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Abstract

We explore the possibility of improving proba-
bilistic models in structured prediction. Specifi-
cally, we combine the models with constrained
decoding approaches in the context of to-
ken classification for information extraction.
The decoding methods search for constraint-
satisfying label-assignments while maximizing
the total probability. To do this, we evaluate
several existing approaches, as well as propose
a novel decoding method called Lazy-k. Our
findings demonstrate that constrained decod-
ing approaches can significantly improve the
models’ performances, especially when using
smaller models. The Lazy-k approach allows
for more flexibility between decoding time and
accuracy. The code for using Lazy-k decod-
ing can be found here https://github.com/
ArthurDevNL/lazyk.

1 Introduction

Much of today’s Information Extraction (IE) is
done using probability-based token-classification
models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), LayoutLM (Xu et al.,
2020b,a; Huang et al., 2022) or LiLT (Wang et al.,
2022). These models aim for the best results by
increasingly stacking large amounts of parameters,
which comes at the cost of increased computational
requirements and training complexity. Typically,
only the top-1 prediction is used, despite the fact
that models produce probabilities for all token-
label combinations.

Ideally, alternative, high-likelihood predictions
are explored to improve predictions from existing
models. This is especially interesting in structured-
prediction tasks, where the model’s predictions are
parsed into predefined structures. These structures

Figure 1: Crop of a sample from the CORD dataset
along with the highest probability predictions for the
amounts. The model incorrectly predicts Total for the
Cash amount.

allow for defining constraints that evaluate whether
a produced prediction adheres to the expected struc-
ture, which can then be used to iterate over multiple
high probability predictions until a satisfying solu-
tion is found.

A concrete example of such a structure is in
the case of invoice information extraction. In this
task, the model is given the outputs of an Optical
Character Recognition (OCR) system and needs to
predict which parts of the text correspond to the
various elements in an invoice. For example, in
Fig. 1, the model is expected to predict the total,
cash and change amounts.

However, the occlusion of the “CASH” text intro-
duces noise into the model’s predictions, causing it
to incorrectly label the cash amount as another total
amount. Using the arithmetic semantics of invoices,
we know that the total amount should equal the cash
amount paid minus the change amount. As such,
we know that the model’s best prediction is prob-
ably incorrect. Alternative, high-probability label-
assignments can be explored to find a constraint-
satisfying solution instead.

Industrial document processing systems usually
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have programmatic post-processing logic that de-
tects and sometimes corrects aforementioned se-
mantic constraints. These systems, however, rarely
exploit the remaining information “hidden” in the
produced probability distributions, and the custom
correction code is often complex and hard to main-
tain. Furthermore there is the possibility of OCR-
induced errors, which go beyond the scope of the
present work but remain an important source of
errors in document IE (Nguyen et al., 2022).

In short, we exploit task-specific structures
to explore alternative high-likelihood predictions.
Specifically, we

• propose an efficient algorithm for iterating
over high-likelihood predictions and,

• provide a proof for the correctness of the al-
gorithm and,

• perform several experiments to evaluate
the relevance of exploring alternative high-
likelihood predictions in structured prediction
tasks.

2 Background

To search over high-probability predictions, we
require a probabilistic model that outputs in-
dependent probabilities for a given sequence
of tokens. Given an input sequence x =
{x1, x2, . . . , xn}, xi ∈ X where X is the token vo-
cabulary, the goal is to estimate the probability of
the output sequence y = {y1, y2, . . . , yn}, yi ∈ Y
where Y is the label vocabulary. As this probability
quickly becomes intractable, it is usually estimated
by factoring it as:

p(y|x) =
n∏

i

p(yi|x). (1)

The decoding process refers to the way we ob-
tain an estimate ŷ for y from such a model. The
simplest approach consists of taking the argmax
as

ŷ = argmax
y∈Yn

p(y|x), (2)

which is done for each yi separately.
In addition, we introduce a global, binary con-

straint C : x × y → {0, 1} and formalize our
problem of interest as

ŷ = argmax
y∈Yn

p(y|x) · C(x,y). (3)

Note that for the method proposed in Sec. 4,
we make no further assumption about the con-
straint. This is important because many existing
constrained decoding approaches require the con-
straints to be expressed in linear form (Faghihi
et al., 2023).

