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Abstract

Lifelong sequence generation (LSG), a prob-
lem in continual learning, aims to continually
train a model on a sequence of generation tasks
to learn constantly emerging new generation
patterns while avoiding the forgetting of previ-
ous knowledge. Existing LSG methods mainly
focus on maintaining old knowledge while pay-
ing little attention to knowledge transfer across
tasks. In contrast, humans can better learn new
tasks by leveraging previously acquired knowl-
edge from similar tasks. Inspired by the learn-
ing paradigm of humans, we propose Dynamic
Module Expansion and Adaptation (DMEA),
which enables the model to dynamically deter-
mine the architecture for acquiring new knowl-
edge based on task correlation and select the
most similar previous tasks to facilitate adapta-
tion to new tasks. In addition, as the learning
process can easily be biased towards the cur-
rent task which might cause more severe for-
getting of previously learned knowledge, we
propose dynamic gradient scaling to balance
the learning of the current task and replayed
tasks. With extensive experiments, we demon-
strate that DMEA can consistently outperform
existing methods in different LSG settings.

1 Introduction

With the recent advancements in pre-trained lan-
guage models (LMs), current sequence generation
methods have achieved impressive performance
on a variety of generation tasks (Radford et al.,
2019; Raffel et al., 2020). Typically, these models
are trained on a fixed corpus, assuming the un-
derlying data distribution to be static (Ham et al.,
2020; El-Kassas et al., 2021). However, real cog-
nitive tasks are generally more complex involving
changing contexts and dynamic environments. The
ever-changing data distribution causes the models
to face challenges in acquiring new knowledge,
while retaining the prior knowledge. Speaking
about what is next for NLP, Kathleen McKeown

in a recent interview said: “Most models are static.
But the world changes every minute, every second.
Dealing with a dynamic world is a new area that’s
up and coming.” (Source)

A potential solution is to formalize sequence
generation as lifelong sequence generation or LSG

(Sun et al., 2020), where the model is expected to
learn sequentially from a stream of generation tasks
with potentially different data distributions. In such
cases of distribution shift, the model might forget
previously acquired knowledge upon learning new
tasks, a phenomenon known as catastrophic forget-
ting (McCloskey and Cohen, 1989). Previous LSG

methods (Mi et al., 2020; Sun et al., 2020; Madotto
et al., 2021) mainly explore different ways to al-
leviate forgetting. Recently, Zhang et al. (2022)
propose Adaptive Compositional Modules (ACM)
which dynamically adds modules for new tasks
depending on whether there are reusable previous
modules, achieving SOTA performance on LSG.

Despite its effectiveness, ACM has several key
limitations. First, it mainly focuses on mitigating
forgetting of previously acquired knowledge while
paying little attention to transferring learned knowl-
edge to new tasks which is as important for con-
tinual learning as preventing forgetting (Ke et al.,
2020). In fact, a hallmark of human intelligence
is that humans can better learn new tasks by lever-
aging previously acquired knowledge from simi-
lar tasks (Lake et al., 2017). They can not only
determine whether previously acquired skills are
sufficient to solve a new task, but also exploit the
most similar learned skills to facilitate the learning
of the task; see Appendix A.1 for an illustration.
Second, ACM does not consider the correlation be-
tween learned tasks and the new task when adding
modules, which might hinder finding the optimal
architecture (case study in Appendix A.9). Finally,
the learning process in ACM can be biased towards
the new task as the gradient norm of the new task
on reused modules is typically much larger than
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that of replayed tasks, which may affect previously
acquired knowledge; see Appendix A.2 for an ex-
planation.

Inspired by the learning paradigm of humans and
to address the above limitations of ACM, in this
work we propose Dynamic Module1 Expansion
and Adaptation (DMEA). We divide the learning
process of a new task into three stages: expansion,
selection and adaptation. In the expansion stage,
DMEA determines whether to reuse modules of
previous tasks or insert new modules for learning
novel knowledge. Inspired by Zhang et al. (2022),
it utilizes differentiable architecture search (Liu
et al., 2019) to enable the model to dynamically
determine the architecture for solving the new task.
The learnable coefficients in architecture search are
initialized based on the cosine similarity of word
frequency distributions between learned tasks and
the new task, aiming to discover the optimal model
architecture. After searching, the module with the
largest coefficient in every layer is chosen for the
new task. In the selection stage, DMEA selects the
top-K most similar previous tasks through input
subspace (Lin et al., 2022b). Finally, in the adap-
tation stage, it utilizes the selected similar tasks to
facilitate adaptation to the new task. The output
of selected similar tasks is fused with that of the
new task using learnable coefficients in every trans-
former layer to enable forward knowledge transfer.
This is indeed an instance of mixture-of-experts
(Masoudnia and Ebrahimpour, 2014).

In addition, when the model learns a new task,
DMEA also incorporates pseudo-sample replay
(Sun et al., 2020) to further mitigate catastrophic
forgetting. To address the “bias to the new task” in
the gradient update, we introduce dynamic gradi-
ent scaling to balance the learning of the new task
and replayed tasks. To verify the effectiveness of
DMEA, we conduct extensive experiments on vari-
ous generation tasks in different LSG settings. The
empirical results show that DMEA can consistently
outperform previous state-of-the-art baselines.

In summary, our main contributions are:

• To the best of our knowledge, we are the first
to explore solving LSG from the perspective of
human learning. We propose DMEA, a novel
method based on dynamic module expansion and
adaptation, to alleviate catastrophic forgetting
and facilitate knowledge transfer in LSG.

1Following Zhang et al. (2022), we use an Adapter
(Houlsby et al., 2019) as the insertable module.

• With extensive experiments and analysis, we
demonstrate the effectiveness of our method com-
pared to existing ones in different LSG settings.

