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Abstract

Machine Translation (MT) has been widely
used for cross-lingual classification, either by
translating the test set into English and running
inference with a monolingual model (translate-
test), or translating the training set into the
target languages and finetuning a multilingual
model (translate-train). However, most re-
search in the area focuses on the multilingual
models rather than the MT component. We
show that, by using a stronger MT system
and mitigating the mismatch between train-
ing on original text and running inference on
machine translated text, translate-test can do
substantially better than previously assumed.
The optimal approach, however, is highly task
dependent, as we identify various sources of
cross-lingual transfer gap that affect different
tasks and approaches differently. Our work
calls into question the dominance of multi-
lingual models for cross-lingual classification,
and prompts to pay more attention to MT-
based baselines.

1 Introduction

Recent work in cross-lingual learning has pivoted
around multilingual models, which are typically
pretrained on unlabeled corpora in multiple lan-
guages using some form of language modeling
objective (Doddapaneni et al., 2021). When fine-
tuned on downstream data in a single language—
typically English—these models are able to gen-
eralize to the rest of the languages thanks to the
aligned representations learned at pretraining time,
an approach known as zero-shot transfer. The
so called translate-train is an extension of this
method that augments the downstream training data
by translating it to all target languages through MT.
A third approach, translate-test, uses MT to trans-
late the test data into English, and runs inference
using an English-only model.
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Figure 1: XNLI accuracy. We show that translate-test
can do substantially better than previously reported.

The conventional wisdom is that translate-train
tends to bring modest improvements over zero-shot,
while translate-test has been largely overlooked
and is often not even considered as a baseline (Hu
et al., 2020; Ruder et al., 2021). In this context,
most recent research in multilingual NLP has fo-
cused on pretraining stronger multilingual mod-
els (Conneau et al., 2020; Xue et al., 2021; Chi
et al., 2022), and/or designing better fine-tuning
techniques to elicit cross-lingual transfer (Liu et al.,
2021; Yu and Joty, 2021; Zheng et al., 2021; Fang
et al., 2021). However, little attention has been
paid to the MT component despite its central role
in both translate-train and translate-test. Most
authors use the official translations that some mul-
tilingual benchmarks come with, and it is unclear
the extent to which better results could be obtained
by using stronger MT systems or developing better
integration techniques.

In this work, we revisit the use of MT for cross-
lingual learning through extensive experiments on
6 classification benchmarks. We find evidence that
translate-test is more sensitive than translate-train
to the quality of the MT engine, and show that
better results can be obtained by mitigating the mis-
match between training on original downstream
data and running inference on machine translated
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data. As exemplified by Figure 1, we demonstrate
that, with enough care, translate-test can work sub-
stantially better than previously assumed (e.g., out-
performing both zero-shot and translate-train on
XNLI for the first time), calling into question the
dominance of multilingual pretraining in the area.

However, these trends are not universal, as we
find that the optimal approach is highly task depen-
dent. We introduce a new methodology to quantify
the underlying sources of cross-lingual transfer gap
that cause this discrepancy across tasks. We find
that translate-test excels on complex tasks requir-
ing commonsense or real world knowledge, as it
benefits from the use of a stronger English-only
model. In contrast, translate-train performs best at
shallower tasks like sentiment analysis, for which
the noise introduced by MT outweighs the benefit
of using a better pretrained model.

2 Experimental setup

Pre-trained models. We use RoBERTa large
(Liu et al., 2019) and XLM-R large (Conneau et al.,
2020) as our primary English-only and multilingual
models, respectively. XLM-R can be considered
the multilingual version of RoBERTa,1 as they are
both encoder-only masked language models trained
with the same codebase. So as to understand the
benefits from using a stronger English-only model,
we also experiment with DeBERTaV3 large (He
et al., 2021). All the 3 models have 304M back-
bone parameters, although they differ in the size of
their vocabulary.

