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Abstract
Contrastive explanations, where one decision
is explained in contrast to another, are sup-
posed to be closer to how humans explain a de-
cision than non-contrastive explanations, where
the decision is not necessarily referenced to
an alternative. This claim has never been em-
pirically validated. We analyze four English
text-classification datasets (SST2, DynaSent,
BIOS and DBpedia-Animals). We fine-tune
and extract explanations from three different
models (RoBERTa, GTP-2, and T5), each in
three different sizes and apply three post-hoc
explainability methods (LRP, GradientxInput,
GradNorm). We furthermore collect and re-
lease human rationale annotations for a subset
of 100 samples from the BIOS dataset for con-
trastive and non-contrastive settings. A cross-
comparison between model-based rationales
and human annotations, both in contrastive and
non-contrastive settings, yields a high agree-
ment between the two settings for models as
well as for humans. Moreover, model-based
explanations computed in both settings align
equally well with human rationales. Thus, we
empirically find that humans do not necessarily
explain in a contrastive manner.

1 Introduction

In order to build reliable and trustworthy NLP ap-
plications, it is crucial to make models transparent
and explainable. Some use cases require the ex-
planations not only to be faithful to the model’s
inner workings but also plausible to humans. We
follow the terminology from DeYoung et al. (2020)
and define plausible explanations as model-based
rationales that have high agreement with human
rationales, and faithful explanations as the input to-
kens most relied upon for classification. Both qual-
ities (plausibility and faithfulness) can be estimated
via metrics, i.e., are not binary. Recently, various
contrastive explanation approaches have been pro-
posed in NLP (Jacovi et al., 2021; Paranjape et al.,

∗ Equal contribution.

Figure 1: An example from the BIOS dataset of non-
contrastive and contrastive human and model-based
rationales. Human rationales are underlined and bold-
faced, while model-based rationale attribution scores are
highlighted in red (positive) or blue (negative) colors.

2021; Yin and Neubig, 2022) where an explanation
for a model’s decision is provided in contrast to an
alternative decision. Figure 1 shows an example
for text classification of professions, where the con-
trastive setting is phrased as: “Why is the person
[...] a dentist rather than a surgeon?”. Contrastive
explanations are considered closer to how humans
would argue and thus considered more valuable for
humans to understand the model’s decision (Lipton,
1990; Miller, 2019; Jacovi et al., 2021). In particu-
lar, the latter has been shown in previous evaluation
studies. So far however, it has not been empirically
investigated whether contrastive explanations are
indeed closer to how humans would come to a de-
cision, i.e., whether human rationale annotations
are more similar to contrastive explanations than to
non-contrastive explanations.

In this work, we initially compare human gaze
and human rationales collected from a subset of
the SST2 dataset (Socher et al., 2013; Hollenstein
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et al., 2018; Thorn Jakobsen et al., 2023), a binary
sentiment classification task, with contrastive and
non-contrastive model-based explanations using
the Layer-wise Relevance Propagation (LRP, Bach
et al. 2015; Ali et al. 2022) framework. We find no
difference between non-contrastive and contrastive
model-based rationales in this binary setting. The
analysis on DynaSent (Potts et al., 2021) yields sim-
ilar results. We thus further explore the potential
of contrastive explanations, collecting human ratio-
nale annotation for both settings, contrastive and
non-contrastive, on a subset of the BIOS dataset
(De-Arteaga et al., 2019) for a five-way medical
occupation classification task, and compare them
to model-based explanations.

We find that human annotations in both settings
agree on a similar level with model-based ratio-
nales, which suggests that similar tokens are se-
lected. Contrastive human explanations seem to be
more specific (fewer words annotated), but agree-
ment between the two settings varies across classes.
Based on these results, we conclude that humans do
not necessarily explain in a contrastive manner by
default. Moreover, model explanations computed
in a non-contrastive and contrastive manner do not
differ while both align equally well with human
rationales. We observe similar findings in another
single-label multi-class animal species classifica-
tion dataset, DBPedia Animals.

Note – Human rationales ̸= reasoning: As part
of this work, we collect human rationales in the
form of highlighting supporting evidence in the
text to decide for the gold label; we show an ex-
ample in Figure 1. These human rationales should
be understood as proxies for how humans (anno-
tators) explain (rationalize) a given outcome post-
hoc, which shall not be conflated with how humans
reason, came to a decision, ad-hoc. In other words,
human rationales can be only be seen as a filtered
aftermath of human reasoning. Hence, our obser-
vations are only suggestive of how humans explain
decisions they are provided with, rather than how
they come to make these decisions. The latter could
possibly be examined by analyzing physiological
signals, e.g., brain stimuli or gaze (eye-tracking),
pre-hoc in relation to rationales.

