
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 6642–6658
December 6-10, 2023 ©2023 Association for Computational Linguistics

Rethinking Model Selection and Decoding for Keyphrase Generation
with Pre-trained Sequence-to-Sequence Models

Di Wu, Wasi Uddin Ahmad, Kai-Wei Chang
University of California, Los Angeles

{diwu,kwchang}@cs.ucla.edu, wasiahmad@ucla.edu

Abstract

Keyphrase Generation (KPG) is a longstand-
ing task in NLP with widespread applications.
The advent of sequence-to-sequence (seq2seq)
pre-trained language models (PLMs) has ush-
ered in a transformative era for KPG, yielding
promising performance improvements. How-
ever, many design decisions remain unexplored
and are often made arbitrarily. This paper un-
dertakes a systematic analysis of the influence
of model selection and decoding strategies on
PLM-based KPG. We begin by elucidating why
seq2seq PLMs are apt for KPG, anchored by an
attention-driven hypothesis. We then establish
that conventional wisdom for selecting seq2seq
PLMs lacks depth: (1) merely increasing model
size or performing task-specific adaptation is
not parameter-efficient; (2) although combin-
ing in-domain pre-training with task adaptation
benefits KPG, it does partially hinder general-
ization. Regarding decoding, we demonstrate
that while greedy search achieves strong F1
scores, it lags in recall compared with sampling-
based methods. Based on these insights, we
propose DESEL, a likelihood-based decode-
select algorithm for seq2seq PLMs. DESEL
improves greedy search by an average of 4.7%
semantic F1 across five datasets. Our collec-
tive findings pave the way for deeper future
investigations into PLM-based KPG.

1 Introduction

Keyphrases encapsulate the core information of a
document. Due to their high information density,
they have been found valuable in areas such as in-
formation retrieval (Wu and Bolivar, 2008; Dave
and Varma, 2010; Kim et al., 2013; Boudin et al.,
2020), document clustering (Hammouda et al.,
2005), summarization (Zhang et al., 2004), and
text classification (Berend, 2011). A keyphrase is
termed a present keyphrase if it is explicitly found
within the document and an absent keyphrase oth-
erwise. The task of identifying present keyphrases
is defined as keyphrase extraction (KPE), whereas

keyphrase generation (KPG) involves predicting
both types of keyphrases.

Recently, pre-trained language models (PLMs)
have been widely incorporated in KPG (Chowd-
hury et al., 2022; Zhao et al., 2022) via sequence-to-
sequence (seq2seq) generation, with promising per-
formance on zero-shot (Kulkarni et al., 2022), mul-
tilingual (Gao et al., 2022), and low-resource (Wu
et al., 2022a) KPG. However, existing literature typ-
ically focuses on a specific subset of important com-
ponents in this pipeline, such as data construction
and loss design, while making arbitrary choices
for the others (Zhao et al., 2022; Ray Chowdhury
et al., 2022; Wu et al., 2022a; Garg et al., 2022). As
a result, KPG systems are often compared under
different assumptions and the effect of the arbitrary
design choices remains unclear. To bridge this gap,
this paper focuses on two crucial questions that
have not been systematically explored:

1. Which PLM leads to the best KPG perfor-
mance when fine-tuned?

2. What is the best decoding strategy?
In practice, sub-optimal choices for these factors
could lead to optimizing an unnecessarily large
model or sub-optimal results decoded from a strong
KPG model. To answer these two questions, we
conduct in-depth analyses on KPG with (1) PLMs
of diverse size and pre-training strategies and (2) a
diverse set of decoding strategies.

To begin with, we posit that seq2seq PLMs are
inherently suitable to KPG (§3). By drawing the
correlations with a strong graph-based KPE algo-
rithm, we show that these PLMs implicitly compute
phrase centrality (Boudin, 2013) in their decoder
attention patterns. This knowledge is also directly
translatable to a strong ranking function for KPE.
On the other hand, encoder-only models fail to
carry such centrality information.

Next, we search for the best seq2seq PLM for
KPG fine-tuning (§4). While common strategies
for other NLP tasks might advocate for (1) scaling

6642

up the model size, (2) in-domain pre-training, or
(3) task adaptation, do these approaches hold the
same merit for KPG? Our findings reveal that a sin-
gular emphasis on scaling or task adaptation does
not ensure efficient performance improvement. In
contrast, in-domain pre-training consistently bol-
sters performance across both keyphrase types and
can benefit from task adaptation. A robustness
analysis reveals that a proper model choice and
data-oriented training approaches are complemen-
tary: without the latter, stronger PLMs are more
vulnerable to perturbed input, with over 14% recall
drop under named variation substitutions and over
5% recall drop under input paraphrasing.

Decoding strategy is also an essential component
in PLM-based KPG, but much under-explored by
current literature. In §5, we thoroughly compare
six decoding strategies including greedy search,
beam search, and sampling-based methods. Re-
sults suggest that when only generating a single
sequence consisting of concatenated keyphrases,
greedy search achieves a strong F1 score. How-
ever, aggregating the predictions from multiple
sampled sequences outperforms greedy search due
to a much higher recall.

Based on these findings, we introduce DESEL,
a likelihood-based selection strategy that selects
from sampled phrases to augment the greedy search
predictions. DESEL utilizes the probability of
phrases from greedy search’s predictions as the
baseline to filter out noisy predictions from a
set of sampled keyphrase candidates. Experi-
ments on five KPG datasets show that DESEL

consistently improves greedy decoding by 7.9%
F1@M for present keyphrases, 25% F1@M for
absent keyphrases, and 4.7% Semantic F1 for all
keyphrases, achieving state-of-the-art KPG perfor-
mance, underscoring the importance of carefully
examining the design choice of KPG.

To summarize, our primary contributions are:

1. An in-depth exploration of the intrinsic suit-
ability of seq2seq PLMs for KPG.

2. A comprehensive examination of effective
strategies for model enhancement in KPG,
spotlighting the merits of specific combina-
tions and their implications for robustness.

3. We establish the trade-off between accuracy
and concept coverage for different decoding
algorithms. Then, we introduce a probability-
based decode-select mechanism DESEL that
consistently improves over greedy search.

4. Our research illuminates the profound impact
of under-emphasized factors on KPG perfor-
mance. To facilitate future research on KPG,
we release our code and models at https:
//github.com/uclanlp/DeepKPG.

2 Preliminaries

2.1 Keyphrase Generation

Problem Definition We represent an example
for KPG as a tuple (X ,Y), corresponding to the
input document X = (x1, x2, ..., xd) and the
set of human-written reference keyphrases Y =
{y1, y2, ..., yn}. Following Meng et al. (2017),
yi is classified as a present keyphrase if it is a
substring of X or an absent keyphrase otherwise.
The KPG task requires predicting Y in any order,
and the KPE task only requires predicting present
keyphrases (Turney, 2000).

Evaluation We adopt lexical-based and semantic-
based evaluation to evaluate a model’s predictions
P = {p1, p2, ..., pm} against Y . For lexical eval-
uation, we follow Chan et al. (2019) and use the
P@M , R@M , and F1@M scores. P and Y are
stemmed with the Porter Stemmer (Porter, 1980)
and the duplicates are removed before the score
calculation. For semantic evaluation, we follow
Wu et al. (2023) and report SemP , SemR, and
SemF1. Note that lexical metrics are separately
calculated for present and absent keyphrases while
the semantic metrics are calculated with all the
phrases. We repeat all the experiments with three
random seeds and report the averaged performance.

Benchmark Meng et al. (2017) introduce KP20k,
which contains 500k Computer Science papers.
Following their work, we train on KP20k and eval-
uate on the title and abstracts from the KP20k
test set as well as four out-of-distribution testing
datasets: Inspec (Hulth, 2003), Krapivin (Krapivin
et al., 2009), NUS (Nguyen and Kan, 2007), and
SemEval (Kim et al., 2010). Table 5 summarizes
the statistics of all testing datasets.

Baselines We consider two strong supervised
encoder-decoder models from Ye et al. (2021):

1. CopyTrans: A Transformer (Vaswani et al.,
2017) with copy mechanism (See et al., 2017).

2. The SetTrans model, which performs order-
agnostic KPG. The model uses control codes
trained via a k-step target assignment algo-
rithm to generate keyphrases in parallel.