Machine translation. We use the 3.3B NLLB
model (NLLB Team et al., 2022) as our MT en-
gine. We explore two decoding strategies as in-
dicated in each experiment: beam search with a
beam size of 4, and nucleus sampling (Holtzman
et al., 2020) with top-p = 0.8. Unless otherwise
indicated, we translate at the sentence level using
the xx_sent_ud_sm model in spaCy for sentence
segmentation.2 For variants translating at the doc-
ument level, we concatenate all fields (e.g., the
premise and the hypothesis in XNLI) using a spe-
cial word <sep> to separate them. For experiments
involving MT fine-tuning, we use a learning rate of
5e-05 and a batch size of 32k tokens with dropout
disabled, and use the final checkpoint after 25k
steps.

1In fact, XLM-R stands for XLM-RoBERTa.
2
https://spacy.io/models/xx#xx_sent_ud_sm

Evaluation. We use the following 6 datasets for
evaluation: XNLI (Conneau et al., 2018), a Natural
Language Inference (NLI) dataset covering 15 lan-
guages; PAWS-X (Yang et al., 2019), an adversar-
ial paraphrase identification dataset covering 7 lan-
guages; MARC (Keung et al., 2020), a sentiment
analysis dataset in 6 languages where one needs
to predict the star rating of an Amazon review;
XCOPA (Ponti et al., 2020), a causal common-
sense reasoning dataset covering 12 languages; XS-
toryCloze (Lin et al., 2021), a commonsense rea-
soning dataset in 11 languages where one needs to
predict the correct ending to a four-sentence story;
and EXAMS (Hardalov et al., 2020), a dataset of
high school multiple choice exam questions in 16
languages. For a fair comparison between different
approaches, we exclude Quechua and Haitian Cre-
ole from XCOPA, as the former is not supported by
NLLB and the latter is not supported by XLM-R. In
all cases, we do 5 finetuning runs with different ran-
dom seeds, and report accuracy numbers in the test
set averaged across all languages and runs. Follow-
ing common practice, we use MultiNLI (Williams
et al., 2018) as our training data for XNLI, and
PAWS (Zhang et al., 2019) as our training data for
PAWS-X. For MARC, we use the English portion
of the training set. XCOPA, XStoryCloze and EX-
AMS do not come with a sizable training set in
English, so we train on the combination of the fol-
lowing multiple choice datasets: Social IQa (Sap
et al., 2019), SWAG (Zellers et al., 2018), COPA
(Roemmele et al., 2011), OpenBookQA (Mihaylov
et al., 2018), ARC (Clark et al., 2018) and PIQA
(Bisk et al., 2020).

Fine-tuning. We use HuggingFace’s Transform-
ers library (Wolf et al., 2019) for all of our ex-
periments. So as to handle a variable number
of candidates in multiple choice tasks (XCOPA,
XStoryCloze and EXAMS), we feed each input-
candidate pair independently into the model, take
its final representation from the first token, down-
project into a scalar score through a linear projec-
tion, and apply the softmax function over the scores
of all candidates. For the remaining tasks, we sim-
ply learn a regular classification head. In all cases,
we use a batch size of 64 and truncate examples
longer than 256 tokens. We train with a learning
rate of 6e-6 with linear decay and 50 warmup steps,
and use the final checkpoint without any model
selection. When using the original English training
set, we finetune for two epochs. For experiments
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involving some form of data augmentation, where
each training example is (back-)translated into mul-
tiple instances, we finetune for a single epoch.

3 Main results

We next present our main results revisiting MT for
cross-lingual classification, both for translate-test
(§3.1) and translate-train (§3.2). Finally, we put
everything together and reconsider the state-of-the-
art in the light of our findings (§3.3).