Contributions The main contributions of this
work are: (i) We provide an extensive comparison
between contrastive and non-contrastive rationales
provided both by humans and models for three dif-
ferent model architectures (RoBERTa, GTP2, T5)

and sizes (small, base, large) and for three different
post-hoc explanation methods (LRP, GradientxIn-
put, Gradient Norm) on four English text classifica-
tion datasets. (ii) We include both human annota-
tions and gaze patterns into our analysis, which pro-
vide human signals at different processing levels.
(iii) We release a subset of the BIOS dataset, a text
classification dataset for five medical professions.
(iv) We further release human rationale annotations
for 100 samples of this newly released dataset for
both contrastive and non-contrastive settings.

We release our code on Github to foster repro-
ducibility and ease of use in future research.1

2 Related Work

Contrastive Explainable AI (XAI) Contrastive
explanations have only recently been applied in
language models. We are revising the most promi-
nent recent papers but also would like to refer to
earlier work in the field of computer vision (Dhu-
randhar et al., 2018; Prabhushankar et al., 2020).
Jacovi et al. (2021) propose a framework to gen-
erate contrastive explanations by projecting the la-
tent input representation to a maximally contrastive
space. They evaluate the usability of contrastive
explanation on capturing bias on text classification
benchmarks BIOS and NLI, but not the quality of
the explanations per se. We use the BIOS dataset
to collect human rationales in a contrastive and
non-contrastive setting. Paranjape et al. (2021) ap-
ply and human-evaluate contrastive explanations
in a commonsense-reasoning task. They find con-
trastive explanations to be more useful to humans
and that model performance can be improved via
conditioning predictions using contrastive expla-
nations. Yin and Neubig (2022) compare three
contrastive explainability methods with their orig-
inal version: Gradient Norm, InputxGradient and
Input Erasure. They apply their methods in differ-
ent settings including a user study for predicting
the language model’s behaviour and conclude that
contrastive explanations are both more intuitive and
fine-grained in comparison to non-contrastive ex-
planations. We use their methods in our analysis
together with (a contrastive version of) LRP (Gu
et al., 2018) extended to Transformer models.

Both aforementioned human evaluation studies
differ to our evaluation analysis as they provide ex-
planations to humans to ask about the model deci-

1https://github.com/coastalcph/humans-contras
tive-xai
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Figure 2: An example biography for a ‘nurse’ from the BIOS dataset highlighted with LRP relevance scores -red for
positive, and blue for negative- per class (occupation) based on RoBERTa large. We further show explanations for
the foil (‘psychologist’). In the last row, we present an explanation for ‘nurse’, the correct outcome, in contrast to
‘psychologist’, the second best guess of the model.

sion and the relevance and helpfulness, respectively.
In contrast, we aim to analyze whether the ratio-
nales provided by humans are closer to contrastive
explanations than non-contrastive explanations.

Human rationales vs. model rationales Hu-
man rationale annotations often serve as a refer-
ence point for evaluating model explanations by
directly comparing them to the human ground truth
(Schmidt and Bießmann, 2019; Camburu et al.,
2018; DeYoung et al., 2020). While high agree-
ment between model-based and human explana-
tions does not necessarily lead to a faithful model
prediction (Rudin, 2019; Atanasova et al., 2020),
others argue that providing explanations plausible
to humans is crucial when building trustworthy sys-
tems (Miller, 2019; Jacovi et al., 2023).

3 Methodology

Non-contrastive explanations typically compute the
most relevant features for a target class label L,
e.g., by computing the gradients with respect to the
logit (score) of the top-predicted class. Contrastive
explanations can in extension be obtained by con-
sidering the difference in evidence for the target
class L and some foil class (F ̸= L). To compute
contrastive and non-contrastive explanations, we
use the following methods:

Layer-wise Relevance Propagation Since naive
computation of gradients in Transformer models
has been shown to result in less faithful explana-
tions (Ali et al., 2022), we build contrastive expla-
nations in the framework of ‘Layer-wise Relevance

Propagation’ (LRP) for Transformer models. To
compute explanations that accurately reflect the
model predictions, the handling of specific non-
linear model components is needed, which includes
the layer normalization and attention head modules,
that can be treated via carefully detaching nodes of
the computation graph as part of the forward pass.
For non-linear activation functions, i.e., GeLU, we
propagate relevance proportionally to the observed
activations (Eberle, 2022).