6643

https://github.com/uclanlp/DeepKPG
https://github.com/uclanlp/DeepKPG

As the goal of this work is thoroughly studying
PLM-based methods, we only provide the results
of the strongest baselines as a point of reference.
We also include other baselines in appendix section
G. In our analysis, we also use MultipartiteRank
(MPRank, Boudin (2018)), a performant graph-
based unsupervised KPE algorithm. More details
about MPRank are discussed in §3.1.

2.2 Sequence-to-Sequence PLMs

In this work, we focus on fine-tuning Transformer-
based sequence-to-sequence PLMs BART (Lewis
et al., 2020) and T5 (Raffel et al., 2020) for KPG
with the "One2Seq" formulation. Concretely, fol-
lowing Ye and Wang (2018) and Yuan et al. (2020),
we use a separator token ; to join all the target
keyphrases as the target sequence Y = (y1 ; ...
; yn). The models are trained with the cross-
entropy loss for generating Y based on X . At test
time, greedy decoding is used, followed by a post-
processing stage to segment the output sequence
into individual phrases. We provide implementa-
tion details and hyperparameters in appendix D.

3 Do PLMs inherently carry significant
knowledge of keyphrases?

Existing studies have justified their use of seq2seq
PLMs by drawing the close relationship between
the pre-training tasks of BART (denoising language
modeling) or T5 (unified text-to-text transfer) and
the formulation of KPG (Gao et al., 2022; Zhao
et al., 2022; Wu et al., 2022a) or KPE (Kong et al.,
2023). However, there is a lack of an in-depth
understanding of why seq2seq PLMs should be
chosen for keyphrase-related tasks. In this section,
we reason based on phrase centrality (Litvak and
Last, 2008; Boudin, 2013) and show that PLMs
with autoregressive decoders, including seq2seq
PLMs, carry attention heads that approximately
function as centrality assigners and naturally as
potent keyphrase rankers.

3.1 Centrality of Phrases

The concept of phrase centrality originated from
graph-based KPE, where keyphrase candidates are
represented as nodes. Various graph centrality mea-
sures are used to determine a phrase’s importance
in the document. We use MPRank in our analysis,
which encodes closeness-based and eigenvector-
based centrality (Boudin, 2013). MPRank first uses
rules to obtain C noun phrase candidates and then

Model Size Head ρ Head τ

Encoder-only PLMs
BERT-base 110M 3-0 0.300 3-0 0.206
BERT-large 340M 0-5 0.351 0-6 0.246
Decoder-only PLMs
gpt2 117M 0-11 0.626 0-11 0.479
gpt2-medium 345M 1-6 0.630 1-6 0.480
gpt2-large 774M 0-13 0.627 0-13 0.478
gpt2-xl 1.5B 0-6 0.626 0-6 0.476
Seq2seq PLMs
BART-base 140M 0-6 0.608 0-6 0.459
BART-large 406M 0-9 0.585 0-9 0.438
T5-small 60M 4-4 0.624 4-4 0.471
T5-base 223M 8-4 0.621 8-4 0.466
T5-large 770M 0-2 0.628 0-2 0.471
T5-3B 3B 0-8 0.648 0-8 0.494

Table 1: Correlation between keyphrase candidates’ at-
tention weights and centrality scores. l-h denotes atten-
tion head h in layer l. Both h and l start from index
0. We report the attention head that achieves the best
scores. The highest score is boldfaced.

performs lexical clustering to group the candidates
into topic clusters. Next, each candidate is rep-
resented as a graph node and connected with the
candidates from other topic clusters. TextRank
(Mihalcea and Tarau, 2004) is used to obtain a cen-
trality score ci for each of the nodes ni. We refer
the readers to Boudin (2018) for further details.

3.2 Attention intensities in BART and T5
decoders encode phrase centrality

Using MPRank as a lens, we first investigate the ex-
tent to which PLMs implicitly represent centrality
information. We use the paper titles and abstracts
from the KP20k test set as the probing set. Each
probing instance is fed into a PLM and the attention
weights from the self-attention layers are collected.
For the hth attention head at layer l, we denote
the attention from token i to token j as αl,h

i→j . For
the jth token in the noun phrase candidate ni, the
global attention weight on it is

al,hij =
∑

k=1,...,L

αl,h
k→j , (1)

where L is the length of the text after tokenization.
Then, the attention weight of ni is calculated as

al,hi = |ni|
∑

j

al,hij , (2)

where |ni| denotes the number of tokens in ni.
We study four families of models: BART, T5,

BERT, and GPT-2 (Radford et al., 2019). For

6644

BART and T5, we use their decoder attentions.
We correlate al,hi with ci using Spearman correla-
tion ρ and Kendall’s Tau τ and present the best
correlation for each model in Table 1. Surprisingly,
BART and T5 decoders contain attention heads
that encode phrase centrality similarly as MPRank.
The head with the best correlation generally ap-
pears in the lower layers, indicating that centrality
understanding may be more related to low-level fea-
tures. Also, the upper bound of correlation strength
grows with model size for T5 while does not grow
for BART. Beyond centrality assigners, these at-
tention heads are also potent keyphrase extractors:
simply ranking the noun phrase candidates by al,hi
achieves similar F1@5 for present keyphrases or
SemF1@5 score as MPRank (appendix B).

Evaluating other types of PLMs, we find that
BERT’s attention heads only show weak centrality
knowledge, with only 0.246 best Kendall Tau
with MPRank. On the other hand, GPT-2 exhibits
a similar pattern to the decoders from seq2seq
PLMs, indicating that the observed pattern is
strongly associated with autoregressive decoders.
As centrality is generally correlated with global
importance, our result aligns with the observations
that masked language modeling tends to exploit
local dependency while causal language modeling
can learn long-range dependencies (Clark et al.,
2019; Vig and Belinkov, 2019).

In summary, through attention-based analy-
ses, we reveal novel insights into the underlying
keyphrase knowledge of PLMs with autoregressive
decoders. Such knowledge can be employed ex-
plicitly (via ranking) or implicitly (via fine-tuning
and prompting) to facilitate KPG. In the rest of the
paper, we focus on rethinking two basic designs for
KPG with seq2seq PLMs.

4 Influence of PLM Choice for KPG

Three crucial design options exist for using seq2seq
PLMs for KPG: the choice of PLM to fine-tune, the
fine-tuning data and objective, and the decoding
strategy. Previous work focuses on fine-tuning ob-
jective and data construction (Meng et al., 2021;
Ray Chowdhury et al., 2022; Garg et al., 2023)
while often making the other two choices in an ad
hoc way, making it difficult to compare among ap-
proaches. This section dives into the first question
by evaluating three "conventional wisdoms":

1. Using PLMs with more parameters (§4.1).
2. Using in-domain PLMs (§4.2).

3. Using task-adapted PLMs (§4.3).

4.1 The scaling law for keyphrase generation
Although the effect of model sizes has been ex-
plored for a range of tasks, it is poorly understood
in the KPG literature, where most recent works em-
ploy a single PLM with 100M to 500M parameters
(Kulkarni et al., 2022; Wu et al., 2022b; Zhao et al.,
2022). To establish a common ground, we measure
the performance of fine-tuning BART-base/large
(purple line) and T5-small/base/large/3B (green
line) and report the results on KP20k in Figure 1.

Surprisingly, fine-tuning BART or T5 is ex-
tremely parameter-inefficient compared to task-
specific architectures trained from scratch1. For
instance, although T5’s performance consistently
increases with the model size, around 8x more pa-
rameters are required to achieve the same Present
F1@M on KP20k as SetTrans and 30x more pa-
rameters are required to have a better SemF1.
Closer inspection shows that SetTrans excels in
recall via its parallel control codes and the set loss.
In comparison, limited by the learning formulation
and decoding strategy, fine-tuned seq2seq PLMs
fall behind in their recall of important keyphrases.
In §5, we will show that this problem can be allevi-
ated with a simple decode-then-select strategy.

BART vs. T5 BART and T5 display similar scal-
ing for F1@M and SemF1. However, compared
to T5, BART’s recall scores increase more readily
than the precision scores. At the same number of
parameters, BART also performs better on absent
keyphrases. One possible reason is that BART’s
text infilling objective is more advantageous for
learning the knowledge for constructing spans ab-
sent from text (Wu et al., 2022a).

