
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7075–7085
December 6-10, 2023 ©2023 Association for Computational Linguistics

Non-autoregressive Text Editing with Copy-aware Latent Alignments
Yu Zhang⋆˚ Yue Zhang⋆˚ Leyang Cui Guohong Fu⋆:

⋆Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, Suzhou, China

Tencent AI Lab
yzhang.cs@outlook.com; yzhang21@stu.suda.edu.cn

leyangcui@tencent.com; ghfu@suda.edu.cn

� https://github.com/yzhangcs/ctc-copy

Abstract

Recent work has witnessed a paradigm shift
from Seq2Seq to Seq2Edit in the field of text
editing, with the aim of addressing the slow
autoregressive inference problem posed by the
former. Despite promising results, Seq2Edit
approaches still face several challenges such as
inflexibility in generation and difficulty in gen-
eralizing to other languages. In this work, we
propose a novel non-autoregressive text edit-
ing method to circumvent the above issues,
by modeling the edit process with latent CTC
alignments. We make a crucial extension to
CTC by introducing the copy operation into
the edit space, thus enabling more efficient
management of textual overlap in editing. We
conduct extensive experiments on GEC and
sentence fusion tasks, showing that our pro-
posed method significantly outperforms exist-
ing Seq2Edit models and achieves similar or
even better results than Seq2Seq with over 4ˆ
speedup. Moreover, it demonstrates good gen-
eralizability on German and Russian. In-depth
analyses reveal the strengths of our method in
terms of the robustness under various scenarios
and generating fluent and flexible outputs.

1 Introduction

In natural language processing, monolingual text
generation involves producing a target sequence
from the source text with significant textual overlap
(Malmi et al., 2022). This includes a range of text-
editing tasks such as grammatical error correction
(GEC) (Ng et al., 2014) and sentence fusion (Geva
et al., 2019), as shown in Table 1.

Generally, text editing can be addressed under
the standard Seq2Seq framework (Lebanoff et al.,
2020; Rothe et al., 2021). Despite their decent per-
formance, Seq2Seq has been criticized (Sun et al.,
2021) for its inferior inference speed due to the

˚Work was done during the internship at Tencent AI Lab.
Yu Zhang and Yue Zhang make equal contributions.

: Corresponding author.

Grammatical Error Correction
source: Me want to go store.
target: I want to go to the store.
Sentence Fusion
source: The sun set. The sky darkened.
target: As the sun set, the sky darkened.

Table 1: Text editing examples for grammatical error correc-
tion and sentence fusion.

autoregressive generation fashion, i.e., generating
tokens one by one. Consequently, the practical ap-
plications of Seq2Seq models are limited in modern
online text assistance systems.

To overcome the above deficiency, recently,
there is a growing interest in an alternative ap-
proach, referred to as Seq2Edit (Awasthi et al.,
2019; Omelianchuk et al., 2020; Mallinson et al.,
2020), which, in contrast, proposes to reconstruct
the target sentence by applying a set of edit op-
erations, e.g., keep, deletion and insertion, to the
input. Drawing on the insight that the input/output
tokens are heavily shared, Seq2Edit favors copy-
ing most of the source text directly via the keep
operation, which eases the reliance for an autore-
gressive decoder (Malmi et al., 2019; Mallinson
et al., 2022). Among others, the best-performing
GECToR (Omelianchuk et al., 2020, 2021) directly
formulates text-editing as a non-autoregressive se-
quence tagging task, thus enabling more efficient
parallelizable inference. GECToR demonstrates re-
markable results on many tasks, meanwhile being
orders of magnitude faster than its autoregressive
counterparts (Rothe et al., 2020).

However, several challenges arise as we try to
have the cake and eat it. We argue that Seq2Edit
works represented by GECToR still suffer from two
main issues:
i Flexibility: Seq2Edit learns to edit text by pre-

defining a fixed and relatively small (e.g., 5,000)
edit vocabulary collected from the training data,
which is at the sacrifice of generation flexibility.

7075

https://github.com/yzhangcs/ctc-copy


ii Language generalization: Seq2Edit needs to
delve into linguistic features to customize the
edit actions, e.g., VB-VBZ for subject-agreement
edits and PLURAL for singular-plural form con-
versions, thus diminishing its ability to general-
ize to other languages.

Our desiderata in this work is to design a non-
autoregressive model for text editing that enjoys
the merits of both efficiency and effectiveness,
meanwhile generalizing well to other languages.
This poses two considerations: 1) flexible, non-
manually defined edit space; 2) a minimal set of
tailored operations (Dong et al., 2019) to main-
tain the generalization. Taking inspirations from
recent progresses in non-autoregressive text gen-
eration (Libovický and Helcl, 2018; Saharia et al.,
2020; Huang et al., 2022b), in this work, we pro-
pose a novel method for text editing that meets the
aforementioned expectations by making a direct
yet effective extension to connectionist temporal
classification (CTC) (Graves et al., 2006).