Gradient× Input We further compute con-
trastive and non-contrastive explanations via
‘Gradient× Input’ (Baehrens et al., 2010; Shriku-
mar et al., 2017), which can be seen as a special
case of LRP without the use of specific propagation
rules. In our setting this results to no specific treat-
ment of non-linear computations, i.e., detaching of
non-conserving modules.

Gradient Norm In addition, computing the norm
of the gradient (Li et al., 2016) directly has been
also considered in the context of contrastive expla-
nations by Yin and Neubig (2022).

To obtain contrastive explanations, we define the
evidence to be explained as the difference:

y(x)l − y(x)f ,

where y(x)l is the logit (score) of the top-predicted
target label by the model and y(x)f is the score for
the foil. For generative models, we select the logit
of the predicted label, or foil, token.
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4 Experiments

4.1 Datasets

In this study, we conduct experiments on four
single-label English classification datasets: SST2
(Socher et al., 2013), DynaSent (Potts et al., 2021),
BIOS (De-Arteaga et al., 2019), and DBPedia Ani-
mals (Lehmann et al., 2015).

SST2 The dataset contains approximately 70,000
(68k train/1k dev/1k test) English movie reviews,
each labeled with positive or negative sentiment.
To analyze non-contrastive vs. contrastive expla-
nations, we use the non-contrastive human ratio-
nale annotations provided by Thorn Jakobsen et al.
(2023).2 The 263 samples chosen by Thorn Jakob-
sen et al. belong to the development or test split
from SST2, and they overlap with the samples from
ZuCo, an eye-tracking dataset where reading pat-
terns have been recorded from English native speak-
ers reading movie reviews from SST (Hollenstein
et al., 2018).

DynaSent This English sentiment analysis
dataset contains approximately 122,000 sentences,
each labeled as positive, neutral, or negative.
Thorn Jakobsen et al. (2023)2 released non-
contrastive annotations for 473 samples from the
test set, excluding examples labeled as neutral on
the premise that neutral sentiment comes in lack
of context, i.e., no evidence of positive or negative
sentiment which we use to compare non-contrastive
and contrastive model rationales.

BIOS The dataset comprises English biographies
labeled with occupations and binary genders. This
is an occupation classification task, where bias with
respect to gender can be studied. We consider a
subset of 10,000 biographies (8k train/1k dev/1k
test) targeting 5 medical occupations (psychologist,
surgeon, nurse, dentist, physician).

We collect and release human rationale annota-
tions for a subset of 100 biographies in two differ-
ent settings: non-contrastive and contrastive. In
the former, the annotators were asked to find the
rationale for the question “Why is the person in the
following short bio described as a L?”, where L is
the gold label occupation, e.g., nurse. In the latter,
the question was “Why is the person in the follow-
ing short bio described as a L rather than a F?”,
where F (foil) is another medical occupation, e.g.,

2https://huggingface.co/datasets/coastalcph/f
air-rationales

physician. Figure 1 depicts a specific example in
both settings. We collect annotations via Prolific,3

a crowd-sourcing platform. We select annotators
with fluency in English and include a pre-selection
annotation phase for the contrastive setting, where
clear guidelines were provided. We use Prodigy,4

as the annotation platform, and we change partly
the guidelines and the framing of the questions,
as shown above, between the two (contrastive and
non-contrastive) settings. For each example, we
have word-level annotations from 3 individuals (an-
notators). For further details on the annotation pro-
cess and the dataset, see Appendix A. We release
the new version of BIOS, dubbed Medical BIOS,
annotated with human rationales on HuggingFace
Datasets (Lhoest et al., 2021).5

DBPedia Animals We consider a subset of the
DBPpedia dataset comprising 10,000 (8k train/1k
dev/1k test) English Wikipedia article abstracts for
animal species labeled with the respective biolog-
ical class out of 8 classes (amphibian, arachnid,
bird, crustacean, fish, insect, mollusca, & reptile).6

4.2 Examined models

We consider three publicly available pre-trained
language models (PLMs) covering three different
architectures: (i) encoder/(ii) decoder-only, and
(iii) encoder-decoder. We use RoBERTa of Liu
et al. (2019), GPT-2 of Radford et al. (2019), and
T5 of Raffel et al. (2020) in three different sizes
(small, base, and large); we thus test 9 models in
total.7 We fine-tune RoBERTa and GPT-2 using
a standard classification head, while we train T5
with teacher-forcing (Williams and Zipser, 1989)
as a sequence-to-sequence model. We conduct a
grid search to select the optimal learning rate based
on the validation performance. We use the AdamW
optimizer for RoBERTa, and GPT-2 models, and
Adafactor for T5, following Raffel et al. (2020).
We use a batch size of 32 examples and train our
classifiers up to 30 epochs using early stopping
based on validation performance.