Which score is more sensitive to scaling? Com-
pared to recall, precision is more sensitive to model
size. For example, T5-small achieves 98% SemR
compared to the 50x larger T5-3B. In addition, ab-
sent keyphrases scores are more sensitive. Overall,
this suggests that small models are able to extract
relevant keyphrases, but learn to selectively omit
unimportant keyphrases and create more absent
keyphrases as the model size grows. Indeed, the
average number of predicted keyphrases decreases
from T5-small (6.75), T5-base (5.74), and T5-large
(5.66), to T5-3B (5.48), while the number of ab-
sent keyphrases increases from T5-small (0.91),

1We note that this claim is orthogonal to the observations
that PLMs are data-efficient (Wu et al., 2022a).

6645

102 103

Model Size (M)

0.28

0.30

0.32

0.34

0.36

0.38

+ID

+ID+TAPT
+ID
+TAPT

+ID+TAPT
Present KPs Precision@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

+ID

+ID+TAPT

+ID

+TAPT

+ID+TAPT

Present KPs Recall@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.36

0.38

0.40

0.42

+ID

+ID+TAPT +ID

+TAPT

+ID+TAPT
Present KPs F1@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.03

0.04

0.05

0.06

0.07

+ID
+ID+TAPT

+ID

+TAPT

+ID+TAPT
Absent KPs Precision@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.02

0.03

0.04

0.05

0.06

+ID
+ID+TAPT

+ID

+TAPT

+ID+TAPT

Absent KPs Recall@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.02

0.03

0.04

0.05

0.06

+ID+ID+TAPT

+ID

+TAPT

+ID+TAPT
Absent KPs F1@M

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

+ID

+ID+TAPT +ID+TAPT

+ID+TAPT
SemP

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.590

0.595

0.600

0.605

0.610

0.615

0.620

0.625

+ID

+ID+TAPT

+ID

+TAPT

+ID+TAPT

SemR

CopyTrans
SetTrans
BART
T5
FLAN-T5

102 103

Model Size (M)

0.55

0.56

0.57

0.58

0.59

0.60

+ID

+ID+TAPT
+ID

+TAPT

+ID+TAPT
SemF1

CopyTrans
SetTrans
BART
T5
FLAN-T5

Figure 1: KP20k test performance of models of various sizes and pre-training strategies. +ID = using in-domain
SciBART. +TAPT = second-stage training on OAGKX. The results are averaged over 3 random seeds.

T5-base (0.99), T5-large (1.01), to T5-3B (1.05).

4.2 Domain knowledge is crucial to accurate
keyphrase generation

In-domain pre-training has been shown effective in
a wide range of tasks requiring extensive domain
knowledge (Beltagy et al., 2019; Lee et al., 2019).
As keyphrases often contain domain-specific termi-
nologies, we hypothesize that the domain of a PLM
greatly affects its keyphrase generation ability. To
test this hypothesis, we pre-train in-domain BART
models SciBART-base and SciBART-large from
scratch using the paper titles and abstracts from the
S2ORC dataset (Lo et al., 2020). The processed
dataset contains 171.7M documents or 15.4B to-

kens in total. The models are pre-trained on text
infilling for 250k steps with batch size 2048, learn-
ing rate 3e-4, 10k warm-up steps, and polynomial
learning rate decay. We present data processing
and model training details in appendix C.

The results of fine-tuning SciBART are pre-
sented with "+ID" (for "In-Domain") in Figure 1.
As expected, SciBART significantly improves over
BART for all three F1 metrics, outperforming the
much larger T5-3B. Notably, SciBART also has
better parameter efficiency compared to general
domain models: scaling from SciBART-base to
SciBART-large provides a much larger growth in
SemF1 compared to scaling up BART and T5.

6646

4.3 Task-adaptive pre-training is more
effective with in-domain models

Task-adaptive pre-training (TAPT) is another com-
mon technique for adding task-specific supervi-
sion signals (Gururangan et al., 2020). In this sec-
tion, we analyze the effect on KPG performance of
adding two types of TAPT stages to seq2seq PLMs:
keyphrase generation or instruction following.

Keyphrase Pre-training We directly use Key-
BART (Kulkarni et al., 2022) (denoted as "+TAPT"
in Figure 1), which is trained using the OAGKX
dataset (Çano and Bojar, 2020) on KPG with
keyphrases corrupted from the input. To inves-
tigate the effects of TAPT on in-domain PLMs, we
also fine-tune SciBART on OAGKX with batch
size 256, learning rate 3e-5, and 250k steps. We
denote this model as "+ID+TAPT" in Figure 1.

Instruction Pre-training Recently, instruction
tuning has been introduced to improve the gen-
eralization ability of PLMs (Mishra et al., 2022;
Ouyang et al., 2022). As KPG is relevant to clas-
sic NLP tasks such as information extraction and
summarization, we hypothesize that training with
instruction data also serves as TAPT for KPG2. To
confirm, we benchmark FLAN-T5 (Chung et al.,
2022), a family of T5 models fine-tuned on instruc-
tion following datasets (yellow line in Figure 1).

TAPT struggles to improve absent KPG but is
more effective with in-domain models. Figure 1
suggests that both TAPT strategies lead to a similar
amount of improvement in the present keyphrase
F1@M and SemF1. Surprisingly, the absolute
gain is small and TAPT hardly improves absent
keyphrase performance. For KeyBART, although
its pre-training data (OAGKX) has a similar per-
centage of absent keyphrases as KP20K (32% vs.
37%), its objective (recovering present keyphrases
from corrupted input) might still be different from
absent keyphrase generation. For FLAN-T5, we
find that the KPG-related tasks in its pre-training
tasks often contain very short input text, represent-
ing a significant distribution mismatch with KP20k.
However, when applied on the in-domain SciBART,
TAPT can greatly improve the performance on
KP20k. Combined with §4.2, we conclude that
in-domain pre-training is more important for KPG
and TAPT serves a complementary secondary role.

2In fact, some variants of the keyphrase extraction task are
included in popular instruction datasets such as NIv2 (Wang
et al., 2022) and Alpaca (Taori et al., 2023).

Model Before After ∆

Name Variation Substitution
BART-large 0.476 0.410 -0.066 (13.9%↓)
SciBART-large 0.531 0.420 -0.131 (20.9%↓)
KeyBART 0.463 0.398 -0.065 (14.2%↓)
SciBART-large+TAPT 0.525 0.434 -0.091 (17.4%↓)
Paraphrasing
BART-large 0.463 0.453 -0.010 (2.3%↓)
SciBART-large 0.524 0.494 -0.030 (5.8%↓)
KeyBART 0.466 0.407 -0.059 (12.6%↓)
SciBART-large+TAPT 0.522 0.487 -0.035 (6.8%↓)

Table 2: Results for the probing experiments. "Before"
and "After" indicate the recall scores before and after
perturbation. ∆ denotes the score change from "Before"
to "After". The best score is boldfaced.

4.4 Analysis: are strong KPG models sensitive
to input perturbations?

As in-domain and task-adapted PLMs already
greatly benefit KPG, are data augmentation tech-
niques no longer necessary? In this section, we
reveal that these designs increase the model’s sensi-
tivity to input perturbations, and data augmentation
is still desired for better generalization.

4.4.1 Method
We design two input perturbations on KP20k to
check the behaviors of BART-based KPG models.

Name variation substitution We construct 8905
perturbed inputs by replacing present keyphrases
with their name variations linked by Chan et al.
(2019). Ideally, a robust KPG model would have a
similar recall for the original phrases and the name
variations as they appear in the same context.

Paraphrasing We leverage gpt-3.5-turbo
to paraphrase 1000 documents into a scientific writ-
ing style. A good KPG model is expected to retain
similar recall for phrases that present both before
and after paraphrasing since the inputs describe
the same ideas. The detailed prompt and several
examples are presented in appendix E.

4.4.2 Results
Table 2 presents the perturbation results. We ob-
serve that models often fail to predict name varia-
tions when they appear in place of the original syn-
onyms, while successfully maintaining their pre-
dictions given paraphrased inputs. This indicates
that the models may overfit to the high-frequency
keyphrases in the training set and input augmenta-
tion methods such as Garg et al. (2023) are neces-
sary to correct this pattern.

6647

In addition, domain-specific or task-adapted
models exhibit a larger performance drop com-
pared to BART-large, suggesting a trade-off be-
tween domain/task specificity and generalization.
Pre-trained on large-scale keyphrase data, Key-
BART may rely more on syntax and position in-
formation in the data and thus be less sensitive to
synonym change. On the other hand, pre-trained on
a large-scale scientific corpus, SciBART is more ro-
bust than KeyBART on different scientific writing
styles beyond the ones available in KP20k.

