPTQ (Frantar
et al., 2023). The data preprocessing and score
calculation are based on EleutherAI evaluation har-
ness1. In Table 1, we compare FPQ to the floating-
point PTQ baselines, and state-of-the-art PTQ and
QAT methods, including SmoothQuant (Xiao et al.,
2022) and GPTQ (Frantar et al., 2023), and LLM-
QAT (Liu et al., 2023).

In general, all methods, except for the naïve Min-
Max INT Quantization, produce comparable out-
comes in the 8-bit setting on both LLaMA-7B and
LLaMA-13B. Additionally, we observe that the
naïve MinMax FP Quantization achieves nearly
lossless results and even surpasses the state-of-
the-art integer post-training quantization method,
SmoothQuant (Xiao et al., 2022), which indicates
that floating-point quantization naturally has a
strong capability in handling the distributions in
transformers. However, both MinMax FP Quant
and FPQ baseline fail when pushing the quan-

1https://github.com/EleutherAI/lm-evaluation-harness

tization precision to ultra-low 4/4/4 bit setting,
with 28.9% and 23.8% accuracy degradation on
LLaMA-7B, respectively. In this extreme case,
the previous state-of-the-art PTQ and QAT meth-
ods, SmoothQuant (Xiao et al., 2022) and LLM-
QAT (Liu et al., 2023) also suffer severe accu-
racy downgrade. In comparison, FPQ demonstrates
a strong capability of handling extra-low bit set-
tings and achieves only 8.2/5.8% accuracy drop on
LLaMA-7B/13B with 4/4/4 bit-width, outperform-
ing SmoothQuant (Xiao et al., 2022) by a large
margin, yet with less bit-width and smaller calibra-
tion size. Moreover, FPQ even achieves 5.3% accu-
racy improvements compared to LLM-QAT (Liu
et al., 2023) in the 4/4/4 setting and 1.5% over
GPTQ (Frantar et al., 2023) in the 4/4/16 configu-
ration on LLaMA-7B.

For practitioners, a crucial consideration is
determining the appropriate quantization meth-
ods for various bit-widths. Therefore, based
on our findings, we offer two recommendations
that balance the trade-off between accuracy and
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Quant Method #Bits (E/W/A) # Calib MNLI−m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
(Full-precision) 32-32-32 - 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.7

MinMax INT Quant 8/8/8 128 77.0 89.9 88.9 92.9 51.8 88.2 83.8 71.5 80.5
MinMax FP Quant (E2M5) 8/8/8 128 78.9 90.8 88.6 92.9 52.7 88.4 84.3 69.0 80.7
MinMax FP Quant (E3M4) 8/8/8 128 84.5 90.9 91.5 93.2 58.3 89.3 87.7 71.8 83.4
MinMax FP Quant (E4M3) 8/8/8 128 84.7 90.9 91.7 93.0 58.6 89.3 86.5 72.2 83.4
MinMax FP Quant (E5M2) 8/8/8 128 84.1 90.9 91.4 93.6 58.1 89.2 87.5 71.8 83.3

FPQ baseline 8/8/8 128 84.6 90.9 91.7 93.1 58.6 89.3 88.0 72.2 83.5
FPQ 8/8/8 128 84.6 91.0 91.6 93.3 58.8 89.3 88.0 72.2 83.6

MinMax INT Quant 6/6/6 128 31.9 62.0 52.8 58.8 0.0 12.7 32.1 52.7 37.9
MinMax FP Quant (E2M3) 6/6/6 128 43.5 85.4 79.4 90.5 45.2 86.0 66.9 59.9 69.6
MinMax FP Quant (E3M2) 6/6/6 128 83.9 90.8 90.8 92.2 58.2 88.6 87.0 72.2 83.0
MinMax FP Quant (E4M1) 6/6/6 128 84.4 90.2 90.1 92.2 58.2 89.2 85.3 69.7 82.4