3https://www.prolific.co/
4https://prodi.gy/
5https://huggingface.co/datasets/coastalcph/m

edical-bios
6https://huggingface.co/datasets/coastalcph/d

bpedia-datasets
7We report the classification performance and the number

of parameters per model in Table 2.
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Figure 3: Comparison between model rationales with
human annotations for binary sentiment classification on
DynaSent and additionally with human gaze on SST2.

4.3 Aggregating rationales
For all examined datasets (Section 4.1), we con-
sider the following aggregation methodology (see
Figure 9 in App. A) for human and model ratio-
nales, before we proceed with the analysis:

• Human annotations are aggregated based on a
word-based majority vote across all annotators.

• Model explanations, computed at the sub-word
level via an XAI method, are aggregated per word
via max-pooling (Eberle et al., 2022).

• When comparing with human rationales, model
rationales and gaze are binarized based on the top-
k scored tokens, where k is the number of tokens
selected in the aggregated human rationales.

5 Results

We first show results for the binary sentiment clas-
sification datasets, SST2 and DynaSent, before we
dive into the extensive analysis of the human and
model-based rationales of the BIOS dataset.

5.1 Sentiment classification tasks
We show results for SST2 and DynaSent in Fig-
ure 3 in the form of agreement scores computed
with Cohen’s Kappa for gaze, human annotations
and the contrastive and non-contrastive LRP scores
for RoBERTa-base. For SST2, we find that gaze
shows higher agreement with human annotations
than with model rationales (0.31 vs. 0.26) whereas
the agreement between annotation and model ra-
tionales is even higher (0.46). We see a very
high agreement (0.99) between contrastive and
non-contrastive model rationales. The analysis
for DynaSent shows similar results with a lower
agreement between annotations and model ratio-
nales (0.41). The numbers show an almost per-
fect agreement on the binarized versions of the

model rationales between the contrastive and the
non-contrastive settings but we also see a corre-
lation > 0.99 for the continuous values for both
datasets. The reason for this might be that in binary
classification settings, LRP already considers the
only alternative when assigning importance scores,
i.e., already computes evidence for one class in
contrast to the only other class. For the rest of the
paper, we therefore focus on the other two datasets
which include 5 and 8 classes, respectively.

Figure 4: Upper: Cohen’s Kappa scores for inter-
annotator agreement for human rationale annotation
(i) averaged across pairwise comparison within non-
contrastive setting, (ii) averaged across pairwise compar-
ison within contrastive setting, (iii) between contrastive
and non-contrastive setting. Lower: Model performance
scores (macro F1) for the best model (RoBERTa-large)
and training support (#samples) across BIOS classes.

5.2 Human rationales
Initially, we perform an analysis of the collected
human rationales on the BIOS data by comparing
the two settings (contrastive and non-contrastive).
On average the contrastive rationales are shorter
(4 vs. 8 annotated words), which is an indicator of
more precise (focused) rationales. This is expected,
since the annotators in the contrastive setting were
asked to explain the decision for one class in con-
trast to another, e.g., ‘surgeon’ against ‘physician’.
For instance, in the following example (biography)
describing a ‘surgeon’:

“After earning his medical degree, virtually all
his training has been concentrated on two fields:
facial plastic and reconstructive surgery, and
head and neck surgery — otherwise known as
Otolaryngology.”

the terms ‘medical degree’ and ‘Otolaryngology’
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were both annotated in the non-contrastive anno-
tation setting (marked in underline), but not in the
contrastive one (marked in bold).

In Figure 4, we present the inter-annotator agree-
ment measured by Cohen’s Kappa within but also
between contrastive and non-contrastive human ra-
tionales. We observe similar results for all three
scores per class with scores ranging from 0.4 to
0.73 for the comparison across contrastive and non-
contrastive settings. The class physician shows
lowest scores in all three comparisons whereas den-
tist achieves the highest agreement in all 3 com-
parisons. This indicates that the agreement across
settings is similar to the agreement within settings
and thus the selection of tokens does not necessar-
ily differ between contrastive and non-contrastive
annotations.