4.5 Discussion
We summarize the main conclusions derived from
the empirical results presented in this section:

• Naively scaling up BART and T5 is parameter-
inefficient on KP20k compared to SetTrans.

• Domain knowledge is crucial for KPG perfor-
mance and improves parameter efficiency.

• Task-adaptive training with keyphrase or in-
struction tuning data only significantly im-
proves KPG with in-domain models.

• In-domain pre-training and TAPT harm gen-
eralization in different ways and data augmen-
tation during fine-tuning is desired.

5 Decoding Strategy for KPG

While it is well-known that decoding strategies can
strongly affect text generation quality (Fan et al.,
2018; Holtzman et al., 2020), surprisingly there has
been little study about decoding PLM-based KPG
models. Previous studies often directly use greedy
search and variants of beam search (Gao et al.,
2022; Zhao et al., 2022; Wu et al., 2022a), limiting
the understanding of PLMs fine-tuned for KPG.
To bridge this knowledge gap, we first carefully
evaluate six decoding strategies on the strongest
PLM-based KPG model. We then propose a simple
yet effective decode-select strategy to mitigate the
observed deficiencies of greedy search.

5.1 Multi-sequence decoding: the trade-off
between coverage and quality

We focus on decoding the SciBART-large+TAPT
model fine-tuned on KP20k, under the budget vary-
ing from 1 to 20 samples. The following six de-
coding algorithms are compared. For each algo-
rithm, their hyperparameters are chosen based on
the KP20k validation set.

1. Greedy search.
2. Beam search. We set the beam size to the

number of desired samples.
3. Diverse beam search (Vijayakumar et al.,

2018). We set the number of groups to the
number of desired samples and the weight of
the dissimilarity term to λg = 0.1.

4. Vanilla sampling. We further apply a tempera-
ture scaling τ = 0.7.

5. Top-k sampling (Fan et al., 2018). We use
temperature τ = 0.7 and k = 2 as we find a
large k harms the generation quality.

6. Nucleus sampling (Holtzman et al., 2020). We
set p = 0.95 and temperature τ = 0.5.

Figure 2 presents the semantic-based evalua-
tion results as a function of sample size. In the
single sample setting, greedy search achieves a
strong SemF1, only slightly outperformed by di-
verse beam search. For other methods, we observe
a clear trade-off between their information cov-
erage (SemR) and the noise in the final output
(SemP) as the number of samples grows. Never-
theless, all these methods are able to outperform
greedy search at a certain sample size, indicating
that single-sequence decoding is sub-optimal.

5.2 A simple decode-select strategy boosts the
performance of greedy decoding

Greedy search captures the correlations in human-
written labels but suffers from local decisions and
path dependency: high-quality keyphrases can be
missed with improbable first tokens. However,
naively outputting the union of multiple sampled
sequences brings excessive noise. To achieve the
balance between the two, we introduce DESEL, a
simple and effective three-stage decoding strategy:

1. Decode one sequence G via greedy search.
2. Sample n sequences {S1, ..., Sn} to collect a

set of candidate keyphrases S.
3. Select high quality phrases {s1, ..., sm} ⊂ S

and output the sequence (G ; s1 ; ... ; sm).
For step 3, we estimate Pr(si|X) for every

phrase si in the n samples and Pr(gj |X) for ev-
ery phrase gj ∈ G. Then, we use G as a baseline
to select at most m most probable si that satisfies

Pr(si|X) ≥ α

|G|
∑

gj∈G
Pr(gj |X), (3)

where α is a hyperparameter controlling the trade-
off between precision and recall. The probabil-
ity estimation is obtained with either the original

6648

3 6 9 12 15 18
Number of Samples

0.40

0.45

0.50

0.55

0.60

0.65
SemP

3 6 9 12 15 18
Number of Samples

0.60

0.65

0.70

0.75

0.80

SemR

3 6 9 12 15 18
Number of Samples

0.57

0.58

0.59

0.60

0.61
SemF1

greedy search beam search diverse beam search vanilla sampling top-k sampling nucleus sampling

Figure 2: A comparison of six strategies for decoding from the SciBART+TAPT model. Greedy search achieves
strong performance while performing worse than beam search and sampling with multiple samples.

Method
KP20k Inspec Krapivin NUS SemEval

P A Sem P A Sem P A Sem P A Sem P A Sem

CopyTrans 0.376 0.046 0.562 0.333 0.023 0.569 0.365 0.063 0.547 0.429 0.044 0.579 0.321 0.022 0.377
SetTrans 0.391 0.058 0.585 0.328 0.030 0.573 0.375 0.072 0.560 0.446 0.055 0.597 0.342 0.029 0.396

CorrKG† 0.404 0.071 N/A 0.365 0.045 N/A N/A N/A N/A 0.449 0.079 N/A 0.359 0.044 N/A

BART-large 0.392 0.047 0.575 0.333 0.024 0.565 0.347 0.051 0.517 0.435 0.048 0.586 0.311 0.024 0.381
SciBART-large 0.396 0.057 0.587 0.328 0.026 0.557 0.329 0.056 0.503 0.421 0.050 0.567 0.304 0.033 0.382
+ TAPT 0.426 0.063 0.597 0.330 0.030 0.569 0.347 0.064 0.519 0.442 0.055 0.585 0.333 0.031 0.386
+ TAPT + DESEL 0.431 0.076 0.612 0.402 0.036 0.611 0.352 0.086 0.546 0.449 0.068 0.610 0.341 0.040 0.402

Table 3: Testing results on all datasets. P and A stand for F1@M for present and absent keyphrases. Sem stands
for SemF1. The best performance is boldfaced. †copied from Zhao et al. (2022). The best entries in each column
are statistically significantly higher than the second best (p < 0.05) via a paired bootstrap test. Full results in Table 8.

model or a newly trained "one2one" model3 that
learns to generate a single keyphrase based on X .
We use nucleus sampling with p = 0.95 and τ = 0.5
for step 2, and set m = 10, n = 10, and α = 0.78.

Table 3 presents the test results of important
models in this paper. DESEL consistently improves
the performance over the base model by a large
margin. In Table 4, we compare against other se-
lection strategies including random selection, input
overlap using a sentence transformer model, and
FreqFS proposed in Zhao et al. (2022). DESEL is
the only method that consistently outperforms both
greedy search and nucleus sampling.

Discussion Compared to the single-sequence de-
coding baselines, DESEL wins by bringing in the
diversity. Compared to the baseline ranking meth-
ods, DESEL wins by capturing the correlations be-
tween labels (encoded in the greedy search outputs)
and using the likelihood-based criteria to filter out

3Starting from KeyBART, the one2one model can be effi-
ciently trained. We provide more details in appendix F.

Method P A Sem

Greedy search (G) 0.426 0.063 0.597
Nucleus sampling (S) 0.385 0.074 0.599
Random Selection 0.385 0.072 0.596
Input Overlap 0.402 0.064 0.611
FreqFS (Zhao et al., 2022) 0.426 0.072 0.610
DESEL (self) 0.426 0.070 0.608
DESEL (one2one) 0.431 0.076 0.612

Table 4: A comparison across different decoding strate-
gies. Methods below the dotted line merge G with S.

high-quality phrases from the diverse candidates.

Efficiency DESEL harms the inference latency as
it generates multiple sequences. To improve the ef-
ficiency, one optimization is reusing the encoder’s
outputs for all the decoding and scoring operations.
We implemented this strategy and benchmarked it
with the BART (base) model. DESEL with n = 10 (1
greedy search and 10 sampling sequences decoded)
takes 3.8x time compared to greedy decoding.

6649

6 Related Work

Keyphrase Generation Meng et al. (2017) pro-
pose the task of Deep Keyphrase Generation
and a strong baseline model CopyRNN. Later
works improve the architecture by adding corre-
lation constraints (Chen et al., 2018) and linguis-
tic constraints (Zhao and Zhang, 2019), exploiting
learning signals from titles (Ye and Wang, 2018;
Chen et al., 2019b), and hierarchical modeling the
phrases and words (Chen et al., 2020). Ye and
Wang (2018) reformulate the problem as gener-
ating a sequence of keyphrases, while Ye et al.
(2021) further uses a set generation formulation
to remove the influence of difference target phrase
ordering. Other works include incorporating rein-
forcement learning (Chan et al., 2019; Luo et al.,
2021), GANs (Swaminathan et al., 2020), and uni-
fying KPE with KPG (Chen et al., 2019a; Ahmad
et al., 2021). Meng et al. (2021) conduct an empiri-
cal study on architecture, generalizability, phrase
order, and decoding strategies, with the main focus
on models trained from scratch instead of PLMs.