Unlike previous works focusing on generating ar-
bitrary tokens (Gu and Kong, 2021), the key insight
here is to interpret the vanilla CTC alignment as an
executable edit sequence, primarily composed of
two kinds of operations: DELETE and ADDt. This
perspective opens the door for combining the align-
ment with the edit actions in existing Seq2Edit
works. Specifically, we further extend the align-
ment space by incorporating KEEP, a label used to
facilitate direct copy of the respective source to-
kens. We find it is essential for processing textual
overlap in editing, yielding significant performance
gains. During training, our method marginalizes
out all (valid) latent edit alignments to maximize
the likelihood of the target text (Graves et al., 2006).
During inference, like GECToR, it simply takes the
token with highest probability as the output for
each position simultaneously (see Table 2), ensur-
ing the high efficiency. The contributions of this
work are four-fold:

• We propose a novel method, that extends CTC
with the copy operation to address edit-based
text generation. To the best of our knowledge,
this is the first attempt to adapt CTC to deal with
text editing tasks.

• We conduct experiments on GEC and sentence
fusion, and find that our proposed model per-
forms favorably better than all existing Seq2Edit
models, meanwhile showcasing good generaliza-
tion capabilities in multilingual settings.

• We show that our model achieves similar or even
better results compared to Seq2Seq across all
experiments with „4ˆ speedup.

• Extensive analyses on our method reveal its mer-
its in terms of robustness under different sce-
narios as well as the superiority in generation
flexibility against existing systems.

2 Preliminaries

We begin by introducing some notations. The goal
for text-editing is to transform the source sentence
x “ x0, x1, . . . , xN into the desired target y “
y0, y1, . . . , yM with N and M tokens, respectively.

Connectionist Temporal Classification was
first introduced in auto speech recognition (ASR)
(Graves et al., 2006), aiming to circumvent the
problems of no explicit alignments between ASR
inputs/outputs. Specifically, CTC introduces a spe-
cial blank token ∅ on top of the vocabulary V , and
defines a latent alignment path a “ a0, a1, . . . , aN
between x and y with ai P V Ťt∅u, which is of
equal length as x. During training, CTC models the
probability of the target sequence by marginalizing
the probabilities of all latent alignments,

P py | xq “
ÿ

aPΓpyq P pa | xq (1)

where Γp¨q is a mapping function that returns all
possible alignment paths. CTC views each ai P a
independent of each other and factorizes the proba-
bility of a as

P pa | xq “
ź

aiPa P pai | xq (2)

In this way, CTC permits very efficient calcula-
tion of Eq. 1 in OpN ˆ Mq via forward algorithm.
We refer interested readers to the original paper
(Graves et al., 2006) and tutorials by Hannun (2017)
for more details.

During inference, CTC defines a collapsing func-
tion Γ´1p¨q to recover the target sequence y from
a by removing all blanks and consecutive repet-
itive tokens. For example, assuming a possible
alignment path a “ ta, a,∅, a, b, bu, then Γ´1paq
returns ta, a, bu.

Non-autoregressive text generation (NAT) dif-
fers from its autoregressive counterpart in that it
generates all target tokens simultaneously rather
than one-by-one. NAT often runs several times
faster than autoregressive Seq2Seq models as it is
highly parallelized. Very recently, CTC has been

7076



∅

I

∅

like

∅

dogs

∅

I like an dog

Figure 1: A running GEC example by CTC with an upsam-
pling ratio of 2, which corrects the phase “an dog” in the
source sentence to “dogs”. Each source token is separated
by red-dashed lines. Grey and black nodes represent blanks
(∅) and normal tokens respectively. Green nodes indicate the
positions where the source tokens can be copied directly. The
arrows represent all valid transition paths.

introduced to non-autoregressive NMT (Libovický
and Helcl, 2018; Saharia et al., 2020; Gu and Kong,
2021). In ASR, CTC assumes the input length N
is larger that the output length M so that we can
safely delete blanks from the alignment, resulting
in a shorter output sequence. However, this is not
the fact in text generation. To remedy this, Li-
bovický and Helcl (2018) propose to make use of
an upsampling layer to amplify the input first and
then run CTC as usual. This enables the model
to learn target lengths very flexibly, which we be-
lieve is an important factor that empowers the CTC
model.

3 Methodology

In this section, we will introduce our proposed
method that adapts the vanilla CTC to text editing
tasks. The main idea is to endow CTC with the
ability of modeling the edit processes by extending
the latent CTC alignments with interpretable edit
operations, especially the copy operation.

