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Abstract
Warning: This paper contains content and lan-
guage that may be considered offensive to some
readers.

While biases disadvantaging African American
Language (AAL) have been uncovered in mod-
els for tasks such as speech recognition and
toxicity detection, there has been little investi-
gation of these biases for language generation
models like ChatGPT. We evaluate how well
LLMs understand AAL in comparison to White
Mainstream English (WME), the encouraged
"standard" form of English taught in American
classrooms. We measure large language model
performance on two tasks: a counterpart gener-
ation task, where a model generates AAL given
WME and vice versa, as well as a masked span
prediction (MSP) task, where models predict a
phrase hidden from their input. Using a novel
dataset of AAL texts from a variety of regions
and contexts, we present evidence of dialectal
bias for six pre-trained LLMs through perfor-
mance gaps on these tasks.

1 Introduction

Task-specific models proposed for speech recog-
nition, toxicity detection, and language identifica-
tion have previously been documented to present
biases for certain language varieties, particularly
for African American Language (AAL) (Sap et al.,
2022; Koenecke et al., 2020; Meyer et al., 2020;
Blodgett and O’Connor, 2017). There has been lit-
tle investigation, however, of the possible language
variety biases in Large Language Models (LLMs)
(Dong et al., 2019; Brown et al., 2020; Raffel et al.,
2020), which have unified multiple tasks through
language generation.

While there are largely beneficial and socially
relevant applications of LLMs, such as in allevi-
ating barriers to mental health counseling1 and
medical healthcare (Hsu and Yu, 2022) access,
there is also potential for biased models to exacer-
bate existing societal inequalities (Kordzadeh and
Ghasemaghaei, 2022; Chang et al., 2019; Bender
et al., 2021). Past algorithms used in psychiatry and
medicine have been shown to be racially biased,
in some cases leading to, for example, underesti-
mating patient risk and denial of care (Obermeyer
et al., 2019; Straw and Callison-Burch, 2020). Fur-
thermore, LLMs capable of understanding AAL
and other language varieties also raise important
ethical implications, such as enabling increased
police surveillance of minority groups (see Patton
et al. 2020 and section 8 for further discussion).
Therefore, it is necessary to investigate the poten-
tial language variety biases of language generation
models to both increase accessibility of applica-
tions with high social impact and also anticipate
possible harms when deployed.

Moreover, prior work (Grieser, 2022) has shown
that African American speakers talking about race-
related issues use language in ways which may
draw on morphosyntactic features of AAL in order
to subtly foreground the race aspect of the discus-
sion topic without explicit mention. Most training
corpora include little representation of AAL (see
further discussion in section 3), and even those that
do can still fail to capture its significant regional
and contextual variation (see Farrington et al. 2021
for examples). Without the ability to interpret these

1https://www.x2ai.com/
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subtler meanings of AAL, LLMs will undoubtedly
exacerbate the misunderstandings which already
take place between AAL speakers and other com-
munities.

AAL WME

Source Text
Since RED gone, my HEAD
gone & dats thee ONLY shit

WRK.

Since Red is gone, my head is
gone, and that’s the only thing

working.

Model-Generated AAL Model-Generated WME

ChatGPT
Counterpart

Since Red ain’t around, my
head ain’t right, and that’s the
only thing keepin’ me going.

Since Red left, my head is
gone and that’s the only thing

that works.

GPT-4
Counterpart

Since Red gone, my head
gone, and that’s the only thing

workin’.

Since Red left, my head
hasn’t been right and that’s
the only thing that works.

Table 1: Examples of ChatGPT and GPT-4 counterpart
predictions. Given text in either WME or AAL, models
attempt a semantically-equivalent rewriting in the other
language variety.

Given the lack of African American representa-
tion in LLMs and the possible harms to the AAL-
speaking community, we focus on LLMs’ under-
standing of AAL to investigate biases. AAL is a
language variety which follows consistent morpho-
logical, syntactic, and lexical patterns distinct from
WME, such as the dropped copula (e.g., "she at
work") and aspect markers (e.g., the habitual be:
"he be running") (Lanehart, 2001; Green, 2009).
We use Grieser (2022)’s definition of AAL as the
grammatically patterned variety of English used
by many, but not all and not exclusively, African
Americans in the United States. Following Baker-
Bell (2020) and Alim and Smitherman (2012), we
also use the definition of White Mainstream En-
glish (WME) as the dialect of English reflecting the
linguistic norms of white Americans. While previ-
ous linguistic literature occasionally uses the terms
"Standard American English" and "African Amer-
ican Vernacular English," we employ AAL and
WME instead to avoid the implication that AAL
and other language varieties are "non-standard" and
to more precisely identify the demographics of pro-
totypical WME speakers, similarly to Baker-Bell
(2020) and Alim and Smitherman (2012). Exam-
ples of AAL and WME are shown in Table 1.

We evaluate understanding of AAL by LLMs
through production of language in each variety us-
ing automatic metrics and human judgments for
two tasks: a counterpart generation task akin to di-
alect translation (Wan et al., 2020; Harrat et al.,
2019) (see examples in Table 1) and a masked
span prediction (MSP) task where models predict a
phrase that was removed from their input, similar to
Groenwold et al. (2020). We summarize our contri-
butions as follows: (1) we evaluate six pre-trained,

large language models on two language generation
tasks: counterpart generation between language
varieties and masked span prediction; (2) we use
a novel dataset of AAL text from multiple con-
texts (social media, hip-hop lyrics, focus groups,
and linguistic interviews) with human-annotated
counterparts in WME; and (3) we document per-
formance gaps showing that LLMs have more dif-
ficulty both interpreting and producing AAL com-
pared to WME; our error analysis reveals patterns
of AAL features that models have difficulty inter-
preting in addition to those that they can under-
stand.

2 Background: Bias

In measuring AAL understanding, we identify evi-
dence of bias through performance gaps and analy-
sis of model behavior with each language variety.
Following Blodgett et al. (2020), findings of bias
could result in both allocational harms and repre-
sentational harms posed by the evaluated models2.

While LLMs are becoming more available and
valuable resources, the models’ lack of understand-
ing of AAL limits their use by AAL speakers, and
this disparity will only grow as the use of these
models increases across social spheres. Our eval-
uation attempts to quantify these error disparities
(Shah et al., 2020) by measuring models’ under-
standing of AAL and WME texts. When LLMs
do not perform equally well on different language
varieties, the LLM itself as a resource becomes
unfairly allocated, and speakers of minoritized lan-
guage varieties like AAL are less able to leverage
the benefits of LLMs. AAL speakers would be
particularly unfairly impacted with applications in
areas of health, including mental health.

Additionally, our evaluation includes a quali-
tative analysis of how AAL is currently under-
stood and produced by LLMs. Prior sociolinguis-
tic works discuss and study how attitudes toward
African American speakers have formed linguistic
prejudices against AAL (Baker-Bell, 2020; Baugh,
2015), as well as how stereotyped uses of AAL by
non-AAL speakers can perpetuate racial divides
(Ronkin and Karn, 1999). Stereotypical or offen-
sive uses of AAL by LLMs thus reflect a repre-
sentational harm to AAL speakers that can further

2Allocational harms are reflected in the unfair distribution
of resources and opportunities among social groups, while
representational harms are reflected in disparate or harmful
representations of a particular group (see Blodgett et al. (2020)
for further discussion).
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promote these views. We advocate for approaches
which carefully consider sociolinguistic variation
in order to avoid generation of inappropriate speech
across different settings.