PLMs for KPG More recently, Wu et al. (2021),
Chowdhury et al. (2022), Wu et al. (2022a), Gao
et al. (2022), and Wu et al. (2022b) consider fine-
tuning prefix-LMs or seq2seq PLMs for KPG.
Kulkarni et al. (2022) use KPG as a pre-training
task to learn strong BART-based representations.
Zhao et al. (2022) adopt optimal transport for loss
design and propose frequency-based filtering for
decoding to improve BART-based KPG.

7 Conclusion

This paper systematically investigated model se-
lection and decoding for building KPG models
with seq2seq PLMs. Our analyses suggested much
more nuanced patterns beyond the "conventional
wisdom" assumed by the majority of current litera-
ture. Our novel decoding strategy, DESEL, signifi-
cantly improved the performance of greedy search
across multiple datasets. More broadly, this study
underscores the distinct nature of the KPG task.
One should not blindly transpose conclusions or
assumptions from other text generation tasks. In-
stead, they warrant careful re-evaluation and em-
pirical validation. Our work also opens up exciting
directions for future work, with deep groundings
in keyphrase literature. For instance, making KPG
models more robust, interpreting a KPG model,
and designing better decoding algorithms for KPG.

Limitations

While our study sheds light on important aspects of
keyphrase generation (KPG) models, several limi-
tations present opportunities for future research.

First, our analysis focuses on model selection
and decoding and thus uses default cross entropy
loss and original training set without data aug-
mentations. Investigating how the discussed de-
sign choices with more recent data augmentation
(Ray Chowdhury et al., 2022; Garg et al., 2022) or
training strategies (Zhao et al., 2022) is an impor-
tant future study. In addition, the best approach to
combine the conclusions reached in this paper on
long input KPG (Garg et al., 2022) or KPG models
trained with reinforcement learning (Chan et al.,
2019; Luo et al., 2021) worth future study.

Second, while in-domain pre-training combined
with task adaptation was found to enhance KPG
performance, we did not fully investigate the under-
lying mechanisms leading to these improvements.
Further research could explore the interplay be-
tween these two aspects and uncover more granular
insights into how they improve KPG.

Finally, although we revealed a compromise be-
tween performance optimization and model robust-
ness, we did not delve into designing new meth-
ods for improving the robustness of these models
against perturbed inputs. Future research could fur-
ther explore techniques to mitigate this trade-off,
developing models that maintain high performance
while being resistant to input perturbations.

Ethics Statement

S2ORC and OAGKX are released under the Cre-
ative Commons By 4.0 License. We perform text
cleaning and email/URL filtering on S2ORC to re-
move sensitive information, and we keep OAGKX
as-is. We use the keyphrase benchmarking datasets
distributed by the original authors. No additional
preprocessing is performed before fine-tuning ex-
cept lower-casing and tokenization. We do not
re-distribute any of the datasets used in this work.

Potential risks of SciBART include accidental
leakage of (1) sensitive personal information and
(2) inaccurate factual information. For (1), we care-
fully preprocess the data in the preprocessing stage
to remove personal information, including emails
and URLs. However, we had difficulties desensitiz-
ing names and phone numbers in the text because
they overlapped with the informative content. For
(2), since SciBART is pre-trained on scientific pa-

6650

pers, it may generate scientific-style statements that
include inaccurate information. We encourage the
potential users of SciBART not to rely fully on its
outputs without verifying their correctness.

Pre-training SciBART and fine-tuning the large
T5 models are computationally heavy, and we es-
timate the total CO2 emission to be around 3000
kg using the calculation application provided by
Lacoste et al. (2019). We will release the fine-tuned
checkpoints and we document the hyperparameters
in the appendix section D to help the community
reduce the energy spent optimizing PLMs for KPG
and other various NLP applications.

Acknowledgments

The research is supported in part by Taboola, NSF
CCF-2200274, and an Amazon AWS credit award.
We thank the Taboola team for the helpful discus-
sion. We also thank anonymous reviewers, Da Yin,
Tanmay Parekh, and other members of the UCLA-
NLP group for their valuable feedback.

References
Wasi Ahmad, Xiao Bai, Soomin Lee, and Kai-Wei

Chang. 2021. Select, extract and generate: Neu-
ral keyphrase generation with layer-wise coverage
attention. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1389–1404, Online. Association for Computa-
tional Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Gábor Berend. 2011. Opinion expression mining by ex-
ploiting keyphrase extraction. In Proceedings of 5th
International Joint Conference on Natural Language
Processing, pages 1162–1170, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Florian Boudin. 2013. A comparison of centrality mea-
sures for graph-based keyphrase extraction. In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 834–838,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

Florian Boudin. 2018. Unsupervised keyphrase extrac-
tion with multipartite graphs. In Proceedings of the

2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Pa-
pers), pages 667–672, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Florian Boudin, Ygor Gallina, and Akiko Aizawa. 2020.
Keyphrase generation for scientific document re-
trieval. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
1118–1126, Online. Association for Computational
Linguistics.

Erion Çano and Ondřej Bojar. 2020. Two huge title and
keyword generation corpora of research articles. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 6663–6671, Marseille,
France. European Language Resources Association.

Hou Pong Chan, Wang Chen, Lu Wang, and Irwin King.
2019. Neural keyphrase generation via reinforcement
learning with adaptive rewards. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2163–2174, Florence,
Italy. Association for Computational Linguistics.

Jun Chen, Xiaoming Zhang, Yu Wu, Zhao Yan, and
Zhoujun Li. 2018. Keyphrase generation with corre-
lation constraints. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4057–4066, Brussels, Belgium.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing,
and Irwin King. 2019a. An integrated approach for
keyphrase generation via exploring the power of re-
trieval and extraction. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2846–2856, Minneapolis, Minnesota.
Association for Computational Linguistics.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.
2020. Exclusive hierarchical decoding for deep
keyphrase generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 1095–1105, Online. Association
for Computational Linguistics.

Wang Chen, Yifan Gao, Jiani Zhang, Irwin King, and
Michael R. Lyu. 2019b. Title-guided encoding for
keyphrase generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 6268–6275.

Md Faisal Mahbub Chowdhury, Gaetano Rossiello,
Michael Glass, Nandana Mihindukulasooriya, and
Alfio Gliozzo. 2022. Applying a generic sequence-to-
sequence model for simple and effective keyphrase
generation.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.

6651

https://mlco2.github.io/impact/#compute
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/2021.acl-long.111
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/I11-1130
https://aclanthology.org/I11-1130
https://aclanthology.org/I13-1102
https://aclanthology.org/I13-1102
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/N18-2105
https://doi.org/10.18653/v1/2020.acl-main.105
https://doi.org/10.18653/v1/2020.acl-main.105
https://aclanthology.org/2020.lrec-1.823
https://aclanthology.org/2020.lrec-1.823
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/P19-1208
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/D18-1439
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/N19-1292
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://ojs.aaai.org/index.php/AAAI/article/view/4587/4465
https://ojs.aaai.org/index.php/AAAI/article/view/4587/4465
https://doi.org/10.48550/ARXIV.2201.05302
https://doi.org/10.48550/ARXIV.2201.05302
https://doi.org/10.48550/ARXIV.2201.05302

2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Kushal S. Dave and Vasudeva Varma. 2010. Pattern
based keyword extraction for contextual advertising.
In Proceedings of the 19th ACM International Con-
ference on Information and Knowledge Management,
CIKM ’10, page 1885–1888, New York, NY, USA.
Association for Computing Machinery.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Yifan Gao, Qingyu Yin, Zheng Li, Rui Meng, Tong
Zhao, Bing Yin, Irwin King, and Michael Lyu. 2022.
Retrieval-augmented multilingual keyphrase gener-
ation with retriever-generator iterative training. In
Findings of the Association for Computational Lin-
guistics: NAACL 2022, pages 1233–1246, Seattle,
United States. Association for Computational Lin-
guistics.

Krishna Garg, Jishnu Ray Chowdhury, and Cornelia
Caragea. 2023. Data augmentation for low-resource
keyphrase generation.