Some problems may consist of both linear and
non-linear constraints. Token-classification models
often use the BIO labeling scheme (Ramshaw and
Marcus, 1999), where the labels are prefixed with
B(eginning), I(nside) and O(utside) to be able to
classify spans of multiple tokens. In this formula-
tion, an I label must always be preceded by a B or
another I label of the same class.

This labeling constraint can be expressed using
linear constraints. However, the solution to the
linear constraints is not guaranteed to also be a so-
lution to the non-linear constraints. The semantic
constraint cash = total + change cannot be ex-
pressed linearly because in order to compute it,
the text corresponding to the labelization must be
parsed from text to a float, which is a non-linear
operation. An example where the optimal solution
satisfying the linear (BIO) constraints does not sat-
isfy the non-linear (semantic) constraints is shown
in Tab. 1(b) one line 4.

3 Related Work

Several decoding methods for the setting from
Eq. (3) have been proposed. An excellent bench-
mark for learning and decoding under constraints
is provided in GLUECons (Faghihi et al., 2023).
For decoding, the work mostly explores the usage
of Integer Linear Programming (ILP) for finding
a constraint-satisfying solution given the model’s
probabilities.

ILP problems can be solved using the branch
and bound algorithm (Land and Doig, 1960), which
is a type of informed search algorithm; it uses a
linear formulation of the constraints to guide it
more effectively through the search space. Another
example of a method that uses knowledge about
its constraints is Viterbi (Forney, 1973), which is a
dynamic programming approach that can also take
into account specific constraints, although more
restrictive than ILP as it only works in a Markovian
setting. The advantage of these informed search
methods is that they will always find the optimal
answer within a reasonable amount of time, should
it exist. However, they also have a non-negligible
minimum running time and impose aforementioned
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requirements on the constraints.
Informed search methods have previously been

applied to the task of information extraction. De-
coding under constraints using ILP was inspired
by the work from Roth and Yih who explored the
application to entity and relation extraction (Roth
and Yih, 2004, 2007). They formulate the decod-
ing problem as a linear program with the objective
to maximize the overall probability of a sequence
given a set of constraints.

In these programs, the decision variables are
indicator variables 1ji , indicating the assignment of
label j to token i. Using this, one can express the
constraint “1 label per token” as ∀i

∑l
j=1 1

j
i = 1

where l is the number of possible labels. Using
this linear formulation for several other constraints,
they observe 2-5% improvements in F1-score on
entity and relation classification tasks. Similarly,
Viterbi has also been used for correcting structured
predictions (Douzon et al., 2022).

For more complex constraints we can use unin-
formed search methods as they do not make any as-
sumptions on the implementation of the constraints
and simply iterate over the search space in a greedy
manner. The most widely known method for this
is Beam Search (BS) (Bisiani, 1987). While it
does not impose any restriction on the type of con-
straints, it is not ideal to our global decoding setting
as it works in a “left-to-right” manner.

To illustrate, BS takes as input a parameter k
and outputs the top-k sequences by computing the
top-k beams at every token, based on the previ-
ous top-k beams. In order to evaluate global con-
straints, beam search first needs to compute all
top-k sequences after which the constraint can be
evaluated.

Unfortunately, this means that if the constraint-
validating prediction ends up being the most likely
(argmax) sequence, beam search will have com-
puted k− 1 too many sequences. In addition, if the
constraint-validating prediction is not in the top-
k beams, a new search with an unknown, higher
k′ needs to be run, which also includes recom-
puting the initial previous k predictions. Several
adaptations have been suggested in the context
of natural language generation (Anderson et al.,
2016; Hokamp and Liu, 2017; Post and Vilar, 2018;
Lemons et al., 2022), but none of which solve
aforementioned problems for global constraints.
Others propose extending beam search with learn-
able heuristics that try to predict whether a given

Label “56” “.” “000”
Btotal 0.3 - -
Itotal - 0.4 0.4
Bcash 0.5 - -
Icash - 0.3 0.3

(a)
p “56” “.” “000” BIO Sem.

8.0% Bcash Itotal Itotal No -
6.0% Bcash Itotal Icash No -
6.0% Bcash Icash Itotal No -
4.8% Btotal Itotal Itotal Yes No
4.5% Bcash Icash Icash Yes Yes
3.6% Btotal Itotal Icash No -

...
...

...
...

...
...