3 Data

Biases in pre-trained language models can often be
attributed to common training datasets. Training
corpora for LLMs are typically drawn from internet
sources, such as large book corpora, Wikipedia, out-
bound links from Reddit, and a filtered version of
Common Crawl3 in the case of GPT-3 (Brown et al.,
2020), which can severely under-represent the lan-
guage of African Americans (Pew Research Center,
2018; Dolcini et al., 2021). Though few estimates
of the presence of AAL in datasets exist, one study
estimates that in the Colossal Cleaned Crawl Cor-
pus (C4), only 0.07% of documents reflect AAL
(Dodge et al., 2021). Beyond C4, African Amer-
icans are significantly underrepresented in data
sources such as Wikipedia 4 (0.05%) and news
articles (6%; Pew Research Center 2023), falling
well below the national average. Additionally, as
models learn from gold standard outputs provided
by annotators, they learn to reflect the culture and
values of the annotators as well.

3.1 Data Sources
There is significant variation in the use of features
of AAL depending on, for example, the region or
context of the speech or text (Washington et al.,
1998; Hinton and Pollock, 2000). Accordingly, we
collect a novel dataset of AAL from six different
contexts. We draw texts from two existing datasets,
the TwitterAAE corpus (Blodgett et al., 2016) and
transcripts from the Corpus of Regional African
American Language (CORAAL; Kendall and Far-
rington 2021), as well as four datasets collected
specifically for this work: we collect all available
posts and comments from r/BlackPeopleTwitter5

belonging to "Country Club Threads", which des-
ignates threads where only Black Redditors and
other users of color may contribute 6. Given the
influence of AAL on hip-hop music, we collect
hip-hop lyrics from 27 songs, 3 from each of 9

3http://commoncrawl.org/
4https://meta.wikimedia.org/wiki/Community_

Insights/Community_Insights_2021_Report/
Thriving_Movement

5https://reddit.com/r/BlackPeopleTwitter
6To be verified as a person of color and allowed to con-

tribute to Country Club Threads, users send in pictures of their
forearm to reveal their skin tone.

Black artists from Morgan (2001) and Billboard’s
2022 Top Hip-Hop Artists. Finally, we use the tran-
scripts of 10 focus groups concerning grief and loss
in the Harlem African American community and
conducted as part of ongoing work by the authors
to better understand the impacts of police brutal-
ity and other events on the grief experiences of
African Americans. Following Bender and Fried-
man (2018), a data statement with further details is
included in Appendix A.

50 texts are sampled from each dataset, result-
ing in 300 candidate texts in total. We use a set
of surface level and grammatical patterns to ap-
proximately weight each sample by the density of
AAL-like language within the text (patterns are
listed in Appendix B). 12 additional texts are also
sampled from each dataset for fine-tuning.

3.2 Data Annotations

Our interdisciplinary team includes computer sci-
entists, linguists, and social work scientists and
thus, we could recruit knowledgeable annotators
to construct semantically-equivalent re-writings of
AAL texts into WME, referred to as counterparts.
The four human annotators included 2 linguistics
students, 1 computer science student, and 1 social
work scientist, all of whom self-identify as AAL
speakers and thus have knowledge of the linguis-
tic and societal context of AAL and racial biases.
These annotators were familiar with both AAL and
WME, allowing them to provide accurate anno-
tations and judgements of model generations in
both language varieties. Annotators were asked
to rewrite the AAL text in WME, ensuring that
the counterparts conserve the original meaning and
tone as closely as possible (see Appendix C.1).

To compute inter-annotator agreement, we asked
each annotator to label the 72 additional texts, and
they also shared a distinct 10% of the remainder
of the dataset with each other annotator. We com-
pute agreement using Krippendorff’s alpha with
Levenshtein distance (Braylan et al. 2022; see Ap-
pendix D for more details) showing 80% agreement
(α = .8000). After removing pairs from the dataset
where annotators determined that no counterpart
exists, the final dataset consists of 346 AAL-WME
text pairs including the 72 additional texts. Dataset
statistics are included in Table 2.

6807

http://commoncrawl.org/
https://meta.wikimedia.org/wiki/Community_Insights/Community_Insights_2021_Report/Thriving_Movement
https://meta.wikimedia.org/wiki/Community_Insights/Community_Insights_2021_Report/Thriving_Movement
https://meta.wikimedia.org/wiki/Community_Insights/Community_Insights_2021_Report/Thriving_Movement
https://reddit.com/r/BlackPeopleTwitter


Dataset # Samples Avg. Length (AAL) Avg. Length (WME) Rouge-1 Avg. Tox (AAL) Avg. Tox (WME)
r/BPT Comments 60 24.20 24.33 85.3 0.40 0.29

r/BPT Posts 61 8.67 9.95 81.2 0.08 0.08
TwitterAAE (Blodgett et al., 2016) 58 13.60 15.02 65.9 0.78 0.54

CORAAL (Kendall and Farrington, 2021) 56 13.07 13.34 84.1 0.16 0.09
Focus Groups 54 29.20 26.96 71.4 0.09 0.07

Hip-Hop Lyrics 57 9.39 10.58 67.8 0.47 0.40
AAL Total 346 16.23 16.60 77.4 0.33 0.25

Table 2: Characterization of the novel AAL dataset by text source including the number of text samples, length (in
words) of aligned AAL and WME texts, Rouge-1 between aligned texts, and the average toxicity scores among
dialects.

Translate the following African American Vernacular English
into Standard American English:

and ain’t sixteen years old, this shit has got to stop. => And
he is not sixteen years old, this shit has got to stop.

Figure 1: Example prompt provided to GPT models in
the counterpart generation task including the instruction
and AAL text for which the model generates a WME
counterpart (blue).

4 Methods

We evaluate multiple language generation mod-
els using two tasks. In the counterpart genera-
tion task, we evaluate models on producing near
semantically-equivalent WME text given AAL text
and vice versa to target LLMs’ ability to interpret
and understand AAL. A second task, masked span
prediction, requires models to predict tokens to re-
place words and phrases hidden or masked from
the input. This task resembles that of Groenwold
et al. (2020), but spans vary in length and posi-
tion. Much like BART pre-training (Lewis et al.,
2020), span lengths are drawn from a Poisson dis-
tribution (λ = 2) and span locations are sampled
uniformly across words in the original text. We in-
dependently mask noun phrases, verb phrases, and
random spans from the text for more fine-grained
analysis.

While our focus is on measuring model capabil-
ities in interpreting AAL7, these generation tasks
allow us to test whether the model understands
the language well enough to produce it. It is not
our goal to produce a LLM that can generate AAL
within the context of downstream tasks (see sec-
tion 8 for further discussion).