FPQ baseline 6/6/6 128 84.6 90.9 91.2 93.2 58.8 88.7 87.5 70.8 83.2
FPQ 6/6/6 128 84.5 90.8 91.6 93.1 57.3 89.3 88.7 71.8 83.2

MinMax INT Quant 4/4/8 128 33.1 63.8 60.1 49.3 0.0 44.0 50.2 49.1 43.7
MinMax FP Quant (E2M1) 4/4/8 128 60.6 70.9 77.4 79.9 5.5 78.6 46.8 56.6 59.5
MREM-S (Bai et al., 2022) 4/4/8 4096 83.5 90.2 91.2 91.4 55.1 89.1 84.8 71.8 82.1
MREM-P (Bai et al., 2022) 4/4/8 4096 83.4 90.2 91.0 91.5 54.7 89.1 86.3 71.1 82.2

FPQ baseline 4/4/8 128 84.4 90.6 91.4 92.9 58.6 83.7 88.2 73.3 82.9
FPQ 4/4/8 128 84.5 90.6 91.1 92.7 58.8 89.3 88.7 73.3 83.6

MinMax INT Quant 4/4/4 128 31.8 39.7 50.5 49.1 0.0 6.7 31.6 54.5 32.9
MinMax FP Quant (E2M1) 4/4/4 128 33.6 54.0 50.6 50.8 0.0 0.0 31.6 52.0 34.1

BrecQ (Li et al., 2021) 8/4/4 4096 31.9 62.3 50.7 50.9 0.9 6.4 31.7 52.3 35.8
QDrop (Wei et al., 2022) 8/4/4 4096 71.4 79.0 76.8 88.1 40.9 81.9 79.2 60.7 72.3

FPQ baseline 4/4/4 128 38.9 68.3 55.3 83.6 10.6 0.0 43.8 55.2 44.5
FPQ 4/4/4 128 82.3 89.2 86.6 91.5 52.6 85.5 83.8 69.0 80.1

Table 2: Results on the GLUE development set with BERT (Bai et al., 2022) model. We denote E/W/A as the
bit-width of word embeddings, model weight and activations, respectively.

search/optimization efficiency. First of all, since
the difference between MinMax FP Quant and the
rest of the methods is marginal for the 8/8/8 set-
ting, we recommend simply using the MinMax FP
Quant method for the 8/8/8 setting as the MinMax
method does not involve search process. However,
for more demanding scenarios, especially with ac-
tivation quantization to 4 bits, we recommend em-
ploying FPQ for minimizing accuracy degradation
with negligible inference overhead.

5.2.2 BERT Model
We evaluate the proposed quantization techniques
for BERT model on GLUE tasks (Wang et al.,
2019). Full-precision BERT-base models fine-
tuned on GLUE datasets are obtained from Hug-
gingface public repository2. We randomly sample
128 data from the training set as the calibration set.
In Table 2, FPQ demonstrates remarkable perfor-
mance, achieving absolute average accuracy im-
provements of 44.3% compared to BrecQ (Li et al.,
2021) and 7.9% over QDrop (Wei et al., 2022)
with 4/4/4 bit setting. Further, with 4-bit weight
and 8-bit activation, MREM-S/MREM-P (Bai et al.,
2022) present a 1.6/1.5% accuracy gap to the full-
precision model with 4096 calibration data, while
FPQ achieves almost no accuracy loss with only

2https://huggingface.co/textattack/bert-base-uncased-
{TASK_NAME}

128 calibration data points.

5.2.3 Generalizability on Vision Transformer
Based on our findings that vision transformers also
exhibit a consistent activation distribution pattern
as language transformers, characterized by high
inter-channel variance and low intra-channel vari-
ance, as detailed in Fig. 2, we extended our pro-
posed methods to ViT and compared FPQ with
floating-point PTQ baselines and state-of-the-art
PTQ method for ViT on the ImageNet classifica-
tion task. Table 3 shows that findings on ViT are
consistent with that on language models: previous
state-of-the-art integer-based methods struggled to
maintain reasonable accuracy when quantizing the
transformer to lower bits. In comparison, the pro-
posed FPQ outperformed both PTQ4ViT and APQ-
ViT on 6 bits, and also achieved 40.9% and 31.5%
absolute accuracy improvement over PTQ4ViT and
APQ-ViT on DeiT-S in the 4-bit configuration.