(b)

Table 1: (a) (partial) predicted probabilities for the red
bounding box in Fig. 1, where the model splits the string
“56.000” in the three tokens “56”, “.”, and “000”. (b)
most likely label assignments in order of probability.
BIO = the labels adhere to the BIO constraints, Sem. =
the labels adhere to the semantic structure (cash = total
+ change).

label-assignment might violate future structure con-
straints (Pan and Srikumar, 2018).

Our method follows a similar approach to A×
with Partial Expansion (Yoshizumi et al., 2000)
which has previously been applied to the multiple
sequence alignment problem.

To our knowledge, we are the first to apply A*
with partial expansion that allows for more gen-
eral constraints than ILP for the global constraint
decoding setting.

4 Lazy-k Decoding

As the name suggests, the Lazy-k decoder allows
for decoding the k most probable sequences in
a lazy manner. This means that it only iterates
over the necessary number of sequences and stops
once a satisfying solution is found. The hypothesis
that this decoder explores is that the constraint-
satisfying sequence is somewhere among the other
high probability sequences.

To do this efficiently, we exploit the fact that the
k-th most probable sequence is always within “edit-
distance” 1 from one of the k − 1 more probable
sequences. This follows from the independence
of each label as shown in Eq. 1. We put “edit-
distance” in quotes here because we use a slightly
more strict definition of edit-distance that also takes
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into account the order between the various label
probabilities. More details about this can be found
in App. A.

At its core, it is a variant of best-first search (Rus-
sel et al., 1994), where the model’s predictions are
used to determine the order in which the possible
label assignments are explored. Each state repre-
sents a full label assignment y = {y1, y2, . . . , yn}
for all n tokens x = {x1, x2, . . . , xn}. The cost
g(y) of a state is defined as follows:

g(y) = −
n∑

i=1

log p(yi|x). (4)

We use yk to denote the k-th lowest cost label
assignment, and define the starting point y1 as:

y1 = argmin
y∈Yn

g(y) (5)

The algorithm for Lazy-k decoding is given in
Alg. 1. It works by maintaining a heap of the k
best states, prioritized by the score of the next best
unexplored state within 1 edit distance. The heap is
initialized with the starting state y1. Upon explor-
ing a state, it is tested against the constraint and
returns directly if it is satisfied. If the constraint is
not satisfied, the heap is extended with the newly
explored state and the priority score of the origi-
nating state yi is updated to reflect the score of the
next best unexplored state.

Different from best-first search, upon exploring
a state, we do not add all the children to the heap.
Instead, we only add the next best state yk and
update the priority key for yi to be the score of the
next best state within edit distance 1. This signif-
icantly reduces the size of the heap, as a classical
search implementation adds n possible children at
every iteration, whereas in this case, the number of
states in the heap is at most equal to the number of
iterations. This heap-size reduction in turn trans-
lates in better run time complexity as all following
heap operations become cheaper.

The NextBest function takes as input a state
y and the frontier. The frontier is a dictionary
that holds the explored states and next best states
for all explored states. The values are integers
that keep track of the i-th best change for a given
state. If i == n (the number of tokens) then the
function returns null as there is no next best change
within 1 edit-distance for this state. As the next best
state may already exist in the frontier, the NextBest
function is wrapped in AddNextBest to make sure

Algorithm 1 Lazy-k Decoding

Require: Input sequence: x
Require: Cost function g from Eq. 4
Require: Binary constraint C, max iterations k

1: function LAZY-K(x, g, C, k)
2: y1 ← argminy∈Yn g(y)
3: if C(x,y1) = 1 then return y1

4: H ←MinHeap()
5: frontier← {y1 : 1}
6: AddNextBest(y1, H, frontier)
7: count← 1
8: while H not empty and count < k do
9: yi ← H .PopMin()

10: yk ←NextBest(yi, frontier)
11: if C(x,yk) = 1 then return yk

12: AddNextBest(yk, H, frontier)
13: AddNextBest(yi, H, frontier)
14: count += 1
15: end while
16: return Failure
17: end function
18:

19: function ADDNEXTBEST(yi, H, frontier)
20: yij ←NextBest(yi, frontier)
21: while yij ̸= null and yij ∈ frontier do
22: frontier[yi] += 1
23: yij ←NextBest(yi, frontier)
24: end while
25: if yij ̸= null then
26: frontier[yij ]← 1
27: H .Add(yi, g(yij))
28: end if
29: end function

to only add next best states to the frontier that are
not already in there. See App. B for the pseudo-
code for the NextBest function.