2 Related Work

Lifelong Learning (LL) aims to continually learn
knowledge from a sequence of tasks with different
distributions. The goal is twofold: alleviate catas-
trophic forgetting (McCloskey and Cohen, 1989)
of learned tasks, and facilitate knowledge transfer
(Lopez-Paz and Ranzato, 2017) across tasks.

Catastrophic forgetting typically means that the
model forgets previously acquired knowledge af-
ter learning new tasks. Prior LL methods mainly
focus on mitigating this problem and can be di-
vided into three categories. First, regularization-
based methods constrain the update of parameters
that are important to learned tasks to retain pre-
vious knowledge (Kirkpatrick et al., 2017; Li and
Hoiem, 2017; Zenke et al., 2017; Ritter et al., 2018).
Second, architecture-based methods dynamically
adjust the model architecture to acquire new in-
formation while preventing the forgetting of previ-
ously learned tasks (Rusu et al., 2016; Chen et al.,
2016; Fernando et al., 2017; Madotto et al., 2021;
Zhang et al., 2022). Finally, memory-based meth-
ods keep a number of key samples from previous
tasks in memory to alleviate forgetting (Rebuffi
et al., 2017; Shin et al., 2017; Chaudhry et al., 2019;
Qin and Joty, 2022a). The memory data can be ei-
ther real examples (Han et al., 2020) or generated
by language models (Sun et al., 2020; Qin and Joty,
2022b).

More recently, researchers have considered ex-
ploring knowledge transfer in LL, i.e., learning on
a task can benefit from learning on another task by
transferring related knowledge. This includes CTR
(Ke et al., 2021) and CUBER (Lin et al., 2022a).
Despite their effectiveness, these methods mainly
focus on classification tasks, while generation tasks
typically have more complex label space. Note
that this line of research is different from transfer
learning (Ruder et al., 2019), which mainly focuses
on exploring better ways to reuse learned knowl-
edge which is usually static, e.g., a frozen language
model. In contrast, the acquired knowledge is con-
tinually accumulated in lifelong learning.
Lifelong Sequence Generation (LSG) enables the
model to learn sequentially from a stream of gen-
eration tasks. Sun et al. (2020) propose LAMOL
which formalizes different types of tasks as ques-
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tion answering and utilizes pseudo-sample replay
to alleviate forgetting. Chuang et al. (2020) fur-
ther improve LAMOL by knowledge distillation
(Hinton et al., 2015). AdapterCL (Madotto et al.,
2021) inserts task-specific modules into every trans-
former layer to learn new tasks while keeping the
pre-trained LM and previous modules frozen. On
the basis of AdapterCL, Zhang et al. (2022) in-
troduce ACM which dynamically adds modules
for learning new tasks depending on whether there
are reusable previously inserted modules. Though
ACM can enable knowledge transfer to some extent
via module sharing, there is no explicit mechanism
to encourage knowledge transfer across tasks, a
common phenomenon of human learning.
Summary. Existing work in LSG mainly focuses
on mitigating the catastrophic forgetting of previ-
ously learned knowledge while paying little atten-
tion to knowledge transfer across tasks. In contrast
to these lines of work, we aim to explicitly encour-
age forward knowledge transfer in LSG inspired by
the way humans learn (Lake et al., 2017).

3 Problem Formulation

LSG involves learning from a stream of sequence
generation tasks T = (T 1, ..., T n), where every
task T i has its own training set Di

train, validation set
Di

valid, and test set Di
test. Every dataset D contains

a set of examples {(Xj , Yj)}|D|
j=1, where Xj and Yj

denote the input and output texts, respectively. At
time step k, the model is trained on the training set
Dk

train of task T k and has no access to real samples
of previously learned tasks.

After the training on Dk
train, the model is ex-

pected to perform well on all the tasks learned so
far, i.e., T 1, ..., T k, and will be evaluated on the
test set Di

test of each task T i(1 ≤ i ≤ k) with corre-
sponding evaluation metrics separately. Therefore,
to achieve the goal of LSG, the model is required to
alleviate the forgetting of acquired knowledge and
better learn new patterns through possible forward
knowledge transfer.

3.1 Data Format

Given an input-output text pair (X,Y ) for a task,
the model learns to decode the output text Y af-
ter reading the input X . Following Zhang et al.
(2022), a natural language question Q describing
the purpose of each task (task instruction) is in-
serted after the input to form a triple (X,Q, Y );
see Appendix A.3 for an example. To learn a new
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Figure 1: In the expansion stage, after inserting a new
module (purple dashed hexagon) into each layer, DMEA
dynamically determines the architecture by differen-
tiable architecture search. Specifically, the outputs of
all modules in the same layer are fused through dynam-
ically initialized learnable coefficients. The weighted
average is then passed to the next layer of the model for
learning. Note that only newly added modules (purple
dashed hexagons) are learnable modules in this stage.
After several epochs of training, the module with the
largest coefficient in every layer (green polygon) is se-
lected for the new task. The selected module can be
either a previous module (rectangle) or the newly added
one (hexagon). Finally, newly added modules that are
not selected (red dashed hexagons) will be discarded.

task, the model is optimized to decode Y given X
and Q. Denoting the concatenation of X,Q and Y
as A, the autoregressive training objective is:

Ltask = −
n∑

j=m+1

log pθ(Aj |A<j) (1)

where n is the total number of tokens in A and
(A1, ..., Am) is the concatenation of X and Q, and
θ denotes the model parameters.