3.1 Model

The basic architecture of our model is encoder-only.
Given the input x “ x1, x2, . . . , xN , we simply
take a pretrained language model (PLM) (Devlin
et al., 2019) as the backbone encoder to obtain the
contextualized representations.

r1, r2, . . . , rN “ PLMpx1, x2, . . . , xN q (3)

x I like an dog

a
K K K K ∅ ∅ ∅ dogs
I I like like ∅ ∅ ∅ dogs

y I I like like ∅ ∅ ∅ dogs

Table 2: An inference example for editing the source sentence
x. The output a is produced by our copy-aware CTC, which
predicts an 1-best token for each position with the green label
K denoting the copy label. The output y is the final recovered
result by the collapsing function Γ´1p¨q.

where each ri P RH , H is the size of the hidden
vector. Once the hidden states are obtained, we
employ a simple linear projection followed by two
Transformer decoder layers to upsample each hi

to T new sample vectors, ensuring that the scaled
input, which is Tˆ as long as the the source, is
strictly longer than the desired output

hiT`1, . . . ,hiT`T “ DecoderpWri ` bq (4)

where W P RTHˆH , b P RTH are learnable pa-
rameters. We fix the value of upsampling ratio T
to 4 in this work after careful ablation analyses
(§ 5.1). In this way, we can generate target sen-
tences by CTC with very flexible length control.
We employ another linear layer followed by the
softmax function over hi to obtain P pai | xq.

3.2 Copy-aware CTC

The output space of vanilla CTC comprises the
general vocabulary V as well as the blank token ∅.
We can utilize CTC to mimic the edit processes by
symbolizing generating a token t P V as ADDt, rep-
resenting the insertion operation, and ∅ as DELETE,
meaning deleting a source token. This satisfies the
aforementioned desiderata of learning to edit with
a minimal set of operations (Dong et al., 2019),
and maintaining enough flexibility by means of
marginalizing all latent alignments defined over the
entire vocabulary. However, vanilla CTC is still
wasteful for text editing as it lacks explicit model-
ing of the copy behavior. We in this work propose
to bridge this gap by introducing a special token
K to denote the KEEP operation. Concretely, we
interpret generating K at aiT`j , the jth upsampled
position for ith source token, as directly copying
the source token xi. In this way, the final output
space of each ai is V ŤtKu Ťt∅u.

Training objective Our final objective is to min-
imize the negative log-likelihood of all possible

7077



alignments with the three kinds of edit operations

L “ ´ log
ÿ

aPΓ1pyq
P pa | xq (5)

where Γ1p¨q is the new mapping function extending
Γp¨q to KEEP. Assuming an input ta, a, bu with
T “ 2, two possible paths returned by Γ1p¨q can be
ta, a,∅, a, b, bu and tK, K,∅, K, K, Ku.

Glancing training Previous works have shown
that the glancing training strategy (Qian et al.,
2021) can give a boost to the performance of non-
autoregressive generation. So we also adopt this
method in our training process. The key idea is to
sample some ground-truth tokens as inputs to the
decoder to guide the model once the references are
too difficult to fit, which is reminiscent of curricu-
lum learning. Specifically, the objective becomes

Lglancing “ ´ logP py | x, h̄q
where h̄ is obtained by replacing some hidden
states hi with the embeddings of sampled gold
tokens. The sampling ratio is determined following
three steps (Qian et al., 2021): 1) determine a gold
alignment compatible with the target by Viterbi
decoding (Chan et al., 2020; Huang et al., 2022b;
Shao et al., 2022): a “ argmaxaPΓ1pyq P pa | xq;
2) decode an 1-best alignment path a1 ; 3) then the
ratio becomes p “ τ

ř
irai “ a1

is, which is pro-
portional to the number of different tokens between
the predicted sequence and the gold alignment. We
set τ to 1 in the following experiments.

3.3 Inference
During inference, we directly predict the 1-best
token for each position in parallel, followed by
the post-processing process. Taking Table 2
as an example, first, an alignment path a1 “
tK, K, K, K,∅,∅,∅, dogsu is produced by finding
the 1-best token for each position greedily. Then
each label K is translated to the corresponding
source token. Finally, we can successfully re-
cover the output with the collapsing function, i.e.,
Γ1´1pa1q “ Γ´1pI, I, like, like,∅,∅,∅, dogsuq “
tI, like, dogsu.

Iterative decoding Following Omelianchuk et al.
(2020), we also employ the techniques of iterative
decoding to better capture the edits hard to make
in one pass. We simply take the collapsed output
of CTC as the model input during the next iteration
(Awasthi et al., 2019). In pratice, we found that it

brought considerable performance gains, but the
improvements saturate gradually after 2 iterations.
So we choose to uniformly refine the outputs twice
for a good speed-performance tradeoff.