3.1 Revisiting translate-test

While translate-test might be regarded as a simple
baseline, we argue that there are two critical as-
pects of it that have been overlooked in prior work.
First, little attention has been paid to the MT engine
itself: most existing works use the official transla-
tions from each dataset without any consideration
about their quality, and the potential for improve-
ment from using stronger MT systems is largely
unknown. Second, translate-test uses original (hu-
man generated) English data to fine-tune the model,
but the actual input that is fed into the model at test
time is produced by MT. Prior work has shown that
original and machine translated data have different
properties, and this mismatch is detrimental for per-
formance (Artetxe et al., 2020), but there is barely
any work addressing this issue. In what follows,
we report results on our 6 evaluation tasks using
a strong MT system, and explore two different ap-
proaches to mitigate the train/test mismatch issue:
adapting MT to produce translations that are more
similar to the original training data (§3.1.1), and
adapting the training data to make it more similar
to the translations from MT (§3.1.2).

3.1.1 MT adaptation
Table 1 reports translate-test results with RoBERTa
using translations from 4 different MT systems: the
official ones from each dataset (if any), the vanilla
NLLB 3.3B model, and two fine-tuned variants of
it. In the first variant (+dom adapt), we segment
the downstream training data into sentences, back-
translate them into all target languages using beam
search, and fine-tune NLLB on it as described in §2.
The second variant (+doc level) is similar, except
that we concatenate the back-translated sentences
first, and all the input fields (e.g. the premise and
the hypothesis) afterwards, separated by <sep>,
and fine-tune NLLB on the resulting synthetic par-
allel data. For this last variant we also translate at

MT engine xnli pwsx marc xcop xsto exm

Official 76.8 – – 75.9 – –
NLLB 79.9 87.3 57.6 72.9 89.3 36.3

+ dom adapt 80.8 86.9 58.2 72.9 88.4 36.5
+ doc level 83.8 87.8 58.3 76.3 91.3 36.3

Table 1: Translate-test results with different MT en-
gines. All variants use a RoBERTa model finetuned
on the original English data.

the document level at test time, whereas the rest of
the systems translate at the sentence level.3

We find that document-level fine-tuned NLLB
obtains the best results across the board, obtain-
ing consistent improvements over vanilla NLLB in
all benchmarks except EXAMS. We remark that
the former does not have any unfair advantage in
terms of the data it sees, as it leverages the ex-
act same downstream data that RoBERTa is fine-
tuned on. Sentence-level fine-tuned NLLB is only
able to outperform vanilla NLLB on XNLI, MARC
and EXAMS, and does worse on PAWS-X and
XStoryCloze. This shows that a large part of the
improvement from fine-tuning NLLB can be at-
tributed to learning to jointly translate all sentences
and fields from each example.

Finally, we also find a high variance in the qual-
ity of the official translations in the two datasets
that include them. More concretely, the official
translations are 3.0 points better than vanilla NLLB
on XCOPA, and 3.1 points worse on XNLI. De-
spite overlooked to date, we argue that this fac-
tor has likely played an important role in some of
the results from prior work. For instance, Ponti
et al. (2020) obtain their best results on XCOPA
using translate-test with RoBERTa, whereas Con-
neau et al. (2020) find that this approach obtains
the worst results on XNLI. These seemingly con-
tradictory findings can partly be explained by the
higher quality of the official XCOPA translations,
and would have been less divergent if the same MT
engine was used for both datasets.

3.1.2 Training data adaptation
We experiment with a form of data augmentation
where we translate each training example into an-
other language and then back into English.4 The

3We also tried translating at the document level with the
rest of the systems, but this worked poorly in our preliminary
experiments, as the model would often only translate the first
sentence and ignore the rest.