4 Methodology

Inspired by how humans learn a new task (Fig. 5),
DMEA divides the learning process into three stages.
The expansion stage (§4.1) first determines the
model architecture dynamically. The selection
stage (§4.2) then selects the top-K most similar
previous tasks which are utilized in the final adap-
tation stage (§4.3) to facilitate adaptation to the
new task. We also employ pseudo-sample replay
along with a dynamic gradient scaling method to
balance the learning of the new and replayed tasks.
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4.1 Expansion Stage
Humans are able to determine whether previously
acquired skills are sufficient to solve a new task.
Our method DMEA aims to mimic this learning
process in the expansion stage. It can dynamically
decide whether to reuse modules of previous tasks
or insert a new module in every transformer layer
to learn novel knowledge. Inspired by Zhang et al.
(2022), we utilize differentiable architecture search
(Liu et al., 2019) to achieve this goal.

Specifically, assuming that there are k modules
(i.e., Adapter (Houlsby et al., 2019)) {ml

1, ...,m
l
k}

in layer l of the transformer model before learning
a new task T j , we temporarily insert a new module
ml

k+1 into this layer at the beginning of the expan-
sion stage. For each forward pass, after calculating
the output hlt of every module ml

t in the layer sepa-
rately, we fuse all outputs {hl1, ..., hlk+1} through
learnable coefficients {λl

1, ..., λ
l
k+1} as follows.

ĥl =
k+1∑

t=1

eλ
l
t

∑k+1
s=1 e

λl
s

hlt (2)

The weighted average ĥl is then passed to the next
part of the model for learning. After training the
model on Dj

train for several epochs using Ltrain (de-
fined in §4.3), we select the module with the largest
coefficient in every layer for the new task T j .

Different from Zhang et al. (2022) which initial-
ize {λl

1, ..., λ
l
k+1} with predefined hyperparame-

ters, we propose to dynamically initialize learnable
coefficients based on the correlation between the
learned tasks T 1, ..., T j−1 and new task T j . De-
noting the word frequency distribution of T i as f i

and all previous tasks sharing the module ml
t as Z l

t ,
the learnable coefficient λl

t is initialized as:

λl
t =





max
T i∈Zl

t

cos(f i, fk+1), 1 ≤ t ≤ k

min
1≤i≤k

λl
i, t = k + 1

(3)

where cos is the cosine similarity function and f i

is calculated based on the training set Di
train. In

this way, a previous module shared by tasks with
higher word frequency distribution similarity to the
new task has a larger initial coefficient, increasing
the tendency to reuse it. In addition, the coeffi-
cient λl

k+1 of the newly added module ml
k+1 is

initialized to the minimum value of the initial coef-
ficients {λl

1, ..., λ
l
k} of previously added modules

{ml
1, ...,m

l
k} to encourage module reuse.
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Figure 2: In the selection stage, DMEA selects the top-K
most similar previous tasks through input subspace to
facilitate adaptation to a new task. During adaptation,
the output of the selected similar tasks is fused with
that of the new task in every layer to enable forward
knowledge transfer. Note that only modules selected for
the new task (green polygons) are learnable modules
in the adaptation stage. In addition, DMEA introduces
dynamic gradient scaling to balance the learning of the
new task and replayed tasks.

The selected module in layer l can be either from
previous modules {ml

1, ...,m
l
k} or the newly added

one ml
k+1 and will be tuned in the adaptation stage

to accommodate new knowledge. We then discard
newly added modules that are not selected. Note
that only newly added modules and coefficients are
learnable in the expansion stage; the pre-trained
LM and previous modules are kept frozen.

4.2 Selection Stage

As humans, we can better acquire new knowledge
by recognizing and utilizing knowledge from pre-
viously learned tasks that are similar (Lake et al.,
2017). Based on the observation that the norm of
one task’s gradient projection onto the subspace
of another task can characterize the correlation be-
tween them when the model architecture is static
(Lin et al., 2022b), we further extend it to dynamic
modules. Specifically, we obtain the input subspace
of each task using modules of it and select the top-
K most similar previous tasks by input subspace
similarity to facilitate adaptation to the new task
T j . The model architecture induced from the ex-
pansion stage is used for selection and adaptation.

Similar to Lin et al. (2022b), we adopt Sin-
gular Value Decomposition (SVD) to obtain the
input subspace of each task. After training the
model on Dj

train for several epochs in the ex-
pansion stage, we randomly select n samples
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{X1, ..., Xn} from Dj
train and obtain their rep-

resentations {X1, ...,Xn} ∈ Rm by forward-
propagating them through the network. We use the
final-layer representation of the last non-padding
token in the input as the sample representation.

After obtaining the representation matrix Rj =
[X1, ...,Xn] ∈ Rm×n for task T j , we apply SVD
to Rj , i.e., Rj = U jΣj(V j)

′
, where U j =

[uj
1, ...,u

j
m] ∈ Rm×m is composed of left-singular

vectors uj
i , Σ

j ∈ Rm×n is a rectangular diagonal
matrix with singular values on the diagonal, and
V j = [vj

1, ...,v
j
n] ∈ Rn×n is composed of right-

singular vectors vj
i . To obtain the input subspace

Sj of T j , we select the first k left-singular vec-
tors in U j to form the bases Bj = [uj

1, ...,u
j
k]

for Sj , where k is determined by the requirement:
||Rj

k||2F ≥ ϵj ||Rj ||2F with Rj
k being the k-rank ap-

proximation of Rj , F being the Frobenius norm,
and ϵj being a predefined threshold.

For the new task T j , the norm of its sub-
space projection onto the subspace of a previously
learned task T i could characterize the similarity
Qj,i between these two tasks. More formally,

Qj,i =
||ProjSi(Sj)||2

||Bj ||2
(4)

where ProjSi(Sj) = BjBi(Bi)
′

denotes the sub-
space projection. After getting the similarity scores
Qj,i, 1 ≤ i < j of all previous tasks, we pick K
tasks Tsim = (T 1, ..., T K) with the top-K highest
scores to facilitate adaptation to the new task T j .