5.3 Ablation Study

In this section, we first compare the influence of dif-
ferent calibration sizes on FPQ. We vary the calibra-
tion size in {32, 64, 128, 256} and test on MNLI,
QQP, and CoLA. Table 4 shows that the evalua-
tion on MNLI and QQP is more robust to different
settings, and the variance is more significant on
CoLA. We observe that FPQ performs well with a

599



W/A Quant Method Deit-S Deit-B ViT-S
Full-prec - 79.9 81.8 81.4

6/6 PTQ4ViT(Yuan et al., 2022) 76.3 80.3 78.6
6/6 APQ-ViT(Ding et al., 2022) 77.8 80.4 79.2
6/6 MinMax FP Quant (E3M2) 79.3 81.7 80.7
6/6 FPQ baseline 79.43 81.7 80.9
6/6 FPQ 79.5 81.8 81.1
4/4 PTQ4ViT(Yuan et al., 2022) 34.1 64.4 42.6
4/4 APQ-ViT (Ding et al., 2022) 43.6 67.5 48.0
4/4 MinMax FP Quant (E2M1) 0.4 0.1 0.1
4/4 FPQ baseline 6.57 0.71 0.3
4/4 FPQ 75.0 79.4 73.2

Table 3: Comparison on the ImageNet dataset with
vision transformer structures.

E/W/A #Calib MNLI-M QQP CoLA
4/4/4 32 81.5 89.4 44.4
4/4/4 64 81.8 89.4 47.9
4/4/4 128 82.3 89.2 52.6
4/4/4 256 81.9 89.0 52.9
6/6/6 32 84.8 90.8 55.0
6/6/6 64 84.7 90.9 58.2
6/6/6 128 84.5 90.8 57.3
6/6/6 256 84.6 90.8 57.6

Table 4: Ablation studies of different calibration sizes.

calibration set size of 128 data points. However,
we also find that it remains robust and maintains
competitive accuracy even with limited access to
calibration data, such as when using as few as 32
data points.

We investigate the robustness of FPQ to dif-
ferent search ranges (γ1, γ2). Table 5 presents
the results of FPQ using three sets of (γ1, γ2):
(0.01, 1.2), (0.1, 1.2), (0.5, 1.5), on MNLI, QQP,
and CoLA. It is observed that no single search
range outperforms the others consistently across
all tasks. For instance, the search range (0.01, 1.2)
performs better than (0.5, 1.5) on MNLI and QQP,
but slightly worse on CoLA in the 4-bit configu-
ration. Overall, FPQ exhibits robustness to various
γ1 and γ2, as long as the search range is not overly
aggressive.

5.4 Hardware Cost
We further examine the hardware utilization of low-
bit INT, FP, and mixed-format FP multiplication
operators, including adder, multiplier, and multiply-
accumulate (MAC) units, in terms of hardware area.
Mixed-format FP refers to the multiplication of
floating-point numbers with different formats, e.g.,
E2M1 multiplies with E1M2. We implemented
the MAC operator by Verilog HDL and utilized
Cadence Genus to obtain the synthesized area un-
der TSMC 40nm technology and 0.5GHz clock
frequency.

Table 6 illustrates the hardware cost of the INT
and FP operators, with the multiplier being the pri-

E/W/A γ1 , γ2 MNLI-M QQP CoLA
4/4/4 0.01, 1.2 82.3 89.2 52.6
4/4/4 0.1, 1.2 82.2 89.1 53.6
4/4/4 0.5, 1.5 82.3 88.4 52.8

6/6/6 0.01, 1.2 84.5 90.8 57.3
6/6/6 0.1,1.2 84.7 90.8 57.5
6/6/6 0.5,1.5 84.7 90.8 57.8

Table 5: Ablation studies of different search range.