4In the forward (out-of-English) direction, we use beam
search for multiplechoice tasks (XCOPA, XStoryCloze, EX-
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Train data xnli pwsx marc xcop xsto exm

Original 79.9 87.3 57.6 72.9 89.3 36.3
Roundtrip MT 85.2 89.9 58.8 74.3 91.2 36.2

+ MT adapt (doc) 85.9 89.3 59.1 75.7 91.2 36.4

Table 2: Translate-test results different training data.
All methods use vanilla NLLB for translation.

resulting data is aimed to be more similar to the in-
put that the model will be exposed to at test time, as
they are both produced by the same MT model. For
each task, we use all target languages it covers as
the pivot, and further combine the back-translated
examples with the original data in English.5 We
compare this approach to the baseline (training on
the original English data), and report our results in
Table 2. So as to understand how complementary
training data adaptation and MT adaptation are, we
also include a system combining the two, where
we use the document-level fine-tuned model from
§3.1.1 to translate the test examples.

We find that roundtrip MT outperforms the base-
line by a considerable margin in all tasks but EX-
AMS. While prior work has shown that multilin-
gual benchmarks created through (professional)
translation have artifacts that can be exploited
through similar techniques (Artetxe et al., 2020),
it is worth noting that we also get improvements
on MARC, which was not generated through trans-
lation. Finally, we observe that combining this
approach with MT adaptation is beneficial in most
cases, but the improvements are small and incon-
sistent across tasks. This suggests that the two
techniques are little complementary, which is not
surprising as they both try to mitigate the same
underlying issue.

3.2 Revisiting translate-train

As seen in §3.1, the MT engine can have a big
impact in translate-test. To get the full picture,
we next explore using the same MT engines for
translate-train, including the official translations
(when available) as well as NLLB with beam search

AMS), and nucleus sampling for the rest of the tasks. In the
backward direction, we use beam search for all tasks. We
made this decision based on preliminary experiments on the
development set. Sampling in the forward direction produced
more diverse translations, but was noisy for multiplechoice
tasks, where some options are very short. The use of beam
search when translating into English is consistent with the
decoding method used at test time.

5As such, if the original dataset has k examples and we
have n target languages, the resulting data will consist of
k ∗ (n+ 1) examples.

MT engine xnli pwsx marc xcop xsto exm

None (zero-shot) 80.1 87.1 60.6 69.1 84.6 36.0

Official 83.3 90.7 – – – –
NLLB (beam) 83.5 90.4 60.5 68.5 86.4 36.0
NLLB (samp) 84.3 90.7 60.8 67.6 86.7 35.2

Table 3: Translate-train results using XLM-R

and nucleus sampling. In all cases, we translate the
downstream training data into all target languages
covered by each task, and fine-tune XLM-R on
this combined data (including a copy of the origi-
nal data in English). We also include a zero-shot
system as a baseline, which fine-tunes the same
XLM-R model on the original English data only.
Table 3 reports our results.

We find that translate-train obtains substantial
improvements over zero-shot in half of the tasks
(XNLI, PAWS-X and XStoryCloze), but performs
at par or even worse in the other half (MARC,
XCOPA and EXAMS). This suggests that translate-
train might not be as generally helpful as found in
prior work (Hu et al., 2020). In those tasks where
MT does help, nucleus sampling outperforms beam
search. This is in line with prior work in MT find-
ing that sampling is superior to beam search for
back-translation (Edunov et al., 2018) but, to the
best of our knowledge, we are first to show that this
also holds for cross-lingual classification.

Finally, we find that translation quality had a
considerably larger impact for translate-test than
it does for translate-train. More concretely, the
XNLI accuracy gap between the official transla-
tions and vanilla NLLB was 3.1 for translate-train,
and is only 0.2 for translate-test when using beam
search, or 1.0 when using nucleus sampling. This
suggests that the use of relatively weak MT engines
in prior work might have resulted in underestimat-
ing the potential of translate-test relative to other
approaches.