4.3 Adaptation Stage
For adaptation to T j , assume that Tall =
(T 1, ..., T K , T j) contains a total of r modules
{ml

1, ...,m
l
r} in layer l. During the training on

Dj
train using Ltrain (see Eq. (7)), for each sample

in Dj
train, we fuse the output hls of each mod-

ule ml
s ∈ {ml

1, ...,m
l
r} by learnable coefficients

{αl
1, ..., α

l
r} to enable forward knowledge transfer:

h̃l =

r∑

s=1

eα
l
s

∑r
u=1 e

αl
u
hls (5)

The learnable coefficients {αl
1, ..., α

l
r} are equally

initialized to 1.0. Similar to the expansion stage,
the fused output h̃l is passed to the next part of the
model for learning. After training, the learnable
coefficients will be saved for inference. Note that
we only tune modules selected in the expansion
stage (can be modules of previous tasks or newly

added modules) and learnable coefficients while
keeping the pre-trained language model and other
modules frozen.

As there is no saved real sample of previously
learned tasks when the model adapts to a new task,
we also incorporate pseudo-sample replay (Sun
et al., 2020) to alleviate the forgetting of acquired
knowledge. We achieve this by simultaneously
training the model as a task solver (Ltask in §3.1)
and as a data generator. When training as a data
generator, the model learns to generate the triple
(X,Q, Y ) given a task-specific generation token
G as input. Then before learning a new task, the
model can generate pseudo samples of previous
tasks, which are combined with new data for train-
ing to mitigate forgetting. Denoting the concatena-
tion of G,X,Q and Y as A

′
, the data generation

loss is expressed as:

Ldata = −
m∑

i=2

log pθ(A
′
i|A

′
<i) (6)

where m is the total number of tokens in A
′
. The

overall loss that DMEA optimizes for adapting to a
new task is:

Ltrain = Ltask + µLdata (7)

where µ is the weight of data generation loss.
After the expansion stage, if the new task reuses

some modules of previously learned tasks, the
model will generate some pseudo samples of these
tasks and train the model using Ltrain on the combi-
nation of new data and pseudo data. As the model
has not seen new data before, the gradient norm
of the new task on reused modules is much larger
than that of replayed tasks. The learning process
can easily be biased towards the new task which
may affect previously acquired knowledge.

Therefore, to balance the learning of the new
task and replayed tasks, we introduce dynamic gra-
dient scaling. Specifically, assuming that the new
task T j reuses s modules {m1, ...,ms} of a pre-
vious task T i in all layers, we randomly select q
examples from Dj

train and pseudo samples of T i

separately and forwards them through the model to
obtain the gradient of T j and T i using Ltrain with
regard to reused modules {m1, ...,ms}, denoted as
gj and gi, respectively. The dynamic scale factor
ηit is then calculated as:

ηit = (
||gj ||2
||gi||2

− 1)e−t + 1 (8)
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Methods Finetune EWC LAMOL Metac Adapter
+LAMOL AdapterCL ACM DMEA MTL

Tune Whole Model? ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Pseudo-sample Replay? ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ —

Similar Tasks

# 1 42.9±0.2 56.6±0.1 65.5±0.3 65.2±0.4 64.5±0.2 63.4±0.3 64.8±0.3 65.8±0.2 67.1±0.2

# 2 51.8±0.1 61.0±0.2 65.2±0.4 65.0±0.2 64.6±0.4 63.4±0.3 64.9±0.2 65.6±0.2 —
# 3 45.2±0.2 57.8±0.1 65.7±0.2 65.4±0.4 64.2±0.3 63.4±0.3 64.5±0.2 65.5±0.1 —
# 4 31.4±0.4 46.6±0.3 65.6±0.3 65.5±0.1 65.1±0.1 63.4±0.3 65.4±0.3 66.2±0.3 —

Average 42.9±8.5 55.5±6.2 65.5±0.2 65.3±0.2 64.6±0.4 63.4±0.0 64.9±0.4 65.8±0.3 67.1±0.0

Random Tasks

# 1 33.8±0.4 37.6±0.5 55.7±0.4 55.9±0.3 53.2±0.2 56.1±0.5 56.7±0.3 57.5±0.3 59.7±0.2

# 2 33.1±0.3 38.4±0.4 62.6±0.2 62.4±0.4 61.8±0.3 64.2±0.2 64.9±0.4 65.6±0.3 67.5±0.1

# 3 25.7±0.1 43.2±0.3 54.8±0.1 55.4±0.2 53.6±0.3 55.6±0.4 56.3±0.1 57.3±0.2 60.4±0.3

# 4 34.2±0.3 48.9±0.1 64.7±0.4 65.3±0.3 62.5±0.1 65.4±0.3 66.2±0.2 67.4±0.1 69.8±0.1

Average 31.7±4.0 42.0±5.2 59.5±4.9 59.8±4.9 57.8±5.1 60.3±5.2 61.0±5.3 62.0±5.3 64.4±5.1

Table 1: The average performance score for each task sequence after learning all tasks. Bold indicates the best
score. ‘MTL’ stands for ‘multi-task learning’, serving as the upper bound for LSG. In each scenario, DMEA is
significantly better than ACM with p-value < 0.05 (paired t-test). Note that while LAMOL and Metac are not
directly comparable to other adapter-based methods as their learnable parameters are orders of magnitude larger,
DMEA still outperforms them in most cases. The comparison of learnable parameters and computational resources
between ACM and DMEA is reported in Appendix A.8.

where t is the number of completed training epochs.
After dynamic gradient scaling, the total loss for
jointly learning T j and T i is:

Ltotal = Lj
train + ηitLi

train (9)

Note that in the early stage of training, the value
of t is small. ηt is greater than 1 to balance the
gradient of the new task T j and the replayed task
T i. When the model has seen enough new data in
the late stage of training (no need to balance), ηt is
approximately equal to 1 as the value of t is large.