Given that the algorithm iterates over the possi-
ble sequences in decreasing order of probability, it
is trivial to prove that it will always find the opti-
mal solution should it exist. In practice however,
the combinatorial growth in the number of states
quickly renders exhaustive search infeasible. To
prevent this, an additional stopping condition is
used where the iteration stops if no satisfying so-
lution has been found after a fixed number of k
iterations. One could also set the stopping condi-
tion according to a cumulative probability mass p
or some other measure; we leave this exploration
for future work.
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4.1 Complexity Analysis

Assuming n tokens, l labels and the requested top-
k sequences. The space complexity of Lazy-k is
O(kn), since for every k-best state we add at most
1 new state of size n to the heap.

The time complexity is slightly less obvious. For
the top-k states, the outer while loop will run for k
iterations. Inside this loop, there are two sources
of complexity:

1. H .Add() which occurs at most twice in
AddNextBest(),

2. NextBest() which occurs once in the outer
loop and twice in AddNextBest in another
while loop.

The H .Add() operation adds an element to the
heap which is of logarithmic complexity with re-
spect to the size of the heap. Since the heap holds
exactly our top-k states at each iteration, the com-
plexity of this operation is equal to

∑k
i=1 log i =

log
∏k

i=1 i = log k! which, using Stirling’s approx-
imation, is equivalent to O(k log k).

The NextBest(y, frontier) function returns the
frontier[y]-th next best state within 1 edit dis-
tance of y. When expanding a state for the first
time, we compute a sorted list of next-best edits
in O(n log n) time. Using this, every NextBest
call for this state can be computed in constant
time. For every state, NextBest() is called at most
n times. As the sorting takes n log n time, the
total time complexity of the algorithm becomes:
O(k(log k + n log n)).

5 Experiments

To evaluate the relevance of the Lazy-k decoder, we
perform invoice information extraction on several
datasets. The aim of the task is to extract various
amounts from invoices such that they satisfy their
expected arithmetic structure. For each dataset, we
train a token-classification model and generate pre-
dictions for the test set. The predictions are then fed
into the different decoding algorithms along with
the constraints, and return the highest-probability
sequence satisfying the constraints.

Data We evaluate the decoders on a total of three
datasets shown in Tab. 2: CORD (Park et al., 2019),
WildReceipt (Sun et al., 2021) and DocILE (Šimsa
et al., 2023). While the constraints are semantically

Table 2: Datasets used in the experiments. APL = Aver-
age Page Length, CSR = Constraint Satisfaction Ratio

Dataset Pages APL CSR
CORD 1,000 46 72%
WildReceipt 1,740 147 70%
Docile 7,372 353 88%

very similar, the datasets have slightly different la-
bels and different levels of granularity which means
each dataset has its own specific set of constraints.

The exact constraints for each dataset are de-
tailed in App. C. The models for all datasets are
trained using BIO labels, for which the initial con-
straint is that a label-assignment should be a valid
BIO sequence.

The other constraints depend on the specific la-
bels available in each dataset. However, it is pos-
sible for some labels not to be present in every
sample. As such, we distinguish between manda-
tory fields (ie total amount) and optional fields (ie
service fee, discount) which are considered 0 if
not found. A mandatory fields will be considered
empty if is not present in the predictions. As such,
any constraint involving this field is not evaluated
(or automatically considered as satisfied).

For each dataset, we apply the constraints to
all samples and filter out any that do not satisfy
the constraints (show counts in table). From these
samples, we use 60% for training and validation
(split 80-20), and 40% for testing. The samples not
satisfying the constraints are added to the training
set. We purposefully choose a large percentage for
the test as the small train set provided sufficient
performance and we mostly wish to evaluate the
decoding. Having the larger test set allows us to
reduce the variance in our measurements and make
stronger conclusions.

Evaluation Metric Our primary evaluation met-
ric F s

1 is the product of the micro-F1 score and the
percentage of samples satisfying all the constraints.
We chose this metric as it allows us to measure
the balance between the extraction performance
and constraint satisfaction. Our filtering procedure
ensures that all the test samples can completely
satisfy the constraints.

Models For each dataset, we fine-tune a Lay-
outLM (Xu et al., 2020b) model for a total of 20
epochs with a batch-size of 32 and a learning rate
0.001. The models were trained using a NVIDIA
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A40 (48GB) and the inference was done on an In-
tel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz.