Krishna Garg, Jishnu Ray Chowdhury, and Cornelia
Caragea. 2022. Keyphrase generation beyond the
boundaries of title and abstract. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 5809–5821, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Khaled Hammouda, Diego Matute, and Mohamed S.
Kamel. 2005. Corephrase: Keyphrase extraction for
document clustering. In International workshop on
machine learning and data mining in pattern recog-
nition, pages 265–274.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’03,
page 216–223, USA. Association for Computational
Linguistics.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Tim-
othy Baldwin. 2010. SemEval-2010 task 5 : Auto-
matic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop on
Semantic Evaluation, pages 21–26, Uppsala, Sweden.
Association for Computational Linguistics.

Youngsam Kim, Munhyong Kim, Andrew Cattle, Julia
Otmakhova, Suzi Park, and Hyopil Shin. 2013. Ap-
plying graph-based keyword extraction to document
retrieval. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 864–868, Nagoya, Japan. Asian Federation of
Natural Language Processing.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong
Qin, Ruiqi Sun, and Xiaoyan Bai. 2023. Promptrank:
Unsupervised keyphrase extraction using prompt.

Mikalai Krapivin, Aliaksandr Autaeu, and Maurizio
Marchese. 2009. Large dataset for keyphrases extrac-
tion. Technical report, University of Trento.

Mayank Kulkarni, Debanjan Mahata, Ravneet Arora,
and Rajarshi Bhowmik. 2022. Learning rich repre-
sentation of keyphrases from text. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 891–906, Seattle, United States. Associ-
ation for Computational Linguistics.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
CoRR, abs/1901.08746.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Marina Litvak and Mark Last. 2008. Graph-based key-
word extraction for single-document summarization.
In Coling 2008: Proceedings of the workshop Multi-
source Multilingual Information Extraction and Sum-
marization, pages 17–24, Manchester, UK. Coling
2008 Organizing Committee.

6652

https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.1145/1871437.1871754
https://doi.org/10.1145/1871437.1871754
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/2022.findings-naacl.92
https://doi.org/10.18653/v1/2022.findings-naacl.92
https://arxiv.org/abs/2305.17968
https://arxiv.org/abs/2305.17968
https://aclanthology.org/2022.findings-emnlp.427
https://aclanthology.org/2022.findings-emnlp.427
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.1007/11510888_26
https://doi.org/10.1007/11510888_26
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.3115/1119355.1119383
https://doi.org/10.3115/1119355.1119383
https://aclanthology.org/S10-1004
https://aclanthology.org/S10-1004
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://aclanthology.org/I13-1108
https://arxiv.org/abs/2305.04490
https://arxiv.org/abs/2305.04490
http://eprints.biblio.unitn.it/1671/1/disi09055-krapivin-autayeu-marchese.pdf
http://eprints.biblio.unitn.it/1671/1/disi09055-krapivin-autayeu-marchese.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.18653/v1/2022.findings-naacl.67
https://doi.org/10.48550/ARXIV.1910.09700
https://doi.org/10.48550/ARXIV.1910.09700
http://arxiv.org/abs/1901.08746
http://arxiv.org/abs/1901.08746
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W08-1404
https://aclanthology.org/W08-1404

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Yichao Luo, Yige Xu, Jiacheng Ye, Xipeng Qiu, and
Qi Zhang. 2021. Keyphrase generation with fine-
grained evaluation-guided reinforcement learning. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 497–507, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Rui Meng, Xingdi Yuan, Tong Wang, Sanqiang Zhao,
Adam Trischler, and Daqing He. 2021. An empir-
ical study on neural keyphrase generation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4985–5007, Online. Association for Computational
Linguistics.

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He,
Peter Brusilovsky, and Yu Chi. 2017. Deep keyphrase
generation. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 582–592, Vancouver,
Canada. Association for Computational Linguistics.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing, pages 404–411, Barcelona, Spain. Asso-
ciation for Computational Linguistics.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
Asian Digital Libraries. Looking Back 10 Years and
Forging New Frontiers, pages 317–326, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Martin F. Porter. 1980. An algorithm for suffix stripping.
Program, 40:211–218.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Jishnu Ray Chowdhury, Seo Yeon Park, Tuhin Kundu,
and Cornelia Caragea. 2022. KPDROP: Improving
absent keyphrase generation. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2022,
pages 4853–4870, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Avinash Swaminathan, Haimin Zhang, Debanjan Ma-
hata, Rakesh Gosangi, Rajiv Ratn Shah, and Amanda
Stent. 2020. A preliminary exploration of GANs for
keyphrase generation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 8021–8030, On-
line. Association for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Alpaca: A
strong, replicable instruction-following model. Stan-
ford Center for Research on Foundation Models.
https://crfm. stanford. edu/2023/03/13/alpaca. html,
3(6):7.

Peter D Turney. 2000. Learning algorithms for
keyphrase extraction. Information retrieval, 2:303–
336.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 63–76, Florence, Italy. As-
sociation for Computational Linguistics.

Ashwin Vijayakumar, Michael Cogswell, Ramprasaath
Selvaraju, Qing Sun, Stefan Lee, David Crandall,
and Dhruv Batra. 2018. Diverse beam search for
improved description of complex scenes. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
32(1).

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,

6653

https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.findings-emnlp.45
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/2021.naacl-main.396
https://doi.org/10.18653/v1/P17-1054
https://doi.org/10.18653/v1/P17-1054
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://www.comp.nus.edu.sg/~kanmy/papers/icadl2007.pdf
https://doi.org/10.1108/00330330610681286
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2022.findings-emnlp.357
https://aclanthology.org/2022.findings-emnlp.357
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://doi.org/10.18653/v1/2020.emnlp-main.645
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.18653/v1/W19-4808
https://doi.org/10.1609/aaai.v32i1.12340
https://doi.org/10.1609/aaai.v32i1.12340

Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022. Super-NaturalInstructions: Generaliza-
tion via declarative instructions on 1600+ NLP tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5085–5109, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Di Wu, Wasi Ahmad, Sunipa Dev, and Kai-Wei
Chang. 2022a. Representation learning for resource-
constrained keyphrase generation. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 700–716, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

Di Wu, Da Yin, and Kai-Wei Chang. 2023. Kpeval:
Towards fine-grained semantic-based evaluation of
keyphrase extraction and generation systems. arXiv
preprint arXiv:2303.15422.

Huanqin Wu, Wei Liu, Lei Li, Dan Nie, Tao Chen,
Feng Zhang, and Di Wang. 2021. UniKeyphrase:
A unified extraction and generation framework for
keyphrase prediction. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 825–835, Online. Association for Computa-
tional Linguistics.

Huanqin Wu, Baijiaxin Ma, Wei Liu, Tao Chen, and Dan
Nie. 2022b. Fast and constrained absent keyphrase
generation by prompt-based learning. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11495–11503.

Xiaoyuan Wu and Alvaro Bolivar. 2008. Keyword ex-
traction for contextual advertisement. In Proceedings
of the 17th International Conference on World Wide
Web, WWW ’08, page 1195–1196, New York, NY,
USA. Association for Computing Machinery.

Hai Ye and Lu Wang. 2018. Semi-supervised learn-
ing for neural keyphrase generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4142–4153,
Brussels, Belgium. Association for Computational
Linguistics.

Jiacheng Ye, Tao Gui, Yichao Luo, Yige Xu, and
Qi Zhang. 2021. One2Set: Generating diverse
keyphrases as a set. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 4598–4608, Online. Association
for Computational Linguistics.

Xingdi Yuan, Tong Wang, Rui Meng, Khushboo Thaker,
Peter Brusilovsky, Daqing He, and Adam Trischler.

2020. One size does not fit all: Generating and evalu-
ating variable number of keyphrases. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7961–7975, On-
line. Association for Computational Linguistics.

Yongzheng Zhang, Nur Zincir-Heywood, and Evangelos
Milios. 2004. World wide web site summarization.
Web Intelli. and Agent Sys., 2(1):39–53.

Guangzhen Zhao, Guoshun Yin, Peng Yang, and Yu Yao.
2022. Keyphrase generation via soft and hard seman-
tic corrections. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 7757–7768, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Jing Zhao and Yuxiang Zhang. 2019. Incorporating
linguistic constraints into keyphrase generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5224–
5233, Florence, Italy. Association for Computational
Linguistics.