5 Experimental Setup

In this section, we first describe investigated tasks
and then introduce methods compared in our work.

5.1 Tasks
Four representative sequence generation tasks are
investigated in our work: natural language genera-
tion, summarization, task-oriented dialogue and
SQL query generation. Following Zhang et al.
(2022), we consider two different scenarios: (i) LSG

on similar tasks where the model learns a sequence
of tasks of the same type but different domains, and
(ii) LSG on random tasks where the model learns
knowledge from different types of tasks. For LSG

on similar tasks, we use five different domains from
two natural language generation datasets (RNNLG
(Wen et al., 2015) and E2ENLG (Novikova et al.,
2017)) to form the task sequences. We further incor-
porate summarization (CNNDM (See et al., 2017)),
task-oriented dialogue (MultiWOZ (Budzianowski
et al., 2018)) and SQL query generation (Wik-
iSQL (Zhong et al., 2017)) to form the task se-

quences for LSG on random tasks. For each sce-
nario, we randomly select four different orders2

(Appendix A.4) and run experiments for every or-
der five times with different random seeds (20 runs
per scenario). For each order, we report the average
of all learned tasks’ performance scores following
Zhang et al. (2022); see Appendix A.5 for details
of task-specific evaluation metrics.

5.2 Methods Compared
Following Zhang et al. (2022), we use GPT-2
(Radford et al., 2019) as the backbone model and
Adapter (Houlsby et al., 2019) as the insertable
module, and compare with the following methods:

• Finetune tunes the whole GPT-2 model only on
the training data of the new task during the LSG

process.

• EWC (Kirkpatrick et al., 2017) constrains the
update of parameters that are important to previ-
ously learned tasks to alleviate forgetting.

• LAMOL (Sun et al., 2020) tunes the whole GPT-
2 model with pseudo-sample replay.

• Metac-Adapt (Metac) (Wang et al., 2023)
adapts LAMOL towards better semantic space
for generating pseudo samples.

• Adapter+LAMOL only inserts adapter modules
for the first task and tunes these modules with
pseudo-sample replay while keeping the back-
bone model frozen.

• AdapterCL (Madotto et al., 2021) inserts task-
2Zhang et al. (2022) sample data from the original set for

data balance. To ensure a fair comparison among all methods,
we resample new data for experiments.
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Method Similar Tasks Random Tasks

DMEA 65.8 57.3
w.o. transfer 64.9 56.5
w.o. scaling 65.5 56.8
w.o. initialization 65.4 57.0

Table 2: The average performance score for different
ablations: (i) without forward knowledge transfer, (ii)
without dynamic gradient scaling, and (iii) without dy-
namic initialization. All components improve the per-
formance of our method.

specific adapter modules for every new task while
keeping the backbone model and previous mod-
ules frozen.

• ACM (Zhang et al., 2022) dynamically adds
adapter modules for new tasks depending on
whether there are reusable previous modules
to improve the performance and parameter ef-
ficiency of AdapterCL. It is the state-of-the-art
on LSG.

6 Results and Analysis

6.1 Main Results

Table 1 shows the average performance score for
each task sequence after learning all tasks (see Ap-
pendix A.7 for the performance of each task). From
the results, we can see that DMEA outperforms pre-
vious baselines in all LSG settings, which demon-
strates the superiority of our method. Note that
while the learnable parameters of LAMOL are or-
ders of magnitude larger, DMEA still achieves better
performance than LAMOL in 7 out of 8 runs, show-
ing its effectiveness in LSG.

Simply fine-tuning the model with new samples
leads to poor performance due to catastrophic for-
getting. Although EWC adopts Fisher information
matrix to alleviate forgetting, its performance is
still much worse than other memory-based base-
lines, indicating the importance of pseudo-sample
replay. When learning from a sequence of simi-
lar tasks, Adapter+LAMOL performs better than
AdapterCL as AdapterCL applies parameter iso-
lation to different tasks which might prevent pos-
itive knowledge transfer across tasks. However,
this is not the case when learning from random
tasks: AdapterCL achieves much better results than
Adapter+LAMOL as AdapterCL can avoid catas-
trophic forgetting by assigning different learnable
parameters to each task. The performance of ACM
is superior to Adapter+LAMOL and AdapterCL
in both scenarios, showing the effectiveness of

Time Step AdapterCL ACM DMEA

Similar

2 55.8(+0.0) 56.0(+0.1) 56.3(+0.3)
3 58.6(+0.0) 59.1(+0.4) 59.5(+0.6)
4 61.2(+0.0) 62.5(+0.6) 63.2(+0.9)
5 63.4(+0.0) 64.8(+0.3) 65.8(+1.0)

Random

2 55.4(+0.0) 56.3(+0.9) 57.1(+2.1)
3 58.4(+0.0) 58.9(+0.3) 59.7(+1.3)
4 64.0(+0.0) 64.3(+0.7) 65.4(+1.4)
5 64.2(+0.0) 64.9(+0.6) 65.6(+1.1)

Table 3: The average performance score and forward
knowledge transfer (FKT) of different methods at every
time step. FKT is reported in parentheses.

its adaptive compositional architecture. However,
ACM has no explicit mechanism to encourage for-
ward knowledge transfer in LSG, which is actu-
ally the human learning paradigm. Our proposed
DMEA consistently outperforms ACM by dynami-
cally leveraging previously acquired knowledge to
facilitate adaptation to new tasks.

6.2 Ablation Study
We conduct several ablations to analyze the con-
tribution of different components of DMEA. In
particular, we investigate three variants of DMEA

(a) without selecting similar previous tasks for for-
ward knowledge transfer (w.o. transfer), (b) remov-
ing dynamic gradient scaling (w.o. scaling), and
(c) without dynamically initializing learnable coef-
ficients (w.o. initialization). For each scenario, i.e.,
similar tasks or random tasks, we randomly pick
one sequence for experiments. Table 2 reports the
average performance score after learning all tasks
for different ablations.