4.1 Models

We consider six different models for the two tasks
where applicable: GPT-3 (Brown et al., 2020);

7In reference to model capabilities, "interpretation" and
"understanding" refer to the ability of models to accurately
encode the meaning and features of text in AAL and WME as
opposed to cognitive notions of these terms.

its chat-oriented successor, ChatGPT (GPT-3.5)8;
GPT-4 (OpenAI, 2023), currently OpenAI’s most
advanced language model ; T5 (Raffel et al., 2020);
its instruction-tuned variant, Flan-T5 (Chung et al.,
2022); and BART (Lewis et al., 2020). Flan-T5,
GPT-3, ChatGPT, and GPT-4 are evaluated on the
counterpart generation task, while GPT-3, BART,
and T5 are evaluated on the MSP task. We note
that the GPT models besides GPT-3 were not in-
cluded in the MSP task because token probabilities
are not provided by the OpenAI API for chat-based
models. An example of the instruction provided
to GPT models is provided in Figure 1. Notably,
the instruction text provided to GPT models uses
"African American Vernacular English" and "Stan-
dard American English" because prompts with
these terms were assigned lower perplexity than
"African American Language" and "White Main-
stream English" by all GPT models, and lower
perplexity prompts have been shown to improve
task performance (Gonen et al., 2022). Addition-
ally, GPT models are simply asked to translate with
no additional instructions in order to examine their
natural tendency for tasks involving AAL text. We
evaluate both Flan-T5 fine-tuned on the 72 ad-
ditional texts, referred to as Flan-T5 (FT) in the
results, and Flan-T5 without fine-tuning (with auto-
matic metrics only). Additional modeling details
and generation hyperparameters are included in
Appendices E.1 and E.2.

4.2 Metrics

We use both automatic and human evaluation met-
rics for the counterpart generation task. As with
most generation tasks, we first measure n-gram
overlap of the model generations and gold stan-
dard reference texts and in our experiments, we
utilize the Rouge metric. In addition, to account
for the weaknesses of word-overlap measures, we
also measure coverage of gold standard references
with BERTScore (Zhang* et al., 2020) using the

8https://openai.com/blog/chatgpt/
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Figure 2: Automatic coverage metrics of model-generated AAL and WME counterparts. "Human" (purple) scores
represent coverage metrics between the original AAL text and human-annotated WME counterparts. Significant
differences between scores in the WME → AAL direction and in the AAL → WME direction are denoted by *
(p≤ .05).

Figure 3: Human judgments for model-generated AAL and WME counterparts. "Human" (purple) scores represent
judgments of original AAL text and human-annotated WME counterparts. Significant differences between scores
in the WME → AAL direction and in the AAL → WME direction are denoted by * (p≤ .05). Flan-T5 without
fine-tuning was evaluated with automatic metrics after human judgements were collected.

microsoft/deberta-large-mnli checkpoint, because
it is better correlated with human scores than other
models9. Specifically, original AAL is the gold
standard for model-generated AAL and human an-
notated WME counterparts are the gold standard
for model-generated WME. In some experiments,
Rouge-1, Rouge-L, and BERTScore are presented
as gaps, where scores for generating WME are sub-
tracted from those for generating AAL. Due to the
tendency of models to avoid toxic outputs and neu-
tralize text, we also consider the percentage of toxic
terms removed when transitioning from model in-
puts in one language variety to outputs in the other.
Toxicity scores are derived as the number of words
categorized as offensive in the word list of Zhou
et al. (2021), and percent change between inputs
and outputs are calculated as (Toxin−Toxout)

Toxin
.

Human evaluation is also conducted on the gen-
erated counterparts. The same linguistics student,
computer science student, and social work scien-
tists involved in creating the dataset of aligned
counterparts were also asked to judge model gen-
erations. As a baseline, human-generated counter-
parts are included in the human evaluation. 100
WME and AAL texts along with their generated

9https://docs.google.com/spreadsheets/d/
1RKOVpselB98Nnh_EOC4A2BYn8_201tmPODpNWu4w7xI/
edit

and annotated counterparts are randomly sampled
from the dataset for human evaluation. We en-
sure that annotators do not rate human or model-
generated counterparts for which they initially gen-
erated the WME counterpart. All annotators are
asked to rate each assigned counterpart using 5-
point Likert scales on the dimensions below.

Human-likeness (Human-like) measures whether
the annotator believes that the text was generated
by a human or language model. Linguistic Match
(Dialect) measures how well the language of the
counterpart is consistent with the intended English
variety (i.e., AAL or WME). Meaning Preservation
(Meaning) measures how accurately the counter-
part conveys the meaning of the original text. And
finally, Tone Preservation (Tone) measures how ac-
curately the counterpart conveys the tone or other
aspects beyond meaning of the original text. Ad-
ditional details on the judgment instructions are
included in Appendix C.2.

In the masked span prediction task, span predic-
tions are evaluated using automated metrics: model
perplexity of the reference span, and the entropy
of the model’s top 5 most probable spans. With
the exception of GPT-3, experiments are repeated
5 times, randomly sampling spans to mask in each
trial. Metrics are reported as the percent change in
perplexity between WME and AAL.
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5 Results

5.1 Are AAL and WME Metrics
Comparable?

Studies such as Bugliarello et al. (2020) might sug-
gest that in translation-like tasks, it is invalid to
compare results from automatic metrics, such as
BLEU, cross-lingually because: (1) different lan-
guages may use different numbers of words to con-
vey the same meaning, and (2) models for different
languages utilize different tokenization schemes.

Though we emphasize that AAL and WME are
language varieties of English rather than distinct
languages, a similar argument may be made that
their Rouge scores are not directly comparable.
However, the counterpart generation task setting
does not suffer from either of the aforementioned
weaknesses. To show this, we calculate differences
in the number of words and 1-gram Type-Token
Ratio for AAL and WME text pairs in our dataset.

As shown in Table 3, the total number of words
in the AAL and WME texts are similar, and we
find that the lengths of each pair of texts differ
by less than 1/10th of a word (0.095) on average.
Bugliarello et al. (2020) also finds that among met-
rics studied, translation difficulty is most correlated
with the Type-Token Ratio (TTR) of the target lan-
guage. Table 3 shows that the difference in the
1-gram TTR between AAL and WME is not sta-
tistically significant. Finally, as the same models
are applied to both AAL and WME texts, the tok-
enization schemes are also identical. Therefore, the
identified weaknesses of cross-lingual comparison
do not apply to our results.

Dialect # Words TTR
AAL 5632 0.274 (0.259, 0.290)
WME 5665 0.260 (0.245, 0.275)

Table 3: Comparison of Type-Token Ratios between the
AAL and WME texts in the dataset. 95% confidence
intervals calculated using the Wilson Score Interval are
shown in parenthesis.

5.2 Counterpart Generation

Figure 2 shows results using automatic coverage
metrics on counterpart generations in AAL and
WME. Rouge-1, Rouge-L and BERTScore (the
coverage scores) for model output are computed
over the generated AAL or WME in comparison to
the corresponding gold standards. We note that the

models consistently perform better when generat-
ing WME, indicating that it is harder for models to
reproduce similar content and wording as the gold
standard when generating AAL. ChatGPT is the
worst model for producing WME from AAL, and
ChatGPT and GPT-3 are nearly equally bad at pro-
ducing AAL from WME. Flan-T5 (FT) does best
for both language varieties, likely due to the fact
that Flan-T5 (FT) was directly fine-tuned for the
task. Flan-T5 without fine-tuning performs compar-
atively with slightly lower coverage scores in both
directions. We also compute the coverage scores
between the original AAL text from the dataset
and the human annotated counterparts in WME,
labeled as "Human" in Figure 2. Models tend to
generate counterparts with lower coverage scores
than the text input to the model, which reflects the
alternative language variety. This suggests that it
is difficult for models to generate counterparts in
either direction.