The low agreement score for the class physician
can be explained by the lack of keywords in the bi-
ographies, similar to nurse as those professions do
not necessarily imply a medical specialization and
vary also across countries. The biographies with
the label dentist and surgeon often include very
clear keywords, some even semantically related
to the profession, which makes identifying them
much easier for humans, as well as for models.8

In the lower part of Figure 4, we also show label
support in the train data and macroF1-scores for
the best-performing model, RoBERTa-large. The
F1-scores show a similar distribution across classes
where dentist almost reaches perfect accuracy with
a macroF1-score of 0.98 and physician with the
lowest score of 0.8. In other words, both humans
and models face similar challenges.

5.3 Human vs. model-based rationales

We further proceed with an analysis of model-based
rationales compared to human rationales. In Fig-
ure 5, we present the agreement between human
rationales and model-based rationales computed
with LRP for the base version of the three dif-
ferent examined models (RoBERTa, GPT-2, and
T5). Since LRP provides continuous attribution
scores for all tokens, in order to compare with
binary human rationales, we binarize the model-

8Inspecting the human annotations, we observe that spe-
cialized words, such as ‘dental’, and ‘surgery’ are present and
selected across all (100%) examples for dentists, and surgeons,
respectively. Contrary for physicians, the generic words ‘med-
ical’, and ‘medicine’ are present in 50% of the relevant exam-
ples, and selected in 60-70% of those. For nurses, the word
‘nursing’ is present only in 59% of the relevant examples, and
has been selected in 100% of those.

Figure 5: Agreement between human rationales and
model-based explanations computed with LRP. Upper:
RoBERTa, Center: GPT-2, Lower: T5

based rationales based on the top-k attributed to-
kens, where k is the total number of selected tokens
in the corresponding human rationale. Considering
the agreement across all classes, i.e., all in Fig-
ure 5, we observe that in most cases contrastive
and non-contrastive model-based rationales have
a similar agreement rate with both contrastive and
non-contrastive human rationales (maximum dif-
ference is 0.06). In other words, although fewer
words are selected by humans in the contrastive
setting, the selection of tokens does not seem to
be heavily influenced by the two different settings
for both models and humans. The agreement is
substantially lower in the class ‘physician’, where
highly indicative words are not present, as noted
earlier. Here, we also see an overall higher agree-
ment between non-contrastive model rationales and
human rationales (right column of left-most plots).
The original claim, that human rationales are more
similar to contrastive than to non-contrastive model
rationales (left column vs. right column of all sub-
plots) is not visible in Figure 5.

POS analysis To better understand the grammati-
cal structure of human and model-based rationales,
we analyze the part-of-speech (POS) tags9 of ratio-
nales in the BIOS data. While human and model-
based rationales are mainly formed by nouns and
adjectives, models tend to give more importance to
verbs compared to annotators, who barely selected

9POS tagging is done with spaCy (Honnibal et al., 2020).
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Model Size RoBERTa GPT-2 T5

BIOS

Small (S) 0.90 0.76 0.38
Base (M) 0.88 0.74 0.48
Large (L) 0.93 0.78 0.62

DBpedia-Animals

Small (S) 0.97 0.72 0.68
Base (M) 0.99 0.70 0.79
Large (L) 0.99 0.86 0.54

Table 1: Spearman correlation between contrastive and
non-contrastive model-based rationales on the BIOS
(upper part) and DBpedia-Animals (lower part) datasets
across all examined models.

them as keywords in their explanations. This behav-
ior is consistent across explainability methods, and
both contrastive and non-contrastive explanations.

5.4 Model-based rationales

In Table 1, we present the Spearman correlation co-
efficients between contrastive and non-contrastive
model-based explanations across all models for
the full test set of the BIOS and the DBPedia-
animals datasets. We observe that overall explana-
tions highly correlate, in particular for RoBERTa
but also for GPT-2. Large models correlate higher
for both datasets, except for DBPedia-animals in
T5. This finding suggests that contrastive and non-
contrastive model-based explanations do not differ
per se in the distribution of importance score. We
will further look into the selection of tokens and
the sparsity of the model explanation.

Does gender matter? We extract the top-5 to-
kens with the highest importance scores attributed
by respective explainability methods for each sam-
ple and analyze the amount of gendered words on
these tokens.10 With this, we want to quantify what
role gender information plays in the model expla-
nations. While human-based rationales do not con-
tain words with grammatical gender, we find that
models do rely on these tokens when computing
explanations. We examine the relative frequency of
words –after aggregating the output tokens (see Sec-
tion 4.3)– related to ‘Male’ or ‘Female’. Heatmaps
in Figure 6 show results for the base versions of all
3 models and all 3 explainability methods for the

10The gender analysis is based on a publicly available lexi-
con of gendered words in English. https://github.com/e
cmonsen/gendered_words.