From the results, we can observe that all compo-
nents contribute to the average performance. Re-
moving forward knowledge transfer leads to a sig-
nificant performance drop in both scenarios, in-
dicating that selecting top-K most similar previ-
ous tasks can indeed discover and transfer useful
learned knowledge to facilitate adaptation to the
new task. The adoption of dynamic gradient scal-
ing yields a moderate performance boost as it can
balance the learning of the new task and replayed
tasks to mitigate catastrophic forgetting. Dynamic
initialization of learnable coefficients also facili-
tates performance improvement, demonstrating the
effectiveness of leveraging the similarity of word
frequency distributions between tasks.

6.3 Further Analysis
Quantify Forward Knowledge Transfer. Fol-
lowing Ke et al. (2020), we define metrics quanti-
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Metrics Similar Tasks Random Tasks

Input Subspace 65.8 57.3
Frequency 65.3 56.9
Representation 65.2 56.9
w.o. transfer 64.9 56.5

Table 4: The average performance score using different
similarity metrics.

fying forward knowledge transfer (FKT) at every
time step t as:

FWT =
1

t− 1

t∑

i=2

Ri,i − d̄i. (10)

where Ri,j is the performance score on T j after
learning T i and d̄i refers to the performance of
training T i individually, which is actually the re-
sult of AdapterCL. For each scenario, we randomly
select one sequence for analysis and report the av-
erage performance score along with FKT at each
step in Table 3. From the results, we can see that
DMEA consistently outperforms ACM in terms of
the average performance score and FKT at all steps,
demonstrating that DMEA can better facilitate posi-
tive knowledge transfer.

Input Subspace vs. Other Similarity Metrics.
The ablation (w.o. transfer) in §6.2 demonstrates
the importance of selecting similar learned tasks.
To further investigate whether different similarity
metrics influence the performance of DMEA, we
conduct controlled experiments with two new met-
rics: (a) cosine similarity of word frequency dis-
tributions between different tasks (frequency), and
(b) cosine similarity of the representations of se-
lected samples from different tasks3 (representa-
tion). For each scenario, we use the same sequence
as §6.2. From the results in Table 4, we can ob-
serve that selecting similar previous tasks by input
subspace consistently outperforms using other sim-
ilarity metrics, demonstrating its superiority.

Robustness to Module Type To verify whether
the performance gain of DMEA is consistent across
different types of modules, we extend the experi-
ments to prefix-tuning (Li and Liang, 2021) and
LoRA (Hu et al., 2022). We randomly pick four
sequences for experiments and report the average
result in Table 5. we can see that DMEA still out-
performs ACM when using other architecture as

3For a pair of tasks, we compute the cosine similarity for
every representation pair and use the average as the similarity.

Module Type ACM DMEA

Prefix-tuning 62.6 63.4
LoRA 63.1 64.2

Table 5: The average performance score of ACM and
DMEA with different module types.

the insertable module, showing its robustness to
module type.

Longer Sequence. As mentioned in §5.1, we
mainly conduct experiments on sequences consist-
ing of 5 tasks following Zhang et al. (2022). To
verify whether DMEA can still outperform the base-
lines when learning from a larger number of tasks,
we further combine all tasks investigated in this
work to form a longer sequence of 8 tasks. We eval-
uate ACM and DMEA on this longer sequence with
3 different orders and report the average perfor-
mance score for each order after learning all tasks
in Fig. 3. We can observe that DMEA is still supe-
rior to ACM when learning from longer sequences.

Quality of Pseudo Data Fig. 4 shows several
pseudo samples generated by DMEA. We can see
that DMEA can indeed generate high-quality pseudo
samples to mitigate the forgetting of previously
learned knowledge. However, the generated pseudo
data could also be noisy as shown at the bottom of
the figure, which might hinder further performance
improvement.

Other Types of Tasks To explore whether the
performance gain of DMEA is consistent on other
types of tasks, we further include three new tasks:
sentiment analysis (SST (Socher et al., 2013)),
semantic role labeling (SRL (He et al., 2015))
and question answering (SQuAD (Rajpurkar et al.,
2016)). We randomly select two tasks from the
original task set three times and combine them
with new tasks to form three task sequences. From
the results shown in Table 6, we can observe that
DMEA performs better than ACM on all sequences,
showing its robustness to task types.

Different Pseudo-data Sampling Ratios Fol-
lowing Zhang et al. (2022), we set the pseudo-data
sampling ratio to 0.2. To validate whether differ-
ent pseudo-data sampling rates influence the per-
formance gain of DMEA, we conduct controlled
experiments with sampling rates {0.05, 0.1, 0.4}.
We randomly pick three sequences for experiments
and report the performance comparison between
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Figure 3: The average performance score for every order
after learning all 8 tasks of the longer sequence.

name[The Cricketers], eatType[restaurant], food[French], 
priceRange[moderate], near[Rainbow Vegetarian Cafe] what 
is the natural language form? The Cricketers is a French 
restaurant next to the Rainbow Vegetarian Cafe with 
moderate prices and a French taste.

High-quality Data

the table has columns week number, date, opponent, result, 
record and key words max, min, count, sum, avg, =, >, <, op, 
select, where, and, col, table, caption - - who the opponent was 
on the weekend where the record was 0 – 0? what is the 
translation from english to sql? select opponent from table 
where record = 0

Noisy Data

Figure 4: Some examples of generated pseudo data. We
color the task instruction in blue and output text in gray.
Missing/wrong information is colored in red.

ACM and DMEA in Table 7. We can see that DMEA

consistently outperforms ACM in all cases, demon-
strating its effectiveness.