3.3 Reconsidering the state-of-the-art

We have so far analyzed translate-test and
translate-train individually. We next put all the
pieces together, and compare different pretrained
models (XLM-R, RoBERTa and DeBERTa) using
zero-shot, translate-train with nucleus sampling,
and two variants of translate-test: the naive ap-
proach using vanilla NLLB, and our improved ap-
proach combining document-level MT adaptation
and training data adaptation. We report our results
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xnli pwsx marc xcop xsto exm avg

XLM-R

zero-shot 80.1 87.1 60.6 69.1 84.6 36.0 69.6

translate-train 84.3 90.7 60.8 67.6 86.7 35.2 70.9

translate-test vanilla 79.3 86.9 58.0 68.6 84.8 34.9 68.8
ours 84.6 89.3 58.8 69.0 87.9 35.0 70.8

RoBERTa translate-test vanilla 79.9 87.3 57.6 72.9 89.3 36.3 70.6
ours 85.9 89.3 59.1 75.7 91.2 36.4 72.9

DeBERTa translate-test vanilla 81.0 87.1 58.2 77.7 92.1 46.1 73.7
ours 86.7 90.3 59.2 81.3 93.8 46.0 76.2

Table 4: Main results. All systems use NLLB for MT. Best model results underlined, best overall results in bold.

in Table 4.
We observe that our improved variant of

translate-test consistently outperforms the vanilla
approach. Interestingly, the improvements are gen-
erally bigger for stronger pretrained models: an av-
erage of 2.0 points for XLM-R, 2.3 for RoBERTa,
and 2.5 for DeBERTa.

When comparing different approaches, we find
that zero-shot obtains the worst results in average,
while translate-train is only 0.1 points better than
translate-test with XLM-R. However, this compar-
ison is unfair to translate-test, as there is no point
in using a multilingual pretrained model when one
is translating everything into English at test time.
When using RoBERTa (a comparable English-only
model), translate-test outperforms the best XLM-
R results by 2.0 points. Using the stronger De-
BERTa model further pushes the improvements to
5.3 points.

These results evidence that translate-test can
be considerably more competitive than suggested
by prior work. For instance, the seminal work
from Conneau et al. (2020) reported that RoBERTa
translate-test lagged behind XLM-R zero-shot and
translate-train on XNLI. As illustrated in Figure
1, we show that, with enough care, it can actually
obtain the best results of all, outperforming the
original numbers from Conneau et al. (2020) by 8.1
points. Our approach is also 3.9 points better than
Ponti et al. (2021), the previous state-of-the-art
for translate-test in this task. While most work in
cross-lingual classification focuses on multilingual
models, this shows that competitive or even supe-
rior results can also be obtained with English-only
models.

Nevertheless, we also find a considerable vari-
ance across tasks. The best results are obtained
by translate-test in 4 out of 6 benchmarks—in
most cases by a large margin—but translate-train

is slightly better in the other 2. For instance, De-
BERTa translate-test is 13.7 points better than
XLM-R translate-train on XCOPA, but 1.6 points
worse on MARC. This suggests that different tasks
have different properties, which make different ap-
proaches more or less suitable.

4 Analyzing the variance across tasks

As we have just seen, the optimal cross-lingual
learning approach is highly task dependent. In this
section, we try to characterize the specific factors
that explain this different behavior. To that end, we
build on the concept of cross-lingual transfer gap,
which is defined as the difference in performance
between the source language that we have training
data in (typically English) and the target language
that we are evaluating on (Hu et al., 2020). While
prior work has used this as an absolute metric to
compare the cross-lingual generalization capabili-
ties of different multilingual models, we argue that
such a transfer gap can be attributed to different
sources depending on the approach used, which
we try to quantify empirically.

In what follows, we identify the specific sources
of transfer gap that each approach is sensitive to
(§4.1), propose a methodology to estimate their
impact using a monolingual dataset (§4.2), and
present the estimates that we obtain for various
tasks and target languages (§4.3).