Figure 6: Relative frequency of gendered words among
the top-5 tokens in explanations.

two classes with the highest frequency of gendered
words in the explanations. Note that these classes,
‘nurse’ and ‘surgeon’, also have the highest gender
disparity in the dataset (85% male surgeons and
91% female surgeons). We overall see more gen-
dered words in GPT-2 compared to the other mod-
els, particularly for explanations computed with
LRP. The high dependency on gendered tokens
for GPT-2 might be one of the reasons behind the
overall lower agreement with human rationales dis-
played in Figure 5 compared to other models.

Degree of information in explanations To bet-
ter understand the differences between contrastive
and non-contrastive explanations in both humans
and models, we compute entropy to assess sparsity
of the respective attributions. Averaged sentence
level entropy values on human rationales reveal that
non-contrastive explanations are less sparse, i.e.,
their averaged entropy is significantly higher (1.72
vs 1.14, p<0.05). This results in sparser human
rationales for contrastive explanations indicating
that humans do indeed choose relevant tokens more
selectively. When looking at model explanations
on the BIOS dataset, we observe different entropy
levels across explainability methods, but less so be-
tween contrastive and non-contrastive explanations,
with the exception of T5 models. These observa-
tions provide additional support for findings in text
generation that have reported benefits of contrastive
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explanations to provide more informative explana-
tions for the prediction of the next token compared
to non-contrastive methods (Yin and Neubig, 2022).
This would also explain lower correlation coeffi-
cients for T5 in Table 1 between contrastive and
non-contrastive model explanations.

Where explanations differ. We show a hand-
picked example of a contrastive model explana-
tion (nurse vs. surgeon) from RoBERTa large in
comparison to the non-contrastive explanation and
the foil explanation in Figure 2. Here, we clearly
see, that (i) the order of the most important tokens
changes from the non-contrastive (upper) to the
contrastive (lower) explanation. For instance, the
word abortion gets the highest score in the con-
trastive explanation whereas the word worked is
considered most important in the non-contrastive
explanation. We also see a more sparse distribution
of the importance scores in the contrastive expla-
nation than in the non-contrastive explanation. We
further look into a possible link between model
uncertainty, i.e., how close are the class probabili-
ties between the first two classes, and difference in
contrastive and non-contrastive explanations, i.e.,
Spearman correlation coefficient. We find that the
two variables highly correlate with each other, in
particular for RoBERTa where coefficients range
from 0.6 − 0.73 for LRP. This means, that con-
trastive and non-contrastive model explanations are
more similar when the model is more certain about
the label prediction.

6 Discussion and Conclusion

In this work, we have compared both human and
model rationales in contrastive and non-contrastive
settings on four English text classification datasets.

We find that human rationale annotations agree
on a similar level within than across contrastive
and non-contrastive settings but fewer tokens are
selected in the contrastive settings (on average 4
vs. 8). This suggests that there is not per se a dif-
ference in token selection for the two settings but
tokens are selected more carefully in the contrastive
setting. The agreement varies across classes, indi-
cating that for more challenging labels the token
selection is not as straightforward as for classes
that share a specific vocabulary.

We further compare human rationales with
model-based explanations and find no difference
in agreement between the contrastive and non-
contrastive setting for both models and humans

on the BIOS dataset.

On the binary sentiment classification tasks,
we see similar agreement scores between non-
contrastive human rationales and model explana-
tions than for the 5-class classification task on
BIOS. The numbers need to be compared care-
fully as the annotation task was different across
the two datasets. For the sentiment classification
task, no labels were given a-priori and we only
analyze the samples where the true label agrees
with the label assigned by the annotator. Further-
more, the sentiment classification task is much
more subjective than the occupation classification
task. Annotators might select tokens differently
when they first had to assign a label, i.e., first as-
sess the sentence before deciding to which class
it most likely belongs. Including human gaze into
the analysis shows lower agreement with the model
explanations in comparison to the human anno-
tations. Prior work has shown that human gaze
correlates to a higher degree with attention mecha-
nisms (Eberle et al., 2022). In general, human gaze
could be considered an alternative to human ratio-
nales when evaluating model explanations as they
provide more information and the task, i.e., read-
ing the text, might be more intuitive than assigning
rationales afterwards.