In addition, we show case studies of learned
model architecture, model output, dynamic gradi-
ent scaling and task selection, generalization of
dynamic initialization, and potential real-world ap-
plications in Appendix A.9 ∼ A.14, respectively.

7 Conclusion

In this work, we have introduced DMEA for lifelong
sequence generation (LSG). DMEA leverages task
correlations to dynamically determine the suitable
architecture required to acquire novel knowledge
of a new task and selects the most similar previous
tasks through input subspace to facilitate knowl-
edge transfer. It uses pseudo-sample replay along
with dynamic gradient scaling to balance the learn-
ing of the new task and replayed tasks to further
alleviate forgetting. With extensive experiments
and analysis we have shown that DMEA consis-
tently outperforms previous methods in different
LSG settings. In the future, we would like to inves-
tigate ways to improve the quality of pseudo data
and explore more metrics for task similarity.

Method Sequence Average
(i) (ii) (iii)

ACM 68.4 63.6 71.8 67.9
DMEA 69.5 64.4 73.0 69.0

Table 6: The average performance score for every se-
quence after learning all new types of tasks.

Sampling Ratio 0.05 0.1 0.4

ACM 61.7 62.0 62.1
DMEA 62.5 63.1 62.8

Table 7: The average performance score of ACM and
DMEA with different pseudo-data sampling ratios.

Limitations

Although effective, DMEA has couple of limita-
tions:

• DMEA mainly focuses on the setting where every
task has plenty of training samples. In contrast,
humans can easily learn to perform new tasks
with only few data, which is a hallmark of human
intelligence. We leave how to explore lifelong
sequence generation in few-shot settings as future
work.

• DMEA does not consider machine translation, a
sequence generation task that might involve vo-
cabulary changes. One potential solution is to
use multilingual pre-trained language models.
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Figure 5: Given three learned skills, i.e., swimming,
running and boating, humans can determine that these
skills are not sufficient for diving. And after realizing
that swimming is the most similar learned skill, they
only need to learn the new aspect, i.e., how to safely
jump off the diving platform to master the new diving
skill.
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A Appendix

A.1 Illustration of Human Learning

We show the illustration of human learning in
Fig. 5.
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Figure 6: The effect of large gradient norm. gold, gnew,
and gsum represent the gradient of replayed tasks, the
gradient of the new task, and the aggregated gradient,
respectively. The blue arrows show the projection of
gsum onto gold. If the gradient norm of gnew is large
(right part of the figure), this projection might deviate
too much from gold.

name[The Vaults], eatType[pub], priceRange[moderate], 
customer rating[1 out of 5], near[Caf Adriatic] what is 
the natural language form? A moderately priced pub, 
named The Vaults, is located near Caf Adriatic. It has a 
customer rating of 1 out of 5.

Figure 7: An example of the task instruction for
E2ENLG. We color the task instruction in blue.

A.2 Effect of Large Gradient Norm

As shown in the Fig. 6, if the gradient norm of
the new task gnew is large, the projection of the
aggregated gradient gsum onto the gradient of re-
played tasks gold might deviate too much from gold,
leading to more severe forgetting.

A.3 Task Instruction Example

Following Zhang et al. (2022), we insert a natural
language question describing the purpose of every
task (task instruction) after the input of each sample.
Fig. 7 shows an example of the task instruction for
E2ENLG (Novikova et al., 2017).

A.4 Task Orders

We present different task orders for two LSG sce-
narios in Table 8.

A.5 Task-specific Evaluation Metrics

We report details of task-specific evaluation metrics
in Table 9.

A.6 Implementation Details

All methods are implemented with Py-
Torch/Transformers library (Wolf et al., 2020).
We adopt AdapterHub (Pfeiffer et al., 2020) to
implement adapter modules. For hyperparameters,
we mainly follow the settings in Zhang et al.
(2022) to have a fair comparison. In the expansion
stage, we train the model for 6 epochs before
selecting modules. In the adaptation stage, we set
the number (n) of samples selected to obtain the
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Order Task Sequence

Similar Tasks

# 1 e2e� res� hotel� tv� laptop
# 2 e2e� tv� res� laptop� hotel
# 3 res� hotel� e2e� laptop� tv
# 4 laptop� hotel� res� tv� e2e

Random Tasks

# 1 mwoz� cnn� e2e� res� hotel
# 2 e2e� sql� hotel� mwoz� res
# 3 cnn� hotel� sql� e2e� mwoz
# 4 e2e� mwoz� laptop� sql� tv

Table 8: Different task orders for each scenario. ‘e2e’
stands for E2ENLG. ‘res’, ‘hotel’, ‘laptop’ and ‘tv’
are four domains in RNNLG (restaurant, hotel, laptop
and television). ‘sql’, ‘cnn’ and ‘mwoz’ respectively
stand for ‘WikiSQL’ (SQL query generation), ‘CN-
NDM’ (summarization) and ‘MultiWOZ’ (task-oriented
dialogue).

Dataset Metric

RNNLG
A-RGE2ENLG

CNNDM
WikiSQL lfEM
MultiWOZ dsEM

Table 9: Details of task-specific evaluation metrics. ‘A-
RG’, ‘lfEM’ and ‘dsEM’ respectively stand for ‘average
of ROUGE-1, ROUGE-2 and ROUGE-L scores’, ‘exact
match of logical forms’ and ‘exact match of dialogue
state’.

input subspace as 100. The threshold ϵ is set as
0.95 for selecting left-singular vectors. We adopt 1
for the number of similar tasks K. For dynamic
gradient scaling, we set 100 for the number (q) of
examples selected to calculate the gradient.

A.7 Performance of Each Task

Table 10 shows the performance of each task for
every task sequence after learning all tasks.