Methods The Lazy-k performance is compared
to both BS and ILP, as well as an Argmax baseline
and a vanilla Best-First implementation. Since ILP
does not support non-linear constraints, we propose
a Lazy-ILP variant that works similar to Lazy-k.
This method iteratively looks for the highest proba-
bility solution satisfying the linear constraints and
checks if it also satisfies the non-linear constraints.
If it does not, the previous optimal solution is ex-
plicitly excluded by adding a new constraint and
a new solve is started. In our implementations we
use the Python PuLP* package for solving the ILP
problems. We chose various values for k for each
method, such that it would approximately give the
same total running time on different datasets. BS
and Best-First are evaluated on less values for k
because of their likeness with Lazy-k (exhaustive
search) but slower already.

Results The results for the LayoutLM model for
the different datasets are shown in Tab. 3. It can
be seen that constrained decoding approaches can
significantly improve the F s

1 with respect to the
Argmax baseline. For WildReceipt, the F s

1 score
almost doubles from 44.5% to 82.1%. CORD sees
a relatively smaller improvement in F s

1 by going
from 81.2% to 94.9% in the best case.

The Lazy-ILP decoder achieves a relatively high
F s
1 after only one iteration, whereas BS, Lazy-k

and Best-First grow more gradually with respect to
k. This can be explained by the fact that Lazy-ILP
directly finds the first sequence satisfying the linear
(BIO) constraints whereas the other approaches
might need to iterate over multiple sequences to
find the sequences satisfying the linear constraints.
Lazy-k achieves the F s

1 of Lazy-ILP (k = 1) at
k ≈ 211 for CORD, k ≈ 26 for WildReceipt, and
k ≈ 27 for DocILE.

Lazy-ILP’s high minimum F s
1 score also comes

at a non-negligible average decoding time. For
the same F s

1 score as Lazy-ILP (k = 20), Lazy-
k is around 38x faster for CORD, 144x faster for
WildReceipt and 182x faster for DocILE. However,
as k grows, the running time for Lazy-k becomes
more significant. As expected, BS is much slower
than the other methods. Because of the higher
running time, we cut off the computation at k = 25.
For the same k, Lazy-k is 150-500 times faster

*PuLP https://pypi.org/project/PuLP/

depending on the dataset. It should be noted that
the difference in running time between the different
datasets can be primarily attributed to the average
page lengths per dataset as shown in Tab. 2.

5.1 Smaller Models

A stated advantage is the possibility of using
smaller models in combination with the constrained
decoding methods to improve their performance.
We devised a second experiment similar to the first
one, but where we train several smaller models
to evaluate the additional benefit of using con-
strained decoding approaches. The smaller pre-
trained BERT models were provided as part of a pa-
per on the importance on pre-training compact mod-
els (Turc et al., 2019), and are tiny (4.4M parame-
ters), mini (11.3M), small (29.1M) and medium
(41.7M) respectively. We also fine-tune a BERT
base model counting 110.1M parameters. As Lazy-
k gives the same results as BS and Best-First search
but more efficiently, we only compare Lazy-k to
ILP.

Results The results are shown in Fig. 2. We ob-
serve the added value of constrained decoding in-
creasing as the model gets smaller. In the extreme
case of BERT tiny, the F s

1 score of the Argmax
approaches 0%, but is increased significantly when
combined with ILP. However, this can partially be
explained by our choice of measuring the F s

1 as
the product between the F1 and satisfaction ratio.
Though not shown in the figures, most of the in-
crease in F s

1 can be attributed to the satisfaction
ratio.

As the models get smaller, ILP gains in advan-
tage with respect to Lazy-k when keeping the num-
ber of iterations constant. This means that in many
cases the top-8 linear (BIO) constraint-satisfying
solutions are outside of the 214 highest probability
label-assignments. We wonder whether training the
network to better predict correct BIO sequences
would improve the overall performance, but we
leave this for future work to explore.