When comparing model-based explanations with
each other, we find them to highly correlate be-
tween contrastive and non-contrastive settings. In
general, our results did not show that contrastive
explanations are by default more class-specific in
selecting relevant tokens than non-contrastive ex-
planations. Our analysis suggests that contrastive
explanations are more class-specific, i.e., focus on
specifc terms for classes that share a joint set of
features (similar tokens) like dentist and surgeon
in the BIOS dataset, similar to human rationales.
In line with previous work, we have seen that non-
contrastive explanations are not necessarily class
discriminative and that contrastive explanations can
be more class specific but overall share similar fea-
tures for similar classes (Gu et al., 2018). While we
have observed a strong correlation between model-
based contrastive and non-contrastive explanations,
a qualitative analysis of text samples has in paral-
lel provided sensible examples where contrastive
explanations do provide more class-specific infor-
mation that deviates from the relevant features se-
lected by non-contrastive methods.

Our findings suggest that contrastive explana-
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tions are in particular useful in generative models.
In contrast to the limited differences observed in
the context of few-label classification settings typ-
ically investigated, our study provides additional
evidence supporting the benefit of the contrastive
setting for more complex tasks. This is further
supported by findings in self-explaining language
models where contrastive prompting leads to ex-
planations that are preferred by humans over non-
contrastive explanations (Paranjape et al., 2021).

The subtle differences between contrastive and
non-contrastive explanations may provide impor-
tant signal for improving ML models. Previ-
ous work has shown how non-contrastive expla-
nations provide useful information for debugging
and removing undesired model behavior (Anders
et al., 2022). In extension, contrastive and non-
contrastive explanations could be useful during
training to improve robustness of models and
avoid shortcut learning behavior by regularizing
the model to focus on more class-specific features.

Limitations

Our analysis is limited to English text classification
datasets. In order to make more general claims
about contrastive explanations, an extension of our
analysis to more languages and downstream tasks
is needed. The tasks and datasets examined are fur-
ther limited to a small number of classes, nonethe-
less not binary as in prior studies, which may af-
fect the efficiency and inherent need for contrastive
explanations, since the degree of differentiation
between the classes may be too broad, e.g., a den-
tist and psychologist are two very different medical
professions. Experimenting with datasets including
hundreds of labels (Chalkidis and Søgaard, 2022;
Kementchedjhieva and Chalkidis, 2023), which in
many cases are very close semantically, could po-
tentially lead to different results.

Furthermore, we compare model explanations
and human rationales both in a post-hoc way where
first a decision has been made and evidence has
been collected afterwards. This is briefly discussed
in the introduction. We use a limited definition of
plausible explanations, i.e., we compare binary hu-
man rationale annotations with continuous model
explanations which is not trivial and we automat-
ically filter out information when binarizing the
model explanations. For a complementary evalu-
ation, we would also need to show the collected
and computed rationales again to human annotators

to further evaluate their plausibility and usability,
i.e., are they useful for humans to understand the
models, see Brandl et al. (2022); Yin and Neubig
(2022).
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A BIOS Annotations

We collect and release human rationale annotations
for a subset of 100 biographies in two different
settings: non-contrastive and contrastive. In the
non-contrastive setting, the annotators were asked
to find the rationale for the question “Why is the
person in the following short bio described as a L?”
where L is the gold label occupation, e.g., nurse.
In the contrastive setting, the question was “Why is
the person in the following short bio described as a
L rather than a F ?” where F (foil) is another med-
ical occupation, e.g., physician. Figure 1 provides
a specific example in both settings.

We used Prodigy,12 as the annotation platform
(Figures 7-8) and made some adjustments to the
guidelines and the phrasing of the questions, as
shown above, between the two (contrastive and
non-contrastive) settings.

We collect annotations via Prolific,13 an online
crowd-sourcing platform. We compensated all an-
notators at an hourly rate of 12£. We select annota-
tors with fluency in English through a pre-selection
annotation phase, where clear guidelines were pro-
vided. We provided introductory information and
guidelines via Google Forms. The guidelines are
the following:

Guidelines for non-constrastive rationales

• You are going to annotate 30-35 short biogra-
phies from people working in the medical
sector. The people described in these doc-
uments have one of the following medical
occupations: ’Psychologist’, ’Nurse’, ’Physi-
cian’, ’Surgeon’, or ’Dentist’. Each example
is paired with a question.

• If you don’t feel confident about one of the
aforementioned medical occupations, please
advice an online open dictionary, such as the
Cambridge English Dictionary, and review the
definition and some example sentences, e.g.,
for surgeon: (https://dictionary.cambr
idge.org/dictionary/english/surgeo
n).

• See the following question + biography pairs
(Test Examples in Figure 7) as examples.

• In the first example, the document (bio) de-
scribes them as a ’Dentist’.