4 Experiments

Following FELIX and EDIT5 (Mallinson et al.,
2020, 2022), we evaluate our model by conducting
experiments on two text editing tasks: grammatical
error correction (GEC) and sentence fusion, both
of which are representative and have sufficient data
for training. We plan to conduct examinations on
more tasks in future work due to space limitations.

4.1 Grammatical Error Correction

The task of grammatical error correction involves
detecting and correcting the grammatical errors in
a given sentence.

Setup For English, we adopt a 3-stage training
strategy to train our GEC models (Zhang et al.,
2022a): 1) pretrain the model on CLANG-8 (Rothe
et al., 2021), a cleaned version of the LANG-8 data;
2) finetune the pretrained model on the combina-
tion of three datasets, namely FCE (Yannakoudakis
et al., 2011), NUCLE (Dahlmeier et al., 2013) and
W&I+LOCNESS (Bryant et al., 2019); 3) finally,
we further finetune the model on the high-quality
W&I+LOCNESS. During training, we use BEA19
Dev data as the validation set. We evaluate our
models by reporting P/R/F0.5 points on BEA19
Dev data using the ERRANT toolkit (Bryant et al.,
2017) and CoNLL14 Test data (Ng et al., 2014)
using M2Scorer (Dahlmeier and Ng, 2012). Be-
sides, without additional training, we also report
GLEU scores on JFLEG Test data (Napoles et al.,
2017) to measure the fluency of CTC-generated
texts. More details on data statistics and training
details are available in § A.

Results We present the main GEC results in Ta-
ble 3. It is hard to make fully fair comparisons
with existing works as the training data varies
vastly, which has a huge impact on the final re-
sults (Omelianchuk et al., 2020). We therefore
re-implemented BART-based Seq2Seq and GEC-
ToR and ran them under the same environments for
more comparable results. In the top group of the
Table, first, we observe that our re-implemented
BART achieves 68.2 F0.5 score on CoNLL14, out-
performing the cutting-edge SynGEC (Zhang et al.,
2022b); second, our CTC is superior to BART

7078



PLMs BEA19 CoNLL14 JFLEG Speedup
P R F0.5 P R F0.5

Autoregressive
Kaneko et al.♣ - - - - 69.3 45.0 62.6 61.3 -
SAD (Sun et al.)♣ BART - - - 71.0 52.8 66.4 - 3.8ˆ
Seq2Seq (Zhang et al.) BART 63.1 44.8 58.3 73.6 48.6 66.7 61.5 -
SynGEC (Zhang et al.)♠ BART 64.5 45.7 59.6 74.7 49.0 67.6 62.2 -
ChatGPT (Fang et al.) - - - - 51.3 62.4 63.2 63.5 -
Seq2Seq: BART 65.0 40.7 58.0 76.0 48.4 68.2 60.2 1.0ˆ

Non-autoregressive
LaserTagger (Malmi et al.) BERT - - - 50.9 26.9 43.2 - -
GECToR (Omelianchuk et al.)♣ RoBERTa - - - 75.3 44.4 66.1 - -
GECToR: RoBERTa 66.2 36.5 56.9 73.2 51.1 67.4 57.6 2.9ˆ
Ours RoBERTa 62.2 46.9 58.4 74.9 50.6 68.3 62.4 4.1ˆ

Table 3: Main results on BEA19 Dev, CoNLL14 Test, and JFLEG Test data. Our results are averaged over 4 runs with different
random seeds. ♣ means using external or synthetic data for pretraining; ♠ uses external syntactic knowledge, and is thus
incomparable. : means the results are obtained from running our re-implemented code.

on all datasets by 0.4, 0.1 and 2.2, respectively.
On BEA19 Dev data, CTC surpasses all previous
works except SynGEC, which is enhanced by exter-
nal syntax trees. On JFLEG Test data, our model
exhibits a GLEU score 62.4, second only to Chat-
GPT (Fang et al., 2023), which is very close to
human-like performance, indicating that our model
excels at generating fluent sentences. In the bottom
group, we can see that our CTC greatly surpasses
the best-performing GECToR by 1.5, 0.9 and 4.8
on BEA19 Dev, CoNLL14 Test and JFLEG Test
data, respectively, achieving new state-of-the art in
the area of non-autoregressive text-editing.

Speed Comparisons We compare different mod-
els in terms of inference speed on CoNLL14 in
the last column of Table 3. For fair comparisons,
all of our models are run on a single Nvidia Tesla
V100 GPU with roughly 10,000 tokens per batch.
We use BART-based Seq2Seq with decoding beam
size of 12 as the speed benchmark. We incorporate
the KV cache trick (Pope et al., 2023) to eliminate
redundant computations.1 It takes about 45 sec-
onds to parse all 1,312 CoNLL14 sentences. As we
can see, our CTC delivers a 4.1ˆ speedup against
Seq2Seq and is even faster than GECToR (2.9ˆ),
which also operates non-autoregressively. It owes
much to the fact that CTC requires fewer iterations
of refinement. SAD (Sun et al., 2021) achieves
similar efficiency to ours but with a much smaller
(12+2) model size. Overall, we can conclude that
our model performs orders of magnitude faster than
Seq2Seq under similar conditions, readily meeting

1We observe that the KV cache trick brings a significant
speedup. Our CTC model performs over 30ˆ faster than the
basic implementation without the trick.