6654

https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.emnlp-main.340
https://aclanthology.org/2022.findings-emnlp.49
https://aclanthology.org/2022.findings-emnlp.49
http://arxiv.org/abs/2303.15422
http://arxiv.org/abs/2303.15422
http://arxiv.org/abs/2303.15422
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.18653/v1/2021.findings-acl.73
https://doi.org/10.1145/1367497.1367723
https://doi.org/10.1145/1367497.1367723
https://doi.org/10.18653/v1/D18-1447
https://doi.org/10.18653/v1/D18-1447
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2021.acl-long.354
https://doi.org/10.18653/v1/2020.acl-main.710
https://doi.org/10.18653/v1/2020.acl-main.710
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.620&rep=rep1&type=pdf
https://aclanthology.org/2022.emnlp-main.529
https://aclanthology.org/2022.emnlp-main.529
https://doi.org/10.18653/v1/P19-1515
https://doi.org/10.18653/v1/P19-1515

Supplementary Material: Appendices

A Test Set Statistics

Table 5 summarizes the statistics of all testing
datasets we use. We use the version distributed by
Meng et al. (2017). In this distribution, SemEval’s
documents and keyphrases are already stemmed
while the other datasets are not.

Dataset #Examples #KP %AKP |KP|
KP20k 20000 5.3 37.1 2.0
Inspec 500 9.8 26.4 2.5
Krapivin 400 5.9 44.3 2.2
NUS 211 11.7 45.6 2.2
SemEval 100 14.7 57.4 2.4

Table 5: Test sets statistics. #KP, %AKP, and |KP| refers
to the average number of keyphrases per document, the
percentage of absent keyphrases, and the average num-
ber of words that each keyphrase contains.

B Attention heads as keyphrase
extractors

We present the KPE performance of ranking noun
phrase candidate using their attention intensities
in Table 6. We observe that BART and T5 con-
tain attention heads that function well as keyphrase
extractors, some of which even surpass the KPE
performance of the strong MPRank algorithm.

Model Size Head PKP F1@5 SemF1@5

MPRank - - 0.188 0.429
BART-base 140M 5-3 0.182 0.451
BART-large 406M 11-9 0.191 0.452
T5-small 60M 4-4 0.183 0.420
T5-base 223M 8-1 0.164 0.388
T5-large 770M 17-15 0.187 0.436
T5-3B 3B 21-27 0.183 0.426

Table 6: Keyphrase extraction performance of utilizing
attention intensity as ranking criteria. BART-large’s
attention head 11-9 is even able to outperform MPRank.
PKP = present keyphrases.

C SciBART Pre-training Details

Corpus and Data Preprocessing The S2ORC
dataset contains over 100M papers from a variety
of disciplines (Figure 3). We train on all the titles
and abstracts to increase the coverage of different
topics. After removing non-English4 or title-only

4We use guess_language for language detection.

entries, we fix wrong Unicode characters, remove
emails and URLs, and convert the text to ASCII
encoding5. The final dataset contains 171.7M doc-
uments or 15.4B tokens in total. We reserve 10k
documents for validation and 10k for testing and
use the rest as training data.

Vocabulary Beltagy et al. (2019) suggest that
using a domain-specific vocabulary is crucial to
downstream in-domain fine-tuning performance.
Following their observations, we build a cased BPE
vocabulary in the scientific domain using the Sen-
tencePiece6 library on the cleaned training data.
We set the vocabulary size to 30K.

Training For the pre-training objective, we only
use text infilling as introduced in Lewis et al.
(2020). We mask 30% of all tokens in each ex-
ample, with the spans randomly sampled from a
Poisson distribution (λ = 3.5). For 10% of the
spans selected to mask, we replace them with a
random token instead of the mask token. We set
the maximum sequence length to 512. The model
is pre-trained for 250k steps with batch size 2048,
learning rate 3e-4, 10k warm-up steps, and poly-
nomial learning rate decay. We use the Adam
optimizer for pre-training. Using 8 Nvidia A100
GPUs (40G each), the training took eight days for
SciBART-base and twelve days for SciBART-large.

D Implementation details

D.1 Keyphrase Generation

For keyphrase generation with BART and T5, we
use Huggingface Transformers and train for 15
epochs with early stopping. We use learning rate
6e-5, polynomial decay, batcsh size 64, and the
AdamW optimizer. To fine-tune SciBART-base
and SciBART-large, we use the Translation task
provided by fairseq7 and train for 10 epochs. We
use learning rate 3e-5, polynomial decay, and the
AdamW optimizer.

We perform a careful hyperparameter search
over the learning rate, learning rate schedule, batch
size, and warm-up steps. The corresponding search
spaces are {1e-5, 3e-5, 6e-5, 1e-4, 3e-4}, {linear,

5We use clean-text for data cleaning.
6https://github.com/google/

sentencepiece
7https://github.com/facebookresearch/

fairseq

6655

https://pypi.org/project/guess_language-spirit/
https://github.com/jfilter/clean-text
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/facebookresearch/fairseq
https://github.com/facebookresearch/fairseq

0 2 4 6 8 10 12
Number of documents (million)

Medicine
Biology

Chemistry
Engineering

Computer Science
Physics

Materials Science
Mathematics

Psychology
Economics

Political Science
Business
Geology

Sociology
Geography

Environmental Science
Art

History
Philosophy

Domain distribution of S2ORC

Figure 3: Domain distribution of the S2ORC dataset.

polynomial}, {16, 32, 64, 128}, and {500, 1000,
2000, 4000}. The best hyperparameters are pre-
sented in Table 7. For DESEL, we tune the hy-
perparameters on the validation set of KP20k. the
search space for α is {0.5, 0.73, 0.78, 0.83, 0.88,
0.93, 0.98}.

The fine-tuning experiments are run on a local
GPU server with RTX 2080 Ti (11G each) and
A6000 GPUs (48G each). We use gradient accu-
mulation to achieve the desired batch sizes.

D.2 Baselines

For CopyTrans and SetTrans, we rerun with the
original implementations to measure their per-
formance. We use the earliest version of Key-
BART available at https://zenodo.org/
record/5784384#.Y0eToNLMJcA. For
MPRank, we use the implementation from pke8.

E Prompting GPT-3.5 for paraphrasing

To generate the paraphrased titles and abstracts
used in §4.4, we use the following prompt to query
gpt-3.5-turbo:
Paraphrase the following title and

abstract for a scientific paper.
Your paraphrase should perfectly
preserve the information in the
original document and should be as
formal as the original text. Do not
change the spelling or case of the
named entities in the original
sentence. If the original entity is
all lower-cased, do not upper-case
the first letter of these names in
your paraphrase.

Title: {original_title}

8https://github.com/boudinfl/pke

Abstract: {original_abstract}

Your Paraphrase:
Title:

We observe that the large language model can
follow the specified format when generating the
paraphrased titles and abstracts. During the post-
processing, we split the titles and the abstract from
the response and directly use them for model test-
ing. Figure 4 shows two examples of original and
paraphrased text. The paraphrased text has high
quality, preserves the scientific writing style, and
retains most of the present keyphrases.

F One2one model for DESEL

To better capture Pr(si|X) and Pr(gj |X) for DE-
SEL without the interference from other keyphrases
co-occuring in the label, we propose to train an
"one2one" model that learns to generate a single
keyphrase given an input document. Starting from
the KeyBART model, we fine-tune on the KP20k
training set for 0.5 epoch with learning rate 5e-5,
batch size 32, and the AdamW optimizer. We use a
linear learning rate decay with 1000 warmup steps.

G All model testing results

We present the testing scores as well as their stan-
dard deviation in Table 8. In addition to the models
discussed in the main text, we also provide the per-
formance of CatSeq (Yuan et al., 2020), CatSeqTG-
2RF1 (Chan et al., 2019), ExHiRD-h (Chen et al.,
2020) for further reference.