4.1 Sources of cross-lingual transfer gap

We next dissect the specific sources of cross-lingual
transfer gap that each approach is sensitive to:

Translate-test. All the degradation comes from
MT, as no multilingual model is used. We distin-
guish between (i) the information lost in the trans-
lation process (either caused by translation errors
or superficial patterns removed by MT), and (ii) the
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distribution shift between the original data seen
during training and the machine translated data
seen during evaluation (e.g., stylistic differences
like translationese that existing models might strug-
gle generalizing to, even if no information is lost).

Zero-shot. All the degradation comes from the
multilingual model, as no MT is used. We dis-
tinguish between (i) source-language represen-
tation quality6 relative to a monolingual model
(English-only models being typically stronger
than their multilingual counterparts, but only us-
able with translate-test), (ii) target-language rep-
resentation quality relative to the source lan-
guage (the representations of the target language—
typically less-resourced—being worse than those
of the source language), and (iii) representation
misalignment between the source and the target
language (even when a model has a certain capabil-
ity in both languages, there can be a performance
gap when generalizing from the source to the target
language if the languages are not well-aligned).

Translate-train. The degradation comes from
both MT and the multilingual model. However,
while both source and target language represen-
tation quality have an impact,7 this approach is
not sensitive to representation misalignment, as the
model is trained and tested in the same language.
Regarding MT, there is no translation and therefore
no information lost at test time, so we can consider
potential translation errors at training time to be
further inducing a distribution shift.

Finally, there can also be an inherent distri-
bution mismatch across languages in the bench-
mark itself (e.g., the source language training data
and the target language evaluation data having dif-
ferent properties). This can be due to annotation
artifacts in multilingual datasets, in particular those

6We consider that a pretrained model A has learned higher
quality representations than model B if fine-tuning it in our
target task results in better downstream performance. In this
case, English-only models like RoBERTa are generally su-
perior to their multilingual counterparts like XLM-R when
evaluated on downstream English tasks, so we say that their
source-language representation quality is higher.

7Even if the model is trained and tested on the target lan-
guage, we consider that there is still a degradation from the
source-language representation quality under our framework.
This is because we are measuring the degradation from us-
ing a multilingual model in the target language as opposed
to a monolingual model in the source language, which is de-
composed into the difference between the monolingual and
multilingual model in the source language, plus the difference
between the source and the target language in the multilingual
model.

created through translation (Artetxe et al., 2020),
but can also be a result of the task having nat-
urally different properties in different languages
(e.g., question answering datasets in different lan-
guages might cover different topics that are rele-
vant to their corresponding speaker communities).
Quantifying this factor would require comparing
translated and original annotations for each task,
which we do not consider in our analysis given the
lack of such data.

4.2 Methodology
Let Tsrc be some training data in the source
language, Ttgt = MTsrc→tgt(Tsrc) its MT-
generated translation into the target language, and
Tbt = MTtgt→src(Ttgt) its MT-generated transla-
tion back into the source language. Similarly, let
Esrc, Etgt and Ebt be analogously defined evalu-
ation sets. We define acc(T,E) as the accuracy
of our multilingual model when training on T and
evaluating on E, and accmono(T,E) as the accu-
racy of its equivalent monolingual model when
training on T and evaluating on E. Given this,
we estimate the cross-lingual gap from each of the
sources discussed in §4.1 as follows:

MT information lost. We take the difference be-
tween training and testing on original data, and
training and testing on back-translated data. Given
that there is not a distribution shift between train
and test induced by MT, the difference in perfor-
mance can be solely attributed to the information
lost. MT is used twice when translating into the
target language and then back into the source lan-
guage, so we make the assumption that each of
them introduces a similar error and divide the total
gap by two to estimate the impact of a single step:

∆MT
info =

acc(Tsrc, Esrc) − acc(Tbt, Ebt)

2

MT distribution shift. We take the difference
between training and testing on back-translated
data, and training on original data and evaluating on
back-translated data. Similar to ∆MT

info, we divide
this difference by two, assuming that each MT step
introduces the same error:

∆MT
dist =

acc(Tbt, Ebt) − acc(Tsrc, Ebt)

2

Source representation quality. We take the dif-
ference between the monolingual and the multilin-
gual model, training and testing on original data:

∆rep
src = accmono(Tsrc, Esrc) − acc(Tsrc, Esrc)
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Figure 2: Estimation of the impact of different sources of cross-lingual transfer gap.

Target representation quality. We take the dif-
ference between training and testing on original
data, and training and testing on translated data,
and further subtract ∆MT

info to account for the error
from MT:

∆rep
tgt = acc(Tsrc, Esrc)−acc(Ttgt, Etgt)−∆MT

info

Representation misalignment. We take the dif-
ference between training and testing on translated
data, and training on original data and testing on
translated data, and further subtract ∆MT

dist to ac-
count for the error from the distribution mismatch
in the later:

∆rep
align = acc(Ttgt, Etgt)−acc(Tsrc, Etgt)−∆MT

dist

4.3 Results and discussion

We experiment on our usual set of 6 tasks, us-
ing the exact same training data as in §3 as Tsrc,
and the English portion of the respective test sets
as Esrc. EXAMs does not have an English test
set, so we use the analogous OpenBookQA (Mi-
haylov et al., 2018) instead. We use XLM-R as
our main model and RoBERTa as our monolin-
gual model. We explore a diverse set of target
languages: 5 high-resource languages related to

English (German, Dutch, French, Spanish, Italian),
5 high-resource unrelated languages (Turkish, Viet-
namese, Japanese, Finnish, Arabic), and 5 low-
resource unrelated languages (Malagasy, Oromo,
Javanese, Uyghur, Odia). Figure 2 reports the esti-
mates that we obtain,8 and we next summarize our
main findings:

Degradation from MT. We find that the impact
of MT greatly varies across tasks. After manual
inspection, we believe that the most relevant fac-
tors causing these differences are the format, lin-
guistic complexity and domain of each task. For
instance, degradation from MT is most prominent
in OpenBookQA, a dataset of multiple choice sci-
ence questions. We find two reasons for this: (i)
the questions and answers often contain domain-
specific terminology that is hard to translate, and
(ii) the answer candidates are often unnatural or
lack the necessary context to be translated in iso-
lation. In contrast, each example in XStoryCloze
consists of 5 short and simple sentences that form
a story, and we find the impact of MT to be small
in this dataset. As expected, MT has a larger abso-

8Different from our previous experiments, we do not per-
form multiple finetuning runs with different random seeds
due to the high computational cost. However, our results are
averaged across languages—each of them requiring separate
finetuning runs.
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lute impact in distant and low-resource languages.
While degradation from MT comes predominantly
from information lost during the translation pro-
cess, a non-negligible part can be attributed to the
distribution shift, which we addressed in §3.1.

Degradation from the multilingual model.
The impact of both the source and target represen-
tation quality greatly varies across tasks, and the
two are highly correlated. This suggests that there
are certain tasks for which representation quality
(both source and target) is generally important. By
definition, the degradation from the source repre-
sentation quality is invariant across languages, but
the degradation from the target representation qual-
ity becomes dramatically higher for unrelated and,
more importantly, low-resource languages. In gen-
eral, we find that tasks requiring commonsense or
factual knowledge, like XStoryCloze and Open-
BookQA, are heavily sensitive to source and target
representation quality, whereas shallower tasks like
sentiment analysis (MARC) are barely affected. Fi-
nally, we find that, in most tasks, representation
misalignment has a relatively small impact com-
pared to representation quality. This suggests that
multilingual models learn well-aligned representa-
tions that allow cross-lingual transfer at fine-tuning
time, but puts into question the extent to which
cross-lingual transfer is happening at pre-training
time, as the target language representations can
be considerably worse than the source language
representations.