A.8 Number of Learnable Parameters and
Computational Resources

We present the average number of learnable param-
eters and average running time for ACM and DMEA

in Table 11. From the comparison, we can observe
that DMEA can outperform ACM with a negligible
increase in learnable parameters and computational
resources.

A.9 Learned Model Architecture

To further demonstrate that dynamically initializ-
ing learnable coefficients can facilitate finding the

Similar #1 e2e res hotel tv laptop Avg

ACM 49.6 65.7 65.8 71.6 71.1 64.8
DMEA 49.2 67.1 68.1 72.5 72.0 65.8

Similar #2 e2e tv res laptop hotel Avg

ACM 48.7 74.0 64.4 72.6 65.0 64.9
DMEA 47.9 74.9 64.9 74.2 65.9 65.6

Similar #3 res hotel e2e laptop tv Avg

ACM 65.6 67.3 48.5 72.0 69.3 64.5
DMEA 66.9 66.6 49.5 73.7 70.9 65.5

Similar #4 laptop hotel res tv e2e Avg

ACM 73.1 66.8 66.9 72.4 47.6 65.4
DMEA 74.6 67.6 67.4 72.9 48.3 66.2

Random #1 mwoz cnn e2e res hotel Avg

ACM 81.6 26.0 47.5 64.5 64.1 56.7
DMEA 81.6 26.5 48.1 65.7 65.4 57.5

Random #2 e2e sql hotel mwoz res Avg

ACM 48.4 62.7 64.6 84.8 64.0 64.9
DMEA 48.7 64.9 64.9 84.9 64.6 65.6

Random #3 cnn hotel sql e2e mwoz Avg

ACM 26.3 63.2 62.1 47.7 82.4 56.3
DMEA 26.6 65.0 63.1 48.4 83.5 57.3

Random #4 e2e mwoz laptop sql tv Avg

ACM 48.6 80.5 70.3 63.5 68.2 66.2
DMEA 49.0 82.8 71.7 64.4 68.9 67.4

Table 10: The performance of each task for every se-
quence after learning all tasks.

Method Avg Para Num Avg Time (min)

ACM 4.6M 218.1
DMEA 4.8M 223.5

Table 11: The comparison of the average number of
learnable parameters (Avg Para Num) and average run-
ning time (Avg Time) between ACM and DMEA.

optimal model architecture, we analyze the model
expansion stage of ACM and DMEA using sequence
#4 in random scenario. For the final task tv, ACM
decides to reuse modules from the first (e2e) and
the third task (laptop) while DMEA reuses all mod-
ules from laptop which is consistent with the ob-
servation that the similarity between tv and laptop
is much higher than that between tv and e2e.

A.10 Case Study of Model Output

We select RNNLG.hotel (sequence #1 in similar
scenario) and WikiSQL (sequence #4 in random
scenario) as two representative tasks and show sev-
eral examples of output in Table 12. Compared
with ACM, DMEA possesses the capability to con-
vey more precise and relevant information from the
input without introducing superfluous details.
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RNNLG.hotel: inform(name=’mandarin oriental san francisco’;dogsallowed=’yes’;pricerange=’ultra high end’)

Reference the mandarin oriental san francisco is in the ultra high end price range and allows dogs.
ACM the mandarin oriental san francisco is a hotel in the ultra high end range (missing: and allows dogs).
DMEA the mandarin oriental san francisco offers ultra high end accommodations and allows dogs.

WikiSQL: on which date was the winning driver alain prost and had damon hill in the pole position ?

Reference select date from table where winning driver = alain prost and pole position = damon hill
ACM select date from table where winning driver = alain prost and pole position = damon (missing: hill)
DMEA select date from table where pole position = damon hill and winning driver = alain prost

Table 12: Output examples of different methods after learning the whole sequence. We color missing/wrong
information in red and redundant information in blue.

Method Similar Tasks Random Tasks

ACM 64.5 66.2
ACM w DI 64.7 66.5

Table 13: The performance comparison between ACM
and ACM with dynamic initialization (ACM w DI).

A.11 Case Study of Dynamic Gradient
Scaling

The ablation study in §6.2 demonstrates the im-
portance of dynamic gradient scaling. We further
conduct a case study using sequence #1 in random
scenario. During the learning of this sequence, the
fourth task res reuses several modules from the
third task e2e. After applying dynamic gradient
scaling, the performance of e2e is improved by 0.3
without compromising res, indicating that it does
mitigate the bias towards the new task.

A.12 Case Study of Task Selection

To verify that the previous task chosen in the se-
lection stage is indeed the most similar to the new
task, we analyze several cases using sequence #2
in random scenario. For the third task hotel, the
selected first task e2e has the highest similarity
score as they share the same task type. In addition,
the third task hotel shares a similar semantic space
with the final task res. Therefore, it is selected for
forward knowledge transfer when learning res.

A.13 Generalization of Dynamic Initialization

To demonstrate the generalization ability of dy-
namic initialization, we apply it to the expansion
stage of ACM. For each scenario, we randomly
pick one sequence for experiments. As reported in
Table 13, dynamic initialization does benefit ACM,
verifying its generalization capability.

A.14 Real World Application
Apart from the aforementioned sequence gener-
ation tasks, DMEA demonstrates the potential to
be applied to various real-world lifelong learning
scenarios. For example, it can continually train
a model to perform summarization and question-
answering based on news articles from different
domains during the onset of an emerging event like
Covid-19.

A.15 Hyperparameter Search
We select the number of training epochs before
modules selection from {6, 9, 12}, the number (n)
of samples picked to obtain the input subspace from
{50, 100, 200, 500} and the threshold ϵ for select-
ing left-singular vectors from {0.90, 0.95, 0.99}.
The number of similar previous tasks K is selected
from {1, 2, 3}. The number (q) of examples for cal-
culating the gradient in dynamic gradient scaling
is selected from {20, 50, 100, 200}.
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