EM SARI
Autoregressive

Transformer (Geva et al.) 51.10 84.50
LaserTaggerAR (Malmi et al.) 53.80 85.50
Seq2Edits (Stahlberg and Kumar) 61.71 88.73
BERTshare (Rothe et al.) 65.30 89.90
RoBERTashare (Rothe et al.) 66.60 90.30

Non-autoregressive
LaserTaggerFF (Malmi et al.) 52.20 84.10
FELIX (Mallinson et al.) 61.31 88.78
EDIT5 (Mallinson et al.) 64.95 -
Ours 66.00 90.70

Table 4: Sentence fusion results on DiscoFuse Test data.
BERTshare and RoBERTashare are Seq2Seq models but initial-
ized with 24-layer BERT and RoBERTa weights, respectively.

the demands of online inference.

4.2 Sentence Fusion

Sentence fusion is the task of fusing several inde-
pendent sentences into a single coherent text.

Setup We train our sentence fusion models on
the balanced Wikipedia portion of DiscoFuse data
(Geva et al., 2019) following Mallinson et al. (2020,
2022). For evaluation, we report two metrics
(Geva et al., 2019), i.e., Exact Match (EM), which
measures the percentage of exactly correct predic-
tions, and SARI (Xu et al., 2016), which computes
the averaged F1 scores of the inserted, kept, and
deleted n-grams. For consistency, we use Geva
et al. (2019)’s implementation2 to compute SARI.

Results are listed in Table 4. We can see that our
model surpasses all non-autoregressive works sig-
nificantly, especially EDIT5, by more than 1 point

2https://git.io/fj8Av

7079

https://git.io/fj8Av


T
BEA19

P R F0.5

CTC (vanilla) 4 57.9 46.1 55.1
CTC (ours) 4 61.8 43.4 57.0

- GLAT 4 60.2 44.2 56.1
2 60.9 43.8 56.5
6 60.9 44.2 56.6
8 60.7 45.1 56.8

Table 5: The results of vanilla CTC and our proposed variant
on BEA19 Dev at stage 1. “T ” stands for the upsampling ratio.
“- GLAT” means removing the GLAT trick during training.

EM score. One key observation is that 10.5% out
of 4.5M fusion examples require source reorder-
ing. LaserTagger (Malmi et al., 2019) deals with
this by defining a SWAP operation while EDIT5
uses pointer networks instead. The results indi-
cate that our model is capable of doing reordering
implicitly and thus handles the fusion task skill-
fully. On the other hand, our model achieves final
EM/SARI scores of 66.0/90.7, showing strong com-
petitiveness with the best performing RoBERTashare
(66.6/90.3).

5 Analysis

We demonstrate the superiority of our proposed
CTC model by making comparisons from two per-
spectives: 1) with vanilla CTC; 2) with other text-
editing systems.

5.1 Comparisons with Vanilla CTC
Ablation We study the effectiveness of our pro-
posed copy-aware CTC in Table 5. It is clear that
our model brings remarkable gains over the vanilla
CTC, especially in terms of precision, by 4 points.
This suggests that introducing the copy operation
can effectively suppress the over-confident revi-
sions of vanilla CTC, thus greatly reducing the
errors. We also study the impact of the GLAT trick
and upsampling ratios in the Table. We can con-
clude that GLAT has a non-negligible contribution
(0.9) to the final results. Additionally, as the upsam-
pling ratio T grows from 2 to 8, the results increase
from 56.1 to 57.0 and later diminish; the optimal
ratio was found to be 4.

Convergence behavior In Fig. 2, we plot the
training curves regarding F0.5 scores and iterations
of the two models. From the figure, we clearly see
that it took about 10 iterations for our copy-aware
CTC to reach the peak results, while 40 iterations
for vanilla CTC. Our proposed CTC variant con-
verges much faster than the vanilla one, with a final

10 20 30 40 50

48

52

56

Training iterations

F 0
.5

p%
q

Figure 2: The training curves of vanilla CTC (red) and our
CTC variant (blue), respectively. We plot the averaged F0.5

scores at stage 1 on BEA19 Dev data at each iteration, along
with the upper/lower bound for different runs.

$ Why she couldn’t recall anything after that ? </s>

Why didn’t she recall anything after that ?