5.2 Discussion

In the context of information extraction from in-
voices, Lazy-k can be viable approaches for con-
strained decoding. While ILP has the advantage of
exactly computing optimal solutions to the linear
constraints, it also comes at an important mini-
mum run time cost. Depending on the “spacing”
between the solutions to the linear and non-linear
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CORD WildReceipt DocILE
Decoder k F s

1 Time (s) F s
1 Time (s) F s

1 Time (s)
Argmax - 81.2 0.000 ± 0.000 44.5 0.000 ± 0.000 48.2 0.000 ± 0.000
BS 21 83.9 0.002 ± 0.000 50.4 0.005 ± 0.000 51.6 0.010 ± 0.000

22 86.2 0.006 ± 0.000 53.8 0.015 ± 0.001 54.7 0.030 ± 0.000
23 89.0 0.017 ± 0.001 58.9 0.047 ± 0.002 56.9 0.110 ± 0.000
24 90.7 0.055 ± 0.001 60.7 0.169 ± 0.003 58.4 0.430 ± 0.001
25 91.4 0.293 ± 0.026 65.3 0.907 ± 0.025 59.4 2.969 ± 0.012

Best-First 24 90.7 0.005 ± 0.000 60.7 0.061 ± 0.012 58.4 0.088 ± 0.001
25 91.4 0.007 ± 0.001 65.3 0.103 ± 0.001 59.4 0.161 ± 0.003
26 92.2 0.009 ± 0.000 68.8 0.184 ± 0.001 60.3 0.289 ± 0.001
27 92.2 0.015 ± 0.000 70.4 0.340 ± 0.016 60.9 0.520 ± 0.002
28 92.5 0.025 ± 0.000 72.0 0.604 ± 0.003 61.2 0.948 ± 0.003

Lazy-ILP 20 93.5 0.618 ± 0.012 67.9 1.592 ± 0.004 60.7 2.188 ± 0.002
21 94.5 0.629 ± 0.009 72.2 1.902 ± 0.006 61.6 2.664 ± 0.005
22 94.5 0.641 ± 0.010 74.3 2.434 ± 0.006 62.7 3.889 ± 0.007
23 94.5 0.666 ± 0.009 75.8 3.526 ± 0.010 63.3 7.283 ± 0.010
24 94.9 0.725 ± 0.009 77.6 5.926 ± 0.013 63.6 16.024 ± 0.018

Lazy-k 25 91.4 0.002 ± 0.000 65.3 0.007 ± 0.000 59.4 0.005 ± 0.000
26 92.2 0.002 ± 0.000 68.8 0.011 ± 0.000 60.3 0.007 ± 0.000
27 92.2 0.003 ± 0.000 70.4 0.018 ± 0.000 60.9 0.012 ± 0.000
29 92.5 0.006 ± 0.000 73.7 0.056 ± 0.001 61.8 0.037 ± 0.000
211 93.9 0.016 ± 0.003 77.1 0.184 ± 0.004 62.4 0.127 ± 0.003
213 93.9 0.046 ± 0.003 79.5 0.620 ± 0.014 63.3 0.439 ± 0.005
215 93.9 0.168 ± 0.004 81.2 2.212 ± 0.014 63.5 1.580 ± 0.005
216 93.9 0.333 ± 0.006 82.1 4.155 ± 0.013 63.8 3.013 ± 0.009

Table 3: Results of constrained decoding on different datasets. Time (s) = average decoding time per page in seconds
averaged over 10 runs.

constraints, Lazy-k might be more suited to the
problem. Although not measured in our experi-
ments, Lazy-k also has a more significant memory
usage than ILP because it needs to keep all previous
solutions in the heap.

On the smaller models we observe a larger im-
pact from constrained decoding approaches. We
find these results promising for resources con-
strained applications and from an ecological point
of view. We are able to achieve similar perfor-
mance with significantly lighter models and less
computational resources.

Besides the performance one should also take
into account the ease of implementation of the dif-
ferent methods. The Lazy-k decoder is “plug-and-
play” as it does not need any conversion of the
constraints. While the linear constraints used in
this paper were fairly trivial to implement, more
complex problems will require more complex lin-
ear formulation which can be costly to implement
correctly.

For the setting discussed in this paper, beam
search is not recommended because of the limita-
tion discussed in Sec. 3. However, it remains valid
in the autoregressive decoding setting as this is not
supported with the other methods.

6 Conclusion

In summary, we have introduced a novel and effi-
cient decoding method called Lazy-k that allows
for decoding under global, hard constraints. When
applied in the context of invoice information extrac-
tion, Lazy-k is faster than existing, greedy search
methods and allows for more flexibility in trad-
ing off computing time and extraction performance
compared to ILP. In addition, the possibility of us-
ing programmatic constraints directly makes Lazy-
k an easy to use off-the-shelf solution for applying
corrections to probabilistic models in the context
of structured predictions.