Figure 3 shows human judgments of model-
generated WME and model-generated AAL. With
the exception of Flan-T5 (FT), we see that model-
generated WME is judged as more human-like
and closer to the intended language variety than
model-generated AAL. These results confirm find-
ings from automatic metrics, showing that models
more easily generate WME than AAL. In contrast,
for meaning and tone, the reverse is true, indicating
that models generate WME that does not match
the meaning of the original AAL. The difference
between scores on AAL and WME were signifi-
cant on all metrics for at least two of the models
as determined by a two-tailed t-test of the means
(see * in Figure 3 for models with significant dif-
ferences). We see also that the drop in meaning
and tone scores from judgments on human WME
is larger than the drop in human-like and dialect
scores on WME. These observations suggest that
models have a hard time interpreting AAL.

Figure 4: Percentage of toxicity removed for AAL and
the respective aligned WME counterparts.
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Figure 5: Gaps in Rouge-1 metric in non-toxic and
toxic subsets of the AAL dataset. Negative Rouge gaps
indicated greater WME performance than AAL.

Figure 6: Gaps in human judgments of human and
model-generated counterparts broken down into toxic
and non-toxic subsets. Negative scores indicate better
WME performance.

Toxicity scores (Figure 4) show that models tend
to remove toxic words when generating both AAL
and WME10. To test whether removal of toxic
words contributed to the inability to preserve mean-
ing, we computed both coverage scores and hu-
man evaluation scores on two subsets of the data:
"toxic" texts (at least one term categorized as offen-
sive) and "non-toxic" texts (no terms categorized
as offensive). We display these results as the dif-
ference in coverage scores and in human judgment
scores between model generated AAL and WME
as shown in Figure 5 and Figure 6. Positive scores
indicate that AAL performs better. Here we see that
human judgments on meaning and tone show that
generated WME is worse than generated AAL for
both toxic and non-toxic subsets. Thus, differences
in use of toxic words between input and output can-
not be the sole cause for lower scores on meaning
and tone. This confirms that models have difficulty
interpreting features of AAL. We note furthermore

10Models are developed to avoid generating toxic or offen-
sive language, so the trend of neutralizing input texts in any
dialect is expected. There are notable differences, however,
in the extent to which this neutralization occurs. The results
show that a significantly higher proportion of toxic language is
removed when generating WME from AAL than in the reverse
direction.

that gaps in coverage are consistently larger for the
non-toxic subsets of the data, demonstrating that
the use of profanity and toxic language are also not
the primary cause of gaps in coverage metrics.

5.3 Masked Span Prediction

Figure 7: Percent difference in perplexity and top-5
entropy between AAL and aligned WME texts. Nega-
tive percentages indicate lower WME perplexity/entropy
than AAL perplexity/entropy.

For MSP, we measure both perplexity and the en-
tropy of generating a masked span in either AAL or
WME. A lower perplexity score indicates it is eas-
ier for the model to determine the missing phrase,
while a lower entropy score indicates the model
places high probability in its top predictions. Fig-
ure 7 shows the differences in perplexity and en-
tropy between masked span prediction for model-
generated WME and for model-generated AAL.

Negative percent changes in perplexity indicate
that it is easier for models to predict spans in WME
than AAL, while for entropy, indicate that models
place higher probability in their top predictions for
WME than for AAL sentences.

6 Discussion: How well do models
interpret AAL?

We discussed earlier how Figure 3 and Figure 6
demonstrate that models have difficulty interpreting
AAL when generating WME. Figure 7 supports this
finding as well, as models generally output higher
perplexities for masked spans in AAL compared to
aligned WME.

The largest gaps in perplexity between the two
language varieties is assigned to masked verb
phrases. One set of distinct features characteriz-
ing AAL are verbal aspects which do not occur
in WME such as the future gone (e.g., I’m gone
do it later), so this result may suggest that models
struggle with the use of AAL-specific aspects in
particular over other AAL features. A similar trend
is found in the entropy metric, suggesting that AAL
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Figure 8: Breakdown of Rouge score gaps and per-
cent changes in toxicity by data source in counterpart
generation. Negative Rouge values indicate higher
WME Rouge scores, and positive ∆T scores indicate
the model-generated counterpart is more toxic than the
gold standard.

Ex 1: Source AAL shit, i’m tryna get my thing goin’, too. just bring my car
back. shit, he faded.

Annotated WME
Text

Shit, I’m trying to do my own thing, too. Just bring my
car back, shit, he’s high.

Flan-T5 (FT) WME Hey, I’m trying to get my thing going, too. Just bring my
car back. Hey, he faded.

Flan-T5 (FT) AAL Shit, I’m trying to do my own thing, too. Just bring my car
back, shit, he’s high.

Ex 2: Source AAL been wilding since a juvi, she was a good girl.
Annotated WME I was wild since I was a juvenile; she was a good girl.

ChatGPT WME I have been behaving recklessly since my time in juvenile
detention, but she was a well-behaved girl.

ChatGPT AAL I been wildin’ since I was a shorty; she was a straight up
good girl.

Ex 3: Source AAL It used to be broken controllers.
Annotated WME There used to be broken controllers.

GPT-4 WME It used to be that controllers would break.

Ex 4: Source AAL and they ain’t gonna really keep it one thousand when
niggas- let a nigga know what the fuck really going on.

Annotated WME And they are not really going to tell the truth when
people- let me know what the fuck is really going on.

GPT-4 WME And they aren’t going to be completely honest when
people-inform someone about what is truly happening.

Table 4: Flan-T5 (FT), ChatGPT and GPT4 examples of
model counterparts neutralizing the input text (red) and
misinterpreting features of AAL or terms in the input
text (blue).

text also lowers model confidence in their own pre-
dictions. These results for AAL support similar
findings by Groenwold et al. (2020) for GPT-2 in
an auto-completion setting.

Manual inspection revealed more fine-grained
patterns of model behavior within aspectual verbs
and other AAL features. Models seem to correctly
interpret some specific features of AAL, namely:
the use of ain’t, double negation, and habitual be.

Examples of misinterpretation, however, are
shown in Table 4 illustrating difficulty with several
other aspects of AAL. Several mistakes involve
lexical interpretation, such as in example 1, where
the model is not able to interpret the meaning of
"he faded" as "he’s high" and example 2 where the
model inserts shorty apparently intending the mean-

ing "youth" instead of its more common meaning
of "girlfriend". The models also struggle with fea-
tures that appear the same as in WME, but have
slightly different meanings in AAL. These include
remote past been (example 2), which is incorrectly
interpreted as past perfect (have been), and exis-
tential it (example 3), which in WME is closest in
meaning to "there" as in "there are ..." and is not
correctly interpreted by any model.

We also include an example where GPT-4 mis-
interprets the phrase "a nigga" as referencing an-
other person, when in the provided context, the use
most closely resembles referencing oneself. The
word nigga, is one of the N-words, a set of lexi-
cal items well-documented by linguists as being
misunderstood by non-native speaker in terms of
their syntactic and semantic complexity (Rahman,
2012; Grieser, 2019; Smith, 2019). In particular,
while the model removes the word in generating the
WME counterpart, it does not correctly understand
the use of the N-word as referencing the subject.
Without this understanding, it is probable that mod-
els will both misinterpret the words as toxic and
use them in ways that are considered offensive to
the AAL-speaking community.