(a) CTC (vanilla)

Why she couldn’t recall anything after that ?

Why couldn’t she recall anything after that ?

(b) CTC (ours)

Figure 3: Two predictions made by vanilla CTC and CTC
(ours), respectively. The connected lines are produced align-
ments. Green lines signify tokens directly copied from the
source. The line thickness is decided by the confidence of the
prediction. The correct edit is “she couldn’t Ñ couldn’t she” ,
while vanilla CTC wrongly corrects “couldn’t” to “didn’t”.

gain of 1.5 F0.5 points.

Alighnment behavior We give some prediction
examples made by vanilla CTC and our proposed
CTC variant in Fig. 3. We draw two observations
from the figure: 1) in contrast to vanilla CTC, our
proposed CTC variant copies most of the tokens in
the prediction from the source text, thereby reduc-
ing the over-correction phenomenon to some extent
and respecting the minimum edit principle of GEC
(Ng et al., 2014); 2) the predicted alignments of our
proposed CTC variant are more in agreement with
human opinions than those of vanilla CTC. We at-
tribute the difference largely to the copy operation,
which serves as a pivot to guide the model on how
to align with the source tokens, thereby allowing
for more sensible edits.

5.2 Comparisons across Different Systems

We conduct a series of comparisons here between
our proposed CTC, GECToR (a representative
Seq2Edit model), and BART-based Seq2Seq, to
gain a deeper understanding of the pros and cons
of our model.

7080



German Russian
P R F0.5 P R F0.5

Autoregressive
Náplava et al.♣78.21 59.94 73.71 63.26 27.50 50.20
Sun et al.♣ 74.31 61.46 71.33 61.40 27.47 49.24
gT5♣

xxl - - 75.96 - - 51.62
mBART♣ - - - 53.50 26.35 44.36
mBART 73.97 53.98 68.86 32.13 04.99 15.38
mT5base - - 67.19 - - 25.20
mT5large - - 70.14 - - 27.55

Non-autoregressive
CTC 71.20 57.80 68.00 36.00 14.00 27.30

Table 6: Multilingual GEC results on German Falko-MERLIN
Test data and Russian RULEC-GEC Test data. Our model
is trained on 24-layer XLM-RoBERTa, which is similar in
scale to mBART & mT5base (12+12), and is smaller than
mT5large (24+24). ♣ means using synthetic data for pretrain-
ing. mBART: Katsumata and Komachi (2020); gT5, mT5:
Rothe et al. (2021).

Multilingual results To validate if CTC can be
well generalized to other languages, we conduct
multilingual GEC experiments on German and Rus-
sian, using their own portions of CLANG-8 data for
training and Falko-MERLIN & RULEC-GEC Test
data for evaluation, respectively. The results are
presented in Table 6, where GECToR results are
absent as we are aware of no GECToR extensions
for these languages until now.3 We can see that our
CTC performs similar to (m)BART on German and
surpasses it by 9 F0.5 points on Russian. Further-
more, CTC outperforms similar sized mT5base by
0.1 and 2.1 F0.5 points on German and Russian, and
is on par with mT5large on Russian data, demon-
strating the effectiveness of our method in multi-
lingual settings. We highlight that, to the best of
our knowledge, we are the first non-autoregressive
model that performs on par with Seq2Seq counter-
parts on multilingual data. It is also worth noting
that our models are purely trained on CLANG-8
and we do not pursue any data-augmentation tricks
for further enhancements as it is beyond the scope
of this work. We believe that our model can be
greatly improved by introducing more synthetic
data or increasing the model size, which we leave
for future work.

Regarding WERs We report F0.5 scores of the
three systems broken down by word error rate
(WER) in Figure 4. WERs are computed by count-
ing the number of substitutions, deletions and in-

3There are some pilot efforts to adapt GECToR to other
languages, but with few exceptions (Zhang et al., 2022a),
GECToR still hasn’t achieved comparable performance to
Seq2Seq yet. See discussions in their code issues.

ă8
(12.75)

8-16
(27.73)

16-24
(22.71)

24-32
(17.49)

ě32
(19.32)

44

50

56

62

68

WER p%q

F 0
.5

p%
q

GECToR BART CTC

Figure 4: F0.5 scores broken down by word error rate (WER)
on BEA19 Dev data. Numbers in parentheses represent the
percentage of gold edits in each group.

sertions required to edit the source sentence to the
target, and dividing it by the number of tokens in
the source. From the figure we can observe that
the performance of BART is superior to CTC on
sentences with low WERs, but tends to degrade as
WERs increase. BART performs worse than CTC
by a large margin when WERsě0.24, indicating
that BART-based Seq2Seq models tend to make rel-
atively conservative edits. This fact is also implied
in Table 3, where BART exhibits higher precisions
and lower recall scores, resulting an inferior overall
score than CTC. On the other hand, there is a large
gap between GECToR and CTC for WERsě0.32,
showing that GECToR makes too stringent modifi-
cations and can hardly surpass CTC without several
rounds of refinements in such scenarios.