Format Adder(µm2) Multiplier(µm2) MAC(µm2)
INT4 93 182 410
INT6 132 340 529

E2M1 111 92 443
E3M2 223 138 498

E2M1 * E1M2 105 107 432

Table 6: Area differences of INT, FP and mixed Format
FP operators across different bit-widths.

mary cost for INT and the adder for FP. Notably, the
disparity between FP4 and INT4 adders is small,
while INT has twice the hardware cost for the mul-
tiplier. Moreover, the mixed-format FP4 operator
has comparable hardware area as the standard FP4
operator. These findings indicate that the proposed
FPQ approach imposes negligible overhead in terms
of hardware implementation when compared to the
standard FP operators and the hardware cost for FP
is comparable with INT.

6 Conclusion

This paper presents the first successful demonstra-
tion of 4-bit floating-point post-training quantiza-
tion for weights, activations, and embeddings in
natural language transformer architectures, includ-
ing both large language models and BERT model.
We also extend our method to vision transform-
ers and observe its robust generalization ability.
Our approach involves a practical search-based
technique which establishes a strong baseline and
achieves state-of-the-art results for 6-bit and 8-bit
quantization. Furthermore, we address the chal-
lenge of high inter-channel variance in transform-
ers by proposing pre-shifted exponent bias, which
proves highly effective in achieving accurate 4-bit
quantization.
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Limitations

Our experiments were conducted on publicly avail-
able datasets with finite sentence lengths, and the
generalizability of our method to extremely long
sequences or streaming data has not been verified
and may require further investigation. In addition,
it remains to be seen how our proposed method can
generalize to other domains beyond language and
vision, such as audio. It would also be interesting
to see the applicability of our method to generative
tasks and other applications.
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A Hessian-Based Loss Metric

The objective of post-training quantization is to
minimize the perturbation (δX = XFP − XR)
introduced by quantization to the pre-trained real-
valued network:

min E[L(XR + δX)− L(XR)] (20)

Following the Taylor series expansion, we have

E[L(XR + δX)− L(XR)]

≈ δXT ḡ(X) +
1

2
δXT H̄(X)δX

≈ 1

2
δXT H̄(X)δX

(21)

Here, ḡ(X) is the gradients and H̄(X) is the Hes-
sian matrix. Since the pre-trained model is well-
converged, we can assume that ḡ(X) has near zero
value in every element, and thus term δXT ḡ(X)

can be neglected.
The Hessian matrix H̄(X) is computed as:

H̄(X) = JT
O(X)H̄(O)JO(X) (22)

where JO(X) denotes the Jacobian matrix of the
layer output O w.r.t X, and H̄(O) is the Hessian
matrix w.r.t O. We then substitute the above equa-
tion back to equation 21 :

δXT H̄(X)δX

= (JO(X)δX)T H̄(O)(JO(X)δX)

≈ (Ô−O)T H̄(O)(Ô−O)

(23)

Here Ô is the intermediate output of the quantized
layer and O is the original layer output. Note that
under the assumption that δX is relatively small (Li
et al., 2021), we can approximate (Ô − O) as
JO(X)δX using first-order Taylor expansion.

Nevertheless, the calculation of H̄(O) is still bur-
densome, therefore, we use the diagonal entries of
the Fisher Information Matrix of O to substitute
H̄(O) following (Li et al., 2021; Yuan et al., 2022),
and the new Hessian-based metric becomes:

E[(Ô−O)Tdiag((
∂L

∂O1
)2, ..., (

∂L

∂On
)2(Ô−O)]

(24)
Here, each entry of O is assumed to be independent
and n denoted the total number of elements in O.
In this study, this hessian-based metric is used as
the reconstruction metric to search for the optimal
FP quantization function for both the weight and ac-
tivation when performing layer-wise reconstruction
in BERT and Vision Transformer models.