Future work could explore the application to
other structured-prediction problems with non-
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Figure 2: F s
1 scores for constrained decoding on smaller

models. Lazy-ILP is limited to 8 iterations and Lazy-k
to 214.

linear constraints besides information extraction.
Additionally, the improvements in extraction per-
formance using the decoding methods are promis-
ing, which could also be explored in semi-
supervised learning settings. Another interesting
direction to explore would be the combination of
Lazy-k decoding with confidence calibration meth-
ods such as temperature scaling.

Limitations

Most methods presented in this paper only apply to
the independent label-probability setting whereas
much of today’s work in NLP uses the autoregres-
sive, generative setting. Furthermore, the methods
only apply to tasks that can be formulated as struc-

tured predictions tasks. It may not be possible to
specify concrete constraints for some tasks. We
did not explore the integration of soft constraints,
which are constraints that can have a degree of sat-
isfaction instead of the binary values considered in
this paper.

Ethics Statement

We have not identified any direct ethical concerns
with the presented methods and experiments. On
the contrary, we believe that our method improves
the verifiability of probabilistic predictions which
allows for better control over opaque probabilistic
methods. Furthermore, we have shown the poten-
tial for extracting more performance out of smaller
models which reduces the overall energy consump-
tion required for training and inference.
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A Lazy-k Proof

We denote a label sequence using

y = {y1, · · · , yN}. (6)

When obtaining the predicted probabilities from the
model, we order the probabilities for each label yi
in strictly decreasing order from j = 1 to j = |Y|,
such that

p(yji |x) > p(yj+1
i |x). (7)

While, in theory, it is possible for two labels to
have the same probability, in practice any exact
degeneracy is lifted by the numerical noise. Such
edge cases could be included by fixing an order ar-
bitrarily without significant impact on the outcome.
For sake of simplicity, however, we will keep the
strict inequality in Eq.(7). Once the order is fixed
for each label, the sequence can be unequivocally
represented by the indices ji as

y = {j1, · · · , jN}. (8)

We can now define the distance between two
sequences as

Dist(y,y′) =
N∑

i

j′i − ji. (9)
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Note that, by the definitions above, each iteration
of our lazy-k method corresponds to increasing
by 1 only one of the indices ji of the sequence
considered in the previous iteration.

Following the independence assumption be-
tween the labels, the probability of a sequence y is
given by

P (y|x) =
N∏

i

p(yi|x). (10)

Similarly to the individual labels, we can order all
the sequences y by an index k = 1, · · · , |Y|N such
that

P (yk|x) > P (yk+1|x), (11)

where we neglect degenerate probabilities for the
same argument raised above.

The ordering assumptions given in Eqs.(7)
and (11), together with the definition of the dis-
tance (9) imply that

∀ k ∃ k′ < k |Dist(yk′ ,yk) = 1. (12)

If we assume that condition (12) is not satisfied, it
would mean that starting from yk and decreasing
by 1 any of its ji the sequence probability would
increase. But this can only happen if condition (7)
is violated.

B NextBest

Algorithm 2 NextBest Implementation

Require: Label assignment: y
Require:

1: function NEXTBEST(y, frontier)
2: if frontier[y] == y.Length then return

null
3: diffs← {log yj+1

i − log yji |y
j
i ∈ y} ▷

Notation from Eq. 7
4: i← ArgSort(diffs)[frontier[y]] ▷ Cached
5: yji ← yj+1

i

6: y[i]← yj+1
i

7: return y
8: end function

C Constraints

Below are the constraints used for each dataset. All
models are trained using the BIO labeling scheme
and as such, the correct BIO constraint is used for
all datasets. In addition, each numerical field in
has the constraint that it needs to be parseable to

a float. A * next to a field indicates that the field
is optional and thus considered false if no value is
predicted for a given document.

C.1 CORD

•menu.sub.price = sub_total.subtotal_price

• sub_total.tax_price = 10%

× (sub_total.subtotal_price

+ sub_total.service_price∗)

• total.cashprice =
total.total_price + total.changeprice

• total.total_price =
sub_total.subtotal_price

+ sub_total.tax_price

+ sub_total.service_price∗

− sub_total.discount_price∗

C.2 WildReceipt

• total_value = subtotal_value + tax_value

• subtotal_value =
∑

prod_price_value

C.3 DocILE

• amount_total_gross =

amount_total_net + amount_total_tax

• amount_due =

amount_paid + amount_total_gross
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