In additional analysis of counterpart generations,
we examined model performance gaps in each sub-
set of the AAL dataset. Among subsets of the
data, gaps between Rouge-1 metrics for AAL and
WME counterparts vary significantly. GPT-4, for
example, presents the largest performance gap for
the TwitterAAE corpus (Blodgett and O’Connor,
2017), and the smallest gaps for the hip-hop and
focus group subsets as shown in Figure 8. Manual
inspection reveals that this aligns with the trends
in AAL-use among the subsets as well: distinct
features of AAL appear to be more frequent in the
TwitterAAE dataset, while AAL features in the
focus group transcripts appear to be more sparse.
This pattern may be due to the makeup and con-
text of the focus groups, as most participants were
college-educated, working professionals and se-
lected to specifically describe grief experiences,
possibly affecting the use of AAL in the discus-
sions. These results may suggest, as would be ex-
pected, that higher density of AAL features leads
to larger performance gaps.

7 Related Work

While few have specifically focused on bias against
AAL in language generation, related work has ex-
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tensively investigated societal biases in language
tasks. One large-scale study (Ziems et al., 2022)
investigates performance on the standard GLUE
benchmark (Wang et al., 2018) using a synthetically
constructed AAL dataset of GLUE for fine-tuning.
They show performance drops on a small human-
written AAL test set unless the Roberta model is
fine-tuned.

Racial Bias in Generation. Mitigating and eval-
uating social biases in language generation models
is a challenging problem due to the apparent trade-
offs between task performance and bias mitigation,
the many possible sources of bias, and the vari-
ety of biases and perspectives to examine (Sheng
et al., 2021b; Akyürek et al., 2022). A number of
studies have proposed bias evaluation measures,
often using prompts crafted to reveal biased associ-
ations of, for example, occupation and gender (i.e.,
"The [man/woman] worked as a ...") (Sheng et al.,
2020, 2019; Kiritchenko and Mohammad, 2018;
Dhamala et al., 2021; Shen et al., 2022) and in
other cases, graph representations to detect subjec-
tive bias in summarization (Li et al., 2021) and per-
sonas for dialogue generation (Sheng et al., 2021a).
However, the bias measurements in many of these
approaches are not directly applicable to language
in a natural setting, where the real-life harmful im-
pacts of bias in language generation would be more
prevalent.

AAL Feature Extraction. Past work makes
progress in lowering performance gaps between
AAL and WME by focusing on linguistic feature
extraction tasks. Given that some features of AAL
such as the aspectual verbs (i.e., habitual be, remote
past been) do not have equivalent meanings and
functions in WME (Green, 2009), standard part-
of-speech (POS) taggers and dependency parsers
cannot maintain performance for AAL text. Stud-
ies have attempted to lessen this gap by creating a
POS tagger specifically for AAL through domain
adaptation (Jørgensen et al., 2016) and a depen-
dency parser for AAL in Tweets (Blodgett et al.,
2018). Beyond these tasks, considerable attention
has been given to developing tools for features spe-
cific to AAL and other language varieties, such
as detecting dialect-specific constructions (Masis
et al., 2022; Demszky et al., 2021; Santiago et al.,
2022; Johnson et al., 2022) to aid in bias mitigation
strategies.

AAL in Language Tasks. Bias has also been
measured specifically with respect to AAL in down-

stream, user-facing tasks. With the phonological
differences between AAL and WME, automatic
speech recognition (ASR) systems have shown
large performance drops when transcribing speech
from African American speakers (Koenecke et al.,
2020; Martin and Tang, 2020; Mengesha et al.,
2021). Toxicity detection and offensive language
classification models have also been evaluated and
have shown a higher probability of incorrectly la-
beling AAL text as toxic or offensive when com-
pared to WME text (Zhou et al., 2021; Rios, 2020;
Sap et al., 2022). Most closely related to this
work, one study evaluated bias against AAL in
transformer generation models, showing that in a
sentence auto-completion setting, GPT-2 generates
AAL text with more negative sentiment than in
aligned WME texts (Groenwold et al., 2020). Fur-
ther investigation of both a larger set of language
generation models as well as a broader set of gen-
eration tasks would provide a clearer picture of
model biases against AAL.

8 Conclusion

We demonstrate through investigation of two tasks,
counterpart generation and masked span prediction,
that current LLMs have difficulty both generating
and interpreting AAL. Our results show that LLMs
do better matching the wording of gold standard
references when generating WME than when gener-
ating AAL, as measured by Rouge and BERTScore.
Human evaluation shows that LLM output is more
likely to be judged as human-like and to match
the input dialect when generating WME than AAL.
Notably, however, LLMs show difficulty in gener-
ating WME that matches the meaning and tone of
the gold standard, indicating difficulty in interpret-
ing AAL. Our results suggest that more work is
needed in order to develop LLMs that can appropri-
ately interact with and understand AAL speakers,
a capability that is important as LLMs are increas-
ingly deployed in socially impactful contexts (e.g.,
medical, crisis).

Limitations

We acknowledge a few limitations accompanying
the evaluation of biases in LLMs. While our analy-
sis is primarily restricted to intrinsic evaluation of
model biases, users primarily interact with LLMs
in a chat-based interface such as with ChatGPT, or
use the model for specific tasks such as question
answering. This approach was chosen to analyze

6813



biases that would be present across all tasks involv-
ing AAL. Performance gaps and biases analyzed in
a task-specific setting, however, may yield different
trends than presented in this paper, and we leave
this investigation to future work.

Additionally, AAL exhibits significant variation
by region, context, speaker characteristics, and
many other variables. We attempt to more com-
prehensively reflect real AAL use by drawing text
from multiple sources and contexts, but are ulti-
mately limited by the data available. For example,
while CORAAL reflects natural AAL speech, it is
limited to a select set of regions (e.g., New York,
Georgia, North Carolina, Washington DC), and
while the Twitter and Reddit AAL subsets may
span many regions, they are also influenced by the
linguistic features of social media. Similar biases
may also exist in other underrepresented varieties
of English such as Mexican American English, In-
dian English, or Appalachian English. Due to the
availability of data, we focus on AAL, but given
texts in other varieties, this work could be extended
to examine biases regarding these and other lan-
guage varieties.

Finally, evaluation metrics relying on trained
models or lexicons, such as BERTScore and toxi-
city measures, may also inherently encode biases
concerning AAL text. Rather than using a model to
measure toxicity, we instead use a lexicon of offen-
sive terms provided in Zhou et al. (2021) and used
to measure lexical biases in toxicity models. Given
that analyzing performance gaps relies on accu-
rate and unbiased measures of model performance,
future work may give attention to developing unbi-
ased language generation metrics.