Regarding flexibility It is known that the out-
put flexibility of existing Seq2Edit models like
GECToR is affected by the size of its small pre-
defined vocabulary (Mallinson et al., 2022; Me-
sham et al., 2023), but to what extent? We conduct
some quantitative analyses in Table 7 to answer
this question. Specifically, we measure how well
the three systems can do when producing edits out-
of GECToR vocabulary (OOV) by reporting their
(token-level) ERRANT F0.5 results. The scores are
categorized into three primary coarse-grained error
types, which correspond to the real edit operations
in the GECToR vocabulary:
• ORTH & NOUN represents back-and-forth con-

versions of lower/upper cases and singular/plural
forms, e.g., [itÑ It] and [citizenÑ citizens].
The associated GECToR operations involve only
fixed string conversion rules and thus are not
plagued by OOV problems.

7081

https://github.com/grammarly/gector/issues/93


ORTH & VERB OTHER

NOUN OOV (%) Total OOV (%) Total
Gold - - (3.7) - - (8.0) -
GECToR 68.4 - (0.0) 59.0 19.3 (2.2) 56.1
BART 67.9 27.1 (1.6) 56.3 42.0 (4.2) 58.5
CTC 67.9 24.8 (2.0) 58.3 39.1 (5.5) 59.5

Table 7: F0.5 scores of the three systems on BEA19 Dev di-
vided by different edit types. The column “OOV (%)” contains
F0.5 results of the corrections not covered by operations in
the GECToR vocabulary and their corresponding percentages.
The column “Total” contains overall F0.5 scores for the type.

• VERB refers to verb form transformations like
VB Ñ VBZ ([makeÑmakes]) and VB Ñ VBD

([drawÑ drew]), which are token-specific. GEC-
ToR pre-defines a very large verb-form vocabu-
lary to handle these cases.

• OTHER refers to other miscellaneous types that
fall into the basic ADDt or REPLACEt operations
in GECToR, e.g., REPLACEa ([TheÑa]).
From Table 7, we observe that it’s hard for GEC-

ToR to deal with the corrections not covered by
the vocabulary.4 Accordingly, the performance of
GECToR is highly correlated with the proportion
of OOVs in gold references. For the first two types,
GECToR provides very good coverage, with only
3.7% of gold VERB cases not included in the op-
eration space. GECToR performs favorably better
than BART and CTC in this scenario. However,
for OTHER, there is a considerable portion (8.0%)
of gold references not contained in the vocabulary,
and hence GECToR is greatly influenced. In con-
trast, both BART and our CTC can produce more
flexible corrections, with around 4.2% and 5.5%
edits that can not be produced from the limited
GECToR operation space, leading to great improve-
ments against GECToR.

6 Related Works

Efficient text editing For years, Seq2Seq models
have been hitherto the best approaches for text edit-
ing (Vaswani et al., 2017; Lewis et al., 2020) due
to their effectiveness. Some recent works obtain
notable gains by injecting edit information into the
generation process, making it more controllable
and interpretable (Li et al., 2022). SynGEC (Zhang
et al., 2022b) integrates edit templates into syntax
trees, which are then encoded with GNNs in or-

4Strictly speaking, although difficult, it is possible for
GECToR to make OOV corrections by multiple edit opera-
tions. For example, one can mimic the OOV REPLACEApples by
UPPERapple followed by PLURAL. That explains why the OOV
F0.5 scores for GECToR are not necessarily 0.

der to provide hints for the decoder. There is also
a broad strand of works that combine the autore-
gressive fashion with edit operations (Stahlberg
and Kumar, 2020; Reid and Zhong, 2021; Reid
and Neubig, 2022, inter alia). Despite promising
results, the slow inference speed limits their ap-
plications in real-life online systems. To combat
this, Sun et al. (2021) make use of very shallow
decoders as well as aggressive copy strategy to
speed up the decoding. Chen et al. (2020) suggest
to decoding spans needed to edit only for acceler-
ation. Panthaplackel et al. (2021) present a novel
dynamic programming algorithm to allow for span
copy during generation. However, this does not
break the inherent flaws. In this work, we instead
propose a purely non-autoregressive approach for
text editing, demonstrating great efficiency benefits
over autoregressive counterparts.