12https://prodi.gy/
13https://www.prolific.co/

• Your task is to find and annotate the words
in the bio that answer the following question
"Why is the person in the following short
bio described as a Dentist?". In other words,
which words can be used a evidence that this
person is a "Dentist".

• You should select words or phrases (multi-
word expressions) that answer this specific
question. In other words, your selection
should be valid, i.e., the words should be re-
lated to the given medical occupation and not
generic ones.

• You should select ALL the words, or phrases
(multi-word expressions) that answer this
question. In other words, your annotation
should be complete, and no words that are
evidence of the described medical occupation
should be left unannotated.

Guidelines for constrastive rationales

• You are going to annotate 30-35 short biogra-
phies from people working in the medical
sector. The people described in these doc-
uments have one of the following medical
occupations: ’Psychologist’, ’Nurse’, ’Physi-
cian’, ’Surgeon’, or ’Dentist’. Each example
is paired with a question.

• If you don’t feel confident about one of the
aforementioned medical occupations, please
advice an online open dictionary, such as the
Cambridge English Dictionary, and review the
definition and some example sentences, e.g.,
for surgeon: (https://dictionary.cambr
idge.org/dictionary/english/surgeo
n).

• See the following question + biography pair
(Test Examples in Figure 8) as an example.

• In the first example, the document (bio) de-
scribes them as a ’Surgeon’ rather than a ’Den-
tist’.

• Your task is to find and annotate the words
in the bio that answer the following question
"Why is the person in the following short bio
described as a Surgeon rather than a Dentist?".
Imagine you are trying to convince someone
and have to find evidence that this person is a
Surgeon and NOT a Dentist (even if in reality
both are true).
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(a) Invalid - Partial Annotation (b) Valid - Complete Annotation

Figure 7: Example 1 presented as part of the guidelines for the non-contrastive setting.

(a) Invalid Annotation (b) Valid Annotation

Figure 8: Example 2 presented as part of the guidelines for the contrastive setting.

• You should select ALL the words, or phrases
(multi-word expressions) that answer this
question. In other words, your annotation
should be complete, and no words that are
evidence of the described medical occupation
should be left unannotated.

• You should select ONLY words or phrases
(multi-word expressions) that answer why this
person is occupation A, e.g., "Surgeon", and
not any words that answer the contrast occu-
pation B, e.g., "Dentist". In other words, your
selection should be precise, i.e., the words
should be related to the given medical occupa-
tion and not the one in contrast.

For the contrastive setting, which we believe is
more difficult to understand at first, we included
a pre-selection process. We therefore conducted a
pilot annotation project for 5 straightforward exam-
ples. We selected the annotators based on two cri-
teria: (a) manual inspection of their annotations to
assess, if they follow the guidelines, (b) computing
pair-wise inter-annotator agreement and excluding
annotators with low scores (<0.5 Cohen’s Kappa).

The selected annotators annotate a final subset

Figure 9: Depiction of aggregation methodology for hu-
man and model rationales. Notation: Ai for the ith anno-
tator, AA for the aggregated annotation (rationale), SW
for sub-words, MS for model XAI attribution scores,
AMS for word-level aggregated MS, and AMR for
aggregated model rationale based on top-k words.

of approx. 35 examples each, in the contrastive
setting, approx. 100 annotated examples in total.
Overall, we have word-level annotations from 3 in-
dividuals (annotators) for each example per setting.

Aggregating Rationales In Figure 9, we present
an example of the aggregation methodology for
human and model rationales.
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Model Classification Performance
Family Size Alias #Params SST2 DynaSent BIOS DBPedia-Animals

RoBERTa
S MiniLMv2-L6xH768 30M N/A N/A 0.872 0.976
M roberta-base 125M 0.929 0.879 0.880 0.982
L roberta-large 355M N/A N/A 0.892 0.988

GPT-2
S distil-gpt2 82M

N/A N/A
0.867 0.983

M gpt2 124M 0.869 0.983
L gpt2-M 355M 0.881 0.992

T5
S t5-v1_1-small 61M

N/A N/A
0.886 0.985

M t5-v1_1-base 223M 0.897 0.989
L t5-v1_1-large 750M 0.887 0.989

Table 2: Test Results (Micro-F1) for all models (RoBERTa, GPT-2, T5) and all sizes (Small, Base, Large) across all
datasets. We also report the number of parameters per model (#Params). Best scores for each model per dataset are
underlined.

B Additional Results

In Table 2, we report the classification performance
for all examined models across all datasets, along-
side other model details.
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