Ethics Statement

We recognize that identifying potential bias against
AAL in LLMs should also include a critically re-
flexive analysis of the consequences if language
models are better at understanding language vari-
eties specific to marginalized communities such as
AAL, and the extent to which that impacts those
speakers. In prior research, Patton et al. (2020)
have noted that decisions made by researchers
engaged in qualitative analysis of data through
language processing should understand the con-
text of the data and how algorithmic systems
will transform behavior for individual, commu-
nity, and system-level audiences. Critical Race
Theory posits that racism exists across language

practices and interactions (Delgado and Stefancic,
2023). Without these considerations, LLMs capa-
ble of understanding AAL could inadvertently be
harmful in contexts where African Americans con-
tinue to be surveilled (e.g., social media analysis
for policing).

Despite this, including African American rep-
resentation in language models could potentially
benefit AAL speakers in socially impactful areas,
such as mental health and healthcare (e.g., patient
notes that fully present the pain African American
patients are experiencing in the emergency room,
Booker et al. 2015). Considering both the poten-
tial for misuse of the data as well as the potential
for social good, we will make the Tweet IDs and
other collected data available to those that have
signed an MOU indicating that they will use the
data for research purposes only, limiting research
to improved interpretation of AAL in the context
of an application for social good. In the MOU, ap-
plicants must include their intended use of the data
and sign an ethics agreement.
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A Data Statement

We provide details about our dataset in the follow-
ing data statement. Much of the dataset is drawn
from existing datasets that lack data statements,
and in those cases, we include what information
we can.

A.1 Curation Rationale
The dataset was collected in order to study the ro-
bustness of LLMs to features of AAL. The data
is composed of AAL-usage in a variety of regions
and contexts to capture the variation in the use of
and density of features. In order to better ensure
the included texts reflect AAL, we sample texts

from social media, sociolinguistic interviews, focus
groups, and hip-hop lyrics and weight the probabil-
ity of sampling a text using a small set of known
AAL morphosyntactic features. The datasets that
were previously collected, CORAAL Kendall and
Farrington 2021 and TwitterAAE (Blodgett et al.,
2016), were originally created to study AAL and
to study variation in AAL on social media respec-
tively. For all texts in the dataset, we also collect
human-annotated counterparts in WME to provide
a baseline for model evaluations.

A.2 Language Variety

All texts included in the dataset are in English (en-
US) as spoken or written by African Americans in
the United States with a majority of texts reflect-
ing linguistic features of AAL. Some texts notably
contain no features of AAL and reflect WME.

A.3 Speaker Demographics

Most speakers included in the dataset are African
American. The r/BPT texts were restricted to
users who have been verified as African Ameri-
can, CORAAL and focus group transcripts were
originally interviews with African Americans, and
hip-hop lyrics were restricted to African American
artists. The TwitterAAE dataset is not guaranteed
to be entirely African American speakers, but the
texts are primarily aligned with AAL and have a
high probability of being produced by AAL speak-
ers. Other demographics such as age and gender
are unknown.

A.4 Annotator Demographics

While all AAL texts in the dataset reflect natural us-
age of AAL, the WME counterparts in the dataset
are annotated. We recruited 4 human annotators
to generate WME counterparts for each text. All
annotators self-identify as African American, self
identify as AAL speakers, and are native English
speakers. Additionally, the 4 annotators are under-
graduate and graduate students aged 20-28, 2 of
whom were graduate students in sociolinguistics.
All annotators were compensated at a rate between
$18 and $27 per hour depending the annotator’s
university and whether they were an undergraduate
or graduate student.

A.5 Speech Situation

Speech situations vary among the 6 datasets we
compose. The r/BPT posts, r/BPT comments,
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and TwitterAAE subsets are all originally type-
written text, intended for a broad audience, and are
drawn from asynchronous online interactions. The
CORAAL and focus group transcript subsets are
originally spoken and later transcribed, intended
for others in their respective conversations, and
are drawn from synchronous in-person interactions.
Finally, the hip-hop lyrics subset are both spoken
and written, intended for a broad audience of hip-
hop listeners, and are likely repeatedly changed
and edited before released. r/BPT comments and
posts are sampled from the origin of the subreddit
in October 2015, CORAAL transcripts are sampled
from interviews between 1888 and 2005, hip-hop
lyrics are drawn from songs released in 2022, fo-
cus groups were conducted between February and
November 2022, and the time range of the Twitter-
AAE dataset is unknown to the authors.

A.6 Text Characteristics
Among the data subsets, the focus group transcripts
are the most topically focused. All focus groups
primarily included discussion surrounding the ex-
periences and responses to grief in the Harlem com-
munity, focusing on experiences due to daily stres-
sors, the death of loved ones, police shootings, and
the COVID-19 pandemic. In the r/BPT posts and
r/BPT comments subsets, texts were typically writ-
ten in response to a tweet by an African American
Twitter user, ranging from political commentary to
discussion of the experience of African Americans
in the United States. The hip-hop lyrics subset is
not topically focused, but includes texts that follow
specific rhyming patterns and meters. The remain-
ing subsets of the data (TwitterAAE, CORAAL)
span a variety of topics and structures.

B AAL Search Patterns

To better ensure our dataset includes use of AAL
features, we use a set of regex and grammar-based
search patterns as part of the sampling procedure.
Regex patterns for AAL features are listed below.

AAL Feature Pattern
ain’t ain’?t

Existential it it (?:was|is) a\w*
Negative Concord n’t (no\w*)|n’t (?:nobody|anybody)
Dropped Copula (\bthey|\bwe|\bshe|\bhe) \w*?ing \b

Determiner Leveling a [aeiou]\w+

Table 5: ALL feature search patterns.

The set also includes grammar-based patterns
using the spacy POS tagger to detect the use of ha-
bitual be, completive done (or "dun", "dne"), future

gone (or "gne", "gon"), and remote past been (or
"bin"). Each of these features are detected by the
use of each term (or their variants) if they are not
preceded by another auxiliary verb or preposition
in the clause (i.e., "He be eating" contains a use of
habitual be, but "Should he be eating?" does not
because the auxiliary verb "should" precedes "be"
in the clause). While standard POS taggers could
potentially underperform on AAL, there were no
AAL-specific POS taggers available at the time of
dataset collection to our knowledge.

C Annotation Procedure

C.1 Counterpart Annotations

Annotators were asked to provide a semantically-
equivalent rewriting (or counterpart) of a given text
from the AAL dataset in WME. The specific set of
guidelines provided to annotators were:

1. Change alternative spellings (i.e., "shoulda"
for "should’ve")

2. Maintain usernames, hashtags, and URLs if
present

3. Ignore emojis unless speakers of WME may
use them differently

4. Conserve and un-censor profanity
5. Avoid unnecessary changes
6. Use your best judgement in special cases

As noted, annotators had the option to label a
text as "Not Interpretable" if it lacks a reasonable
counterpart in WME.