Flexible text generation To promote more ef-
ficient text editing, Malmi et al. (2019); Awasthi
et al. (2019) tackle the task as a sequence tagging
problem, predicting edit operations with a non-
autoregressive decoder. Further developments have
been made by GECToR (Omelianchuk et al., 2020),
which enhances the method by designing many n-
gram and language-dependent edit transformations,
e.g., HYPHEN for combining separated tokens, and
CAPITAL for capitalizing the first letter of the word,
etc. However, the outputs of GECToR are arguably
less flexible as its searching space is restricted in
a fix small-sized vocabulary. Further, it can hardly
produce complex corrections with many insertions,
reordering or rephrasing. For this reason, GECToR
heavily relies on several (typically 5) rounds of it-
erative refinements to achieve good performance.
FELIX and EDIT5 (Mallinson et al., 2020, 2022)
present to use pointer networks and a mask infilling
decoder to aid this. But this inevitably incurs more
model parameters and more decoding phases.

Compared with the above works, our proposed
method is capable of generating very flexible out-
puts while enjoying similar inference efficiency to
GECToR (see § 5.2), which we attribute to the min-
imal edit operation set in CTC as well as latent
edit alignments. We hope our copy-aware CTC
will serve as a strong baseline for text editing to
elicit further explorations. One possible direction
is to improve it with stronger inter-token depen-
dencies, e.g., tree structures (Gui et al., 2023), to
further reduce conditional independence (Huang
et al., 2022b,a). we leave this to our future work.

7082



7 Conclusion

In this work, we propose a novel CTC-based
method for non-autoregressive text editing. The
key idea is to subsume the editing process with
latent CTC alignments. We further make a cru-
cial extension by introducing the copy operation,
enabling very effective edits with three main oper-
ations only: ADD, KEEP and DELETE. We conduct
experiments on GEC and sentence fusion, showing
that our method can reach or surpass the current
state-of-the-art works while being 4ˆ faster, and
generalize well across German and Russian. More-
over, compared with the best performing Seq2Edit
model, our method also exhibits very good gener-
ation flexibility, which could shed light on further
studies on non-autoregressive text editing.

Limitations

Decoding burdens We have noticed that the de-
coding demands of our method are more substan-
tial than GECToR when limited to a single round
of iteration. This can be attributed to the upsam-
pling step before decoding, which must expand the
inputs to Tˆ the original length. Such burdens
hinder our capacity to employ more precise yet
time-intensive decoding strategies like prefix beam
search (Maas et al., 2014). We are going to pursue
a more efficient method that requires a relatively
small upsampling ratio.

Precision-Recall tradeoff One potential limita-
tion of our proposed copy-aware CTC is that it
exhibits more pronounced over-correction behav-
iors when compared to GECToR and BART. This
is reflected in the fact that our method tends to
present higher recalls but relatively lower preci-
sions, which may result in inferior results on some
tasks and datasets with a greater emphasis on pre-
cisions. We plan to explore strategies that result in
better P/R tradeoff in the future.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable comments, and Prof. Zhenghua
Li for very helpful discussions. This work was
supported by the National Natural Science Foun-
dation of China (No.62076173), the High-level
Entrepreneurship and Innovation Plan of Jiangsu
Province (No.JSSCRC2021524), and the Project
Funded by the Priority Academic Program Devel-
opment of Jiangsu Higher Education Institutions.

References
Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,

Sabyasachi Ghosh, and Vihari Piratla. 2019. Parallel
iterative edit models for local sequence transduction.
In Proceedings of EMNLP-IJCNLP.

Christopher Bryant, Mariano Felice, Øistein E. Ander-
sen, and Ted Briscoe. 2019. The BEA-2019 shared
task on grammatical error correction. In Proceedings
of BEA, pages 52–75.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of ACL, pages 793–805.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mo-
hammad Norouzi, and Navdeep Jaitly. 2020. Imputer:
Sequence modelling via imputation and dynamic pro-
gramming. In Proceedings of ICML, pages 1403–
1413.

Mengyun Chen, Tao Ge, Xingxing Zhang, Furu Wei,
and Ming Zhou. 2020. Improving the efficiency of
grammatical error correction with erroneous span
detection and correction. In Proceedings of EMNLP,
pages 7162–7169.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better eval-
uation for grammatical error correction. In Proceed-
ings of NAACL, pages 568–572, Montréal, Canada.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of BEA, pages 22–31.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT, pages
4171–4186.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neural
programmer-interpreter model for sentence simpli-
fication through explicit editing. In Proceedings of
ACL, pages 3393–3402.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
chatgpt a highly fluent grammatical error correction
system? a comprehensive evaluation.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. DiscoFuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of
NAACL, pages 3443–3455, Minneapolis, Minnesota.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of
ICML.

7083

https://aclanthology.org/D19-1435
https://aclanthology.org/D19-1435
https://aclanthology.org/W19-4406
https://aclanthology.org/W19-4406
https://aclanthology.org/P17-1074
https://aclanthology.org/P17-1074
https://proceedings.mlr.