B Quantization Error of Different
Floating-Point Formats

Figure 4 compares the quantization error of differ-
ent formats in 8-bit quantization, including INT8,
E2M5, E3M4, E4M3, and E5M2. We apply these
formats to different BERT modules in the first, fifth,
and last layers. The figures demonstrate that the op-
timal FP formats differs depending on the specific
module that we are quantizing.

C Inter-Channel Variance Visualization

Figure 5 and 6 depict the output of different fully-
connected layers in BERT for the MNLI task, DeiT-
S for the ImageNet-1K task, and LLaMA-7B for
the zero-shot reasoning task. The visualizations
reveal a noticeable inter-channel variance presented
in both language and vision transformers.

D Efficient Matrix Multiplication

Figure 7 displays a comprehensive list of all the
granularity options that allow for efficient ma-
trix multiplication. While per-token quantization
theoretically provides greater precision in terms
of quantization granularity, the accuracy gains
achieved through this method are minimal and do
not justify the additional computational overhead
required. As a result, we have opted to use per-
tensor quantization when quantizing activations.

E Learning Format and Maximum Value

We compare the previous gradient-based
method (Kuzmin et al., 2022) with the proposed
search-based method for finding the optimal
format and maximum value. On DeiT-S, the
learnable method only achieves 74.38% accuracy
for an 8-bit quantized model on ImageNet, in
contrast, FPQ can attain an almost loss-less result of
79.88%. We analyze the gradients for the number
of exponent bits e derived in (Kuzmin et al.,
2022) and observe that each time the exponent
bits change, the gradients experience exponential
variations, leading to high instability. Based
on this observation, we assert that employing a
search-based method to determine the optimal
formats is crucial in post-training quantization
(PTQ).

F Reconstruction Choices

The previous works on integer post-training quanti-
zation involves breaking down the target model into
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sub-modules and reconstructing them separately
(Nagel et al., 2020; Li et al., 2021; Bai et al., 2022;
Yuan et al., 2022). This addresses the problem of
over-fitting, given that only a limited amount of
unlabeled calibration data is available. In this study
we find the layer-wise reconstruction and parallel
quantization works best for floating-point PTQ:

Layer Reconstruction: Recent research (Li
et al., 2021; Bai et al., 2022) suggests increasing the
reconstruction granularity from layer reconstruc-
tion (Nagel et al., 2020) to block reconstruction (Li
et al., 2021) or even larger granularity (Lee et al.,
2023). This is achieved by jointly optimizing all the
linear layers or matrix multiplication components
within each module to prevent the propagation of
reconstruction errors among the layers. Despite
this, we have observed that increasing the recon-

struction granularity does not improve the accuracy
of FPQ baseline or sometimes even lead to worse
results. Therefore, we choose layer reconstruction.

Parallel Quantization: Sequential quantization
is the most commonly used approach (Wu et al.,
2020; Nagel et al., 2020; Li et al., 2021) where
modules are quantized consecutively based on their
sequential order, and the input for the current cali-
brating module is generated using all the previously
quantized modules. However, some recent works
(Yuan et al., 2022; Bai et al., 2022) proposed a new
parallel quantization framework. This framework
uses the raw output of the full-precision modules
as input and makes the calibration of each module
independent from one another. In this work, we
use parallel quantization, as it yields better results
than its sequential counterparts.

Figure 4: Quantization error of different formats for BERT layers.
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Figure 5: Magnitude of the output activations of different modules in BERT (left column), and DeiT-S (right
column).
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LLaMa-7B
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(c)

Figure 6: Magnitude of the output activations of differ-
ent modules in LLaMA-7B.
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Figure 7: Quantization granularity options that support
efficient matrix multiplication. The dimensions that
share the same scaling factor are indicated with red
dotted frames
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