C.2 Counterpart Judgment Instructions

In judging counterparts, annotators were provided
with an original text from the dataset in either
WME or AAL and a model-generated (or human-
annotated) counterpart. Notably, judgments were
assigned ensuring that no annotator received a text
they were involved in creating the counterpart for.
Additionally, annotators were not given definitions
or guidelines for terms such as "meaning" or "tone"
to avoid biasing judgements and to encourage an-
notators to use their own interpretation of the terms.
The questions asked of annotators are as follows:

1. Human-likeness: Is the interpretation more
likely generated by a human or language
model?
(1) Very Likely a Model, (2) Likely a Model,
(3) Neutral, (4) Likely a Human, (5) Very
Likely a Human
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2. Linguistic Match: How well does the interpre-
tation resemble AAL?
(1) Completely Unlike AAL, (2) Unlike AAL,
(3) Neutral, (4) Like AAL, (5) Completely
Like AAL

3. Meaning Preservation: How well does the in-
terpretation reflect the meaning of the original
text?
(1) Completely innacurate, (2) Inaccurate, (3)
Neutral, (4) Accurate, (5) Completely Accu-
rate

4. Tone Preservation: How well does the coun-
terpart accurately reflect the tone of the origi-
nal text?
(1) Completely innacurate, (2) Inaccurate, (3)
Neutral, (4) Accurate, (5) Completely Accu-
rate

For judgment samples that involved judging
WME counterparts, questions and response options
that refer to "AAL" were changed accordingly.

D Annotator Agreement Calculation

Because the task provided to annotators required
generating text, we use Levenshtein distance and
Krippendorf’s Alpha to calculate annotator agree-
ment based on the general form as described in
Braylan et al. 2022. Annotator agreement is calcu-
lated with the following formula:

α = 1− D̂o

D̂e

(1)

where D̂o represents the observed distance between
annotations, D̂e represents the expected distance,
and Levenshtein distance is used as the distance
function D(a, b). Expected distance between two
annotators is calculated by randomly shuffling one
set of annotations and calculating the average Lev-
enshtein distance between the randomized pairs.

E Model and Experiment Details

E.1 Checkpoints and Training

For GPT-3, ChatGPT, and GPT-4, we use the text-
davinci-003, gpt-3.5-turbo, and gpt-4 checkpoints
respectively . For the T5 model variants, we use the
t5-large and google/flan-t5-large checkpoint. Flan-
T5 is fine-tuned using a learning rate of 3e-5 for
5 epochs across the full set of 72 additional texts.
Finally, for BART we use the facebook/bart-large
checkpoint.

E.2 Generation Hyperparameters
For all GPT-family models, we use the default tem-
perature of 0.7 in generations. For the BART and
T5 model variants, we use a beam width of 3, tem-
perature of 1, and a no_repeat_ngram_size of 3.

F Full Counterpart Results

Table 6 and Table 7 show the raw automatic metric
and human judgement scores for the counterpart
generation task respectively. Table 8 shows the per-
centage of toxic terms removed by the model when
generating counterparts in AAL or WME. Finally,
Table 9 and Table 10 present the raw automatic
metric and human judgments scores on the toxic
(at least one term categorized as offensive) and non-
toxic (no terms categorized as offensive) subsets of
the corpus.

G Full MSP Results

Table 11 presents the raw perplexity and entropy
scores in the Masked Span Prediction task.

H Additional Counterpart Generation
Examples

The remaining appendices, Tables 12-19, provide
further examples from the counterpart generation
task. Examples are drawn randomly from subsets
where the total score given to one of the models
evaluated exceeds the ratings of the original an-
notated counterpart and where the total score of a
model is lower.
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AAL ⇔WME

Model WME → AAL AAL → WME
R-1 R-2 R-L BS T %∆ T R-1 R-2 R-L BS T %∆ T.

Repeat 77.4 59.8 75.7 53.1 0.25 — 77.4 59.8 75.7 53.1 0.33 —
Flan-T5 (FT) 77.2 63.6 76.1 53.5 0.21 -0.02 80.3 67.8 79.6 54.4 0.26 0.38

Flan-T5 74.8 57.7 74.3 52.4 0.30 0.01 75.8 58.6 75.3 53.9 0.23 0.02
GPT-3 56.5 32.9 55.2 51.6 0.02 0.60 69.5 51.0 68.2 53.5 0.13 0.92

ChatGPT 56.2 32.7 54.0 51.2 0.05 0.47 61.6 40.2 59.3 53.8 0.15 0.90
GPT-4 67.7 45.6 66.9 51.7 0.06 0.16 68.9 48.9 67.5 53.7 0.21 0.84

Table 6: Full coverage and toxicity metrics of model counterpart generations for AAL and aligned WME. Toxicity
scores are reported both as raw scores (T) and as the percent change in scores (%∆T) between model inputs to
corresponding model-generated counterparts. Repeat row reports metrics computed on and between gold standard
reference texts.

AAL ⇔WME

Model Human-like Dialect Meaning Tone
AAL WME AAL WME AAL WME AAL WME

Human 3.66 3.82 4.00 4.99 4.51 4.53 4.55 4.67
Flan-T5 (FT) 4.01 3.56 3.80 3.61 4.79 4.45 4.83 4.61

GPT-3 2.65 3.50 3.56 4.62 4.18 3.72 4.07 4.04
ChatGPT 3.18 3.62 4.09 4.67 3.99 3.80 4.11 4.19

GPT-4 3.17 3.51 4.05 4.74 4.67 3.96 4.65 4.21

Table 7: Full ratings of counterpart responses for Flan-T5, GPT-3, ChatGPT, GPT-4, and the original human
response in AAL and WME. Bolded values indicate scores exceeding judgments of human counterparts. The higher
score between AAL and WME is colored green.

Model % Toxicity Removed
WME → AAL AAL → WME

Flan-T5 (FT) -0.02 0.37
Flan-T5 0.01 0.02
GPT-3 0.65 0.93

ChatGPT 0.62 0.88
GPT-4 0.21 0.84

Table 8: Percentage of toxicity removed from model inputs when generating counterparts in the WME → AAL
and AAL → WME directions. Negative values indicate more toxic terms were introduced in model-generated
counterparts than were present in the input.

Model Toxic Non-Toxic
AAL WME Difference AAL WME Difference

Flan-T5 (FT) 74.9 74.7 0.2 78.9 82.3 -3.4
Flan-T5 70.3 69.0 -0.01 75.6 77.5 0.02
GPT-3 54.0 62.5 -8.5 56.5 69.4 -12.9

ChatGPT 56.7 57.0 -0.3 57.5 62.9 -5.4
GPT-4 68.2 60.4 7.8 65.9 67.9 -2.0

Table 9: Rouge-1 gaps in Toxic and Non-Toxic subsets of the AAL dataset. Negative gaps indicate greater WME
performance than AAL performance.

Model Toxic Non-Toxic
Human-like Dialect Meaning Tone Human-like Dialect Meaning Tone

Human -0.70 0.40 -0.08 -0.12 -0.06 -0.10 -0.02 -0.14
Flan-T5 (FT) 0.45 0.49 0.83 0.57 0.44 0.11 0.21 0.14

GPT-3 -0.82 -1.04 0.61 0.19 -0.88 -1.07 0.40 -0.04
ChatGPT -0.51 -0.60 0.11 -0.01 -0.42 -0.57 0.20 -0.10

GPT-4 0.33 -0.31 1.29 0.31 -0.50 -0.7 0.56 0.47

Table 10: Gaps in human judgments of counterparts in the toxic subset and non-toxic subset of the data. Negative
scores indicate higher WME performance, and bolded scores indicate smaller gaps (less positive or more negative)
compared to the other subset.
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AAL

Model Perplexity Top-5 Entropy
Random Noun Verb Random Noun Verb

GPT-3 8.0 21.0 12.2 12.24 15.86 13.80
T5 1737.79 3657.64 2420.74 1.53 1.51 1.50

BART 2559.9 5856.9 3900.5 5.56 5.99 5.67
WME

Model Perplexity Top-5 Entropy
Random Noun Verb Random Noun Verb

GPT-3 8.79 17.6 8.76 13.40 15.32 13.19
T5 1691.58 3391.09 2144.63 1.26 1.33 1.31

BART 2342.71 5437.39 3015.38 5.56 5.94 5.52

Table 11: Span perplexity and top-5 entropy for all AAL and aligned WME texts. Results for T5 and BART are
averaged across 5 trials with different random spans masked.