Explaining the variance across tasks. Our re-
sults can explain why the optimal cross-lingual
learning approach is highly task dependent as ob-
served in §3.3. For instance, we find that source
representation quality is the most important factor
in XStoryCloze, but does not have any impact in
MARC. This explains why translate-test—the only
approach that is not sensitive to this source of trans-
fer gap—obtains the best results on XStoryCloze,
but lags behind other approaches on MARC. Simi-
larly, we find that the impact of the MT distribution
shift is highest on XNLI, which is also the tasks at
which our improved translate-test approach miti-
gating this issue brings the largest improvements.
We remark that our analysis is only using the En-
glish portion of the benchmarks. This shows that it
is feasible to characterize the cross-lingual learning
behavior of downstream tasks even if no multilin-
gual data is available.

5 Related work

While using MT for cross-lingual classification is
a long standing idea (Fortuna and Shawe-Taylor,
2005; Banea et al., 2008; Shi et al., 2010; Duh
et al., 2011), there is relatively little work focus-
ing on it in the era of language model pretraining.
Ponti et al. (2021) improve translate-test by treat-
ing the translations as a latent variable, which al-
lows them to finetune the MT model for the end
task through minimum risk training and combine
multiple translations at inference. Our approach is
simpler, but obtains substantially better results on
XNLI and PAWS-X. Artetxe et al. (2020) explore
a simpler variant of our training data adaptation
(§3.1.2), but their focus is on translation artifacts
and our numbers are considerably stronger. Oh et al.
(2022) show that translate-train and translate-test
are complementary and better results can be ob-
tained by combining them. Isbister et al. (2021)
report that translate-test outperforms monolingual
models fine-tuned on the target language, but their
work is limited to sentiment analysis in Scandina-
vian languages. While we focus on classification
tasks, there is also a considerable body of work
exploring MT for cross-lingual sequence labeling,
which has the additional challenge of projecting
the labels (Jain et al., 2019; Fei et al., 2020; García-
Ferrero et al., 2022a,b)

6 Conclusions

Contrary to the conventional wisdom in the area,
we have shown that translate-test can outperform
both zero-shot and translate-train in most clas-
sification tasks. While most research in cross-
lingual learning pivots around multilingual mod-
els, these results evidence that using an English-
only model through MT is a strong—and often
superior—alternative that should not be overlooked.
However, there is no one method that is optimal
across the board, as not all tasks are equally sensi-
tive to the different sources of cross-lingual trans-
fer gap. Using a new approach to quantify such
sources of transfer gap, we find evidence that com-
plex tasks like commonsense reasoning are more
sensitive to representation quality, making them
more suitable for translate-test, whereas shallower
tasks like sentiment analysis work better with mul-
tilingual models. In the future, we would like to
extend our study to other types of NLP problems
like generation and sequence labelling, and study
how the different approaches work at scale.
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Limitations

Our study is limited to classification tasks, an im-
portant yet incomplete subset of NLP problems.
Translate-train and translate-test can also be ap-
plied to other types of problems like generation or
sequence labeling, but require additional steps (e.g.
projecting labels in the case of sequence labeling).
We believe that it would be interesting to conduct
similar studies on these other types of problems.

At the same time, most multilingual
benchmarks—including some used in our
study—have been created through translation,
which prior work has shown to suffer from
annotation artifacts (Artetxe et al., 2020). It
should be noted that the artifacts characterized
by Artetxe et al. (2020) favor translate-train and
harm translate-test, so we believe that our strong
results with the latter are not a result of exploiting
such artifacts. However, other types of more subtle
interactions might be possible (e.g. translating
a text that is itself a translation might be easier
than translating an original text). As such, we
encourage future research to revisit the topic as
better multilingual benchmarks become available.

Finally, our experiments are limited to the tra-
ditional pretrain-finetune paradigm with encoder-
only models. There is some early evidence that
translate-test also outperforms current multilingual
autoregressive language models (Lin et al., 2021;
Shi et al., 2022), but further research is necessary
to draw more definitive conclusions.
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