6656

https://zenodo.org/record/5784384#.Y0eToNLMJcA
https://zenodo.org/record/5784384#.Y0eToNLMJcA
https://github.com/boudinfl/pke

Model dropout wdecay optimizer bsz #epoch #warm-up lr lr schedule
Seq2seq PLMs
T5-small 0.1 0.01 AdamW 64 25 2000 6e-5 polynomial
T5-base 0.1 0.01 AdamW 64 15 2000 6e-5 polynomial
T5-large 0.1 0.01 AdamW 64 5 1000 6e-5 polynomial
T5-3B 0.1 0.01 AdamW 64 5 1000 6e-5 polynomial
BART-base 0.1 0.01 AdamW 64 15 2000 6e-5 polynomial
BART-large 0.1 0.01 AdamW 64 10 2000 6e-5 polynomial
In-domain Seq2seq PLMs
SciBART-base 0.1 0.01 AdamW 32 10 2000 3e-5 polynomial
SciBART-large 0.1 0.01 AdamW 64 10 2000 3e-5 polynomial
Task-adaptive Seq2seq Models
FLAN-T5-small 0.1 0.01 AdamW 64 25 2000 6e-5 polynomial
FLAN-T5-base 0.1 0.01 AdamW 64 15 2000 6e-5 polynomial
FLAN-T5-large 0.1 0.01 AdamW 64 5 1000 6e-5 polynomial
FLAN-T5-XL 0.1 0.01 AdamW 64 5 1000 6e-5 polynomial
KeyBART 0.1 0.01 AdamW 64 15 2000 3e-5 polynomial
SciBART-base + OAGKX 0.1 0.01 AdamW 64 5 1000 1e-5 polynomial
SciBART-large + OAGKX 0.1 0.01 AdamW 64 5 1000 1e-5 polynomial

Table 7: Hyperparameters for fine-tuning PLMs for keyphrase generation on KP20k. The hyperparameters are
determined using the loss on the KP20k validation dataset. "wdecay" = weight decay, "bsz" = batch size, "#warm-up"
= the number of warm-up steps, "lr" = learning rate, "lr schedule" = learning rate decay schedule. We use early
stopping for all the models and use the model with the lowest validation loss as the final model.

Original title: hybrid analytical modeling of pending cache hits , data prefetching , and mshrs .
Original abstract: this article proposes techniques to predict the performance impact of pending cache hits , hardware
prefetching , and miss status holding register resources on superscalar microprocessors using hybrid analytical models . the
proposed models focus on timeliness of pending hits and prefetches and account for a limited number of mshrs . they improve
modeling accuracy of pending hits by 3.9 x and when modeling data prefetching , a limited number of mshrs , or both , these
techniques result in average errors of 9.5 % to 17.8 % . the impact of non uniform dram memory latency is shown to be
approximated well by using a moving average of memory access latency .
Paraphrased title: a hybrid analytical model for pending cache hits , data prefetching , and mshrs .
Paraphrased abstract: this scientific paper presents a novel approach to predicting the performance impact of pending cache
hits , hardware prefetching , and miss status holding register resources on superscalar microprocessors . the proposed hybrid
analytical models focus on the timeliness of pending hits and prefetches , while also accounting for a limited number of mshrs
. by utilizing these models , the accuracy of pending hit modeling is improved by 3.9 times . when modeling data prefetching ,
a limited number of mshrs , or both , these techniques result in average errors ranging from 9.5 % to 17.8 % . additionally ,
the paper demonstrates that the impact of non - uniform dram memory latency can be approximated well by using a moving
average of memory access latency .
Original title: a variant of parallel plane sweep algorithm for multicore systems .
Original abstract: parallel algorithms used in very large scale integration physical design bring significant challenges for
their efficient and effective design and implementation . the rectangle intersection problem is a subset of the plane sweep
problem , a topic of computational geometry and a component in design rule checking , parasitic resistance capacitance
extraction , and mask processing flows . a variant of a plane sweep algorithm that is embarrassingly parallel and therefore
easily scalable on multicore machines and clusters , while exceeding the best known parallel plane sweep algorithms on real
world tests , is presented in this letter .
Paraphrased title: a modified parallel plane sweep algorithm for multicore systems .
Paraphrased abstract: the design and implementation of parallel algorithms for physical design in very large scale integration
pose significant challenges . the rectangle intersection problem , which is a component in design rule checking , parasitic
resistance capacitance extraction , and mask processing flows , is a subset of the plane sweep problem in computational
geometry . this letter presents a variant of the plane sweep algorithm that is embarrassingly parallel and can be easily scaled
on multicore machines and clusters . the proposed algorithm outperforms the best known parallel plane sweep algorithms on
real - world tests .

Figure 4: Examples of documents paraphrased by gpt-3.5-turbo. We color the present keyphrases in blue.

6657

Method |M| KP20k Inspec Krapivin NUS SemEval
P A Sem P A Sem P A Sem P A Sem P A Sem

Trained from-scratch architectures
CatSeq 21M 0.367 0.032 N/A 0.262 0.008 N/A 0.354 0.036 N/A 0.397 0.028 N/A 0.283 0.028 N/A
ExHiRD-h 22M 0.3740 0.0250 N/A 0.2913 0.0162 N/A 0.3084 0.0334 N/A N/A N/A N/A 0.28218 0.0216 N/A
CopyTrans 98M 0.3762 0.0464 0.5621 0.3335 0.0231 0.5694 0.3657 0.0634 0.5473 0.4299 0.0449 0.5792 0.3218 0.0224 0.3771
SetTrans 98M 0.3912 0.0581 0.5852 0.3281 0.0301 0.5731 0.37511 0.0723 0.5600 0.44622 0.05517 0.5971 0.34214 0.0292 0.3963
PLM-based methods
CorrKG† 140M 0.404 0.071 N/A 0.365 0.045 N/A N/A N/A N/A 0.449 0.079 N/A 0.359 0.044 N/A
BART-base 140M 0.3883 0.0422 0.5712 0.3237 0.0172 0.5615 0.3366 0.0496 0.5146 0.4248 0.0429 0.5813 0.32121 0.0212 0.3722
BART-large 406M 0.3922 0.0472 0.5751 0.3339 0.0244 0.5656 0.3473 0.0512 0.5175 0.43511 0.0489 0.5867 0.31116 0.0243 0.3816
KeyBART 406M 0.3982 0.0471 0.5761 0.3255 0.0232 0.5614 0.36514 0.0646 0.5332 0.43010 0.0557 0.5822 0.2894 0.0225 0.3654
SciBART-base 124M 0.3962 0.0524 0.5765 0.3288 0.0284 0.5624 0.32911 0.0548 0.5028 0.42114 0.0532 0.5728 0.3048 0.0221 0.3764

+ TAPT 124M 0.4152 0.0521 0.5901 0.3306 0.0274 0.5732 0.3379 0.0577 0.5147 0.4246 0.0482 0.5792 0.3299 0.0240 0.3885
SciBART-large 386M 0.3964 0.0573 0.5872 0.32813 0.0262 0.5574 0.32912 0.0563 0.5037 0.42112 0.0507 0.5679 0.30412 0.0338 0.3829

+ TAPT 386M 0.4260 0.0631 0.5971 0.3304 0.0301 0.5684 0.3476 0.0647 0.52010 0.44211 0.0555 0.5855 0.33319 0.0312 0.3869
T5-small 60M 0.3460 0.0190 0.5430 0.3543 0.0262 0.5722 0.2982 0.0261 0.4951 0.3980 0.0204 0.5622 0.3157 0.0131 0.3771
T5-base 223M 0.3880 0.0340 0.5700 0.3394 0.0203 0.5742 0.3501 0.0433 0.5241 0.4404 0.0512 0.5891 0.32613 0.0204 0.3833
T5-large 770M 0.3930 0.0350 0.5730 0.3433 0.0215 0.5731 0.3594 0.0456 0.5363 0.4385 0.0425 0.5875 0.3219 0.0202 0.3913
T5-3B 3B 0.4191 0.0461 0.5870 0.3195 0.0212 0.5591 0.3536 0.0481 0.5261 0.46010 0.0508 0.6004 0.3377 0.0274 0.3913
FLAN-T5-small 60M 0.3620 0.0240 0.5520 0.3541 0.0182 0.5690 0.3133 0.0240 0.4981 0.3981 0.0304 0.5681 0.3212 0.0171 0.3851
FLAN-T5-base 223M 0.3931 0.0350 0.5740 0.3584 0.0203 0.5774 0.3403 0.0494 0.5141 0.4360 0.0292 0.5860 0.3334 0.0172 0.3870
FLAN-T5-large 770M 0.4042 0.0360 0.5790 0.3471 0.0184 0.5731 0.3476 0.0412 0.5264 0.4414 0.0466 0.5980 0.32718 0.0212 0.3906
FLAN-T5-XL 3B 0.4271 0.0492 0.5921 0.3132 0.0241 0.5562 0.3561 0.0473 0.5174 0.4554 0.0542 0.5952 0.3325 0.0251 0.3922

Table 8: Testing results on all five datasets. P and A stand for F1@M for present keyphrases and absent keyphrases.
Sem stands for SemF1. The reported results are averaged across three runs with different random seeds. The
standard deviation of each entry is presented in the subscript. For example, 23.56 means an average of 23.5 with a
standard deviation of 0.6. We omit the subscript for methods with a single run. †copied from Zhao et al. (2022).

6658