Source Text Human-like Dialect Meaning Tone

Human WME
Counterpart

Somebody is going to get robbed for that new money.
Just watch because this niggas are broke and

desperate
- - - -

AAL Text Somebody going get bust for them new breads watch
cause niggas be broke n press. 1.0 2.0 1.0 1.0

Flan-T5 (FT)
Generated AAL

Somebody gonna get robbed for that new money. Just
watch because these niggas are broke and desperate. 5.0 4.0 5.0 5.0

GPT-3
Generated AAL

Somebody gon’ get robbed fo’ dat new money. Just
watch ’cause these niggas po’ an’ ’esperate. 3.0 3.0 4.5 4.5

ChatGPT
Generated AAL

Somebody finna get jacked for that new cash. Imma tell
ya, cause these niggas out here strugglin’ and needin’ it

bad.
4.5 4.5 4.5 5.0

GPT-4
Generated AAL

Somebody gon’ get got for that new money. Just watch
cuz these niggas broke and desperate. 3.0 5.0 5.0 5.0

Table 12

Source Text Human-like Dialect Meaning Tone
Human WME
Counterpart

And what if he does? People are going to be
powerless to stop it. - - - -

AAL Text And what if he does? Niggas gon be powerless to
stop that shit too. 1.0 3.0 2.0 2.0

Flan-T5 (FT)
Generated AAL

And what if he does? People gonna be powerless to stop
it. 4.5 5.0 5.0 5.0

GPT-3
Generated AAL An’ wat if he do? Folks gon’ be powerless ta stop it. 1.5 3.0 5.0 4.5

ChatGPT
Generated AAL

And what if he do though? Ain’t nobody gonna have no
power to stop it. 4.0 5.0 5.0 5.0

GPT-4
Generated AAL An’ what if he do? Folks gon’ be powerless to stop it. 3.5 5.0 5.0 5.0

Table 13

6822



Source Text Human-like Dialect Meaning Tone

Human WME
Counterpart

Number one top is really a number one thing that
causes everything I know all the violence, he would

just go back and forth and social media.
- - - -

AAL Text
Number one top really a number one thing that

causes everything I know all the violence, he would
just go back and forth and social media.

5.0 5.0 5.0 5.0

Flan-T5 (FT)
Generated AAL

Number one top is really a number one thing that causes
everything I know all the violence, he would just go

back and forth and social media.
5.0 5.0 5.0 5.0

GPT-3
Generated AAL

Num one top is suttin’ that’s really low-key cuz it be
causin’ all da violence I know. He just keep goin’ back

and forth on da social media, know’msayin?
1.0 1.0 4.0 4.0

ChatGPT
Generated AAL

Da numba one top thang be causin’ errythang, ya feel
me? I know all da violence be ’cause of it. Dude jus’ be

goin’ back and forth on social media or whatever.
1.0 5.0 1.0 2.0

GPT-4
Generated AAL

Numba one top be straight up da numba one thing
causin’ all dis violence I know, he just be goin’ back

and forth on social media n’ stuff.
4.0 3.0 5.0 5.0

Table 14

Source Text Human-like Dialect Meaning Tone
Human WME
Counterpart My man, i diss in my freestyle rhyme - - - -

AAL Text my man, i be dissin’ in my freestyle rhyme. 4.5 4.5 4.5 4.5
Flan-T5 (FT)

Generated AAL my man, i diss in my freestyle rhyme 5.0 5.0 5.0 5.0

GPT-3
Generated AAL My dude, I was killin’ it in my freestyle rhyme! 1.0 2.0 2.0 1.0

ChatGPT
Generated AAL My homie, I dissed in my freestyle rap. 2.5 3.0 4.0 4.5

GPT-4
Generated AAL My dude, I be dissin’ in my freestyle flow 2.0 4.0 4.0 5.0

Table 15

Source Text Human-like Dialect Meaning Tone
AAL Text now they sayin’ juice left some heads cracked. - - - -

Human WME
Counterpart

Now they’re saying that juice left some heads
cracked. 1.5 2.0 1.5 2.5

Flan-T5 (FT)
Generated

WME
Now they say juice left some heads cracked. 3.5 2.0 5.0 5.0

GPT-3
Generated

WME

Now they are saying that Juice left some people with
serious injuries. 5.0 5.0 4.0 5.0

ChatGPT
Generated

WME

Now they are saying that Juice caused some people to
have head injuries. 2.0 4.0 5.0 5.0

GPT-4
Generated

WME
Now they are saying that Juice injured some people. 5.0 5.0 4.0 4.0

Table 16

6823



Source Text Human-like Dialect Meaning Tone

AAL Text Moms always buyin groceries like they preparing for
a nuclear winter. - - - -

Human WME
Counterpart

Mam is always buying groceries like they are
preparing for a nuclear winter. 2.0 2.0 2.0 5.0

Flan-T5 (FT)
Generated

WME

Moms always buy groceries like they are preparing for a
nuclear winter. 3.5 4.5 5.0 5.0

GPT-3
Generated

WME

Mom always buys groceries like she’s preparing for a
nuclear winter. 5.0 5.0 4.0 4.0

ChatGPT
Generated

WME

My mother always buys groceries as if she is preparing
for a nuclear winter. 4.0 4.0 2.0 5.0

GPT-4
Generated

WME

Mom is always buying groceries as if she is preparing
for a nuclear winter. 5.0 5.0 2.0 2.0

Table 17

Source Text Human-like Dialect Meaning Tone
AAL Text It used to be broken controllers. - - - -

Human WME
Counterpart There used to be broken controllers. 5.0 5.0 4.5 4.5

Flan-T5 (FT)
Generated

WME
It used to be broken controllers. 3.0 1.5 1.5 3.5

GPT-3
Generated

WME
It used to be malfunctioning controllers. 1.5 5.0 4.5 5.0

ChatGPT
Generated

WME
It used to be controllers that were broken. 1.5 5.0 2.5 3.5

GPT-4
Generated

WME
It used to be that controllers would break. 2.5 5.0 1.5 1.5

Table 18

Source Text Human-like Dialect Meaning Tone
AAL Text that shit be crazy, they ’posed to protect us. - - - -

Human WME
Counterpart That shit is often crazy, they supposed to protect us. 3.0 4.0 4.5 4.5

Flan-T5 (FT)
Generated

WME
That’s crazy, they’re trying to protect us. 2.0 4.0 1.0 1.0

GPT-3
Generated

WME

That stuff is really outrageous, they’re supposed to
protect us. 4.0 5.0 3.0 5.0

ChatGPT
Generated

WME
That is insane, they are supposed to protect us. 5.0 4.5 4.5 4.5

GPT-4
Generated

WME
That situation is crazy, they are supposed to protect us. 4.5 4.5 4.5 4.5

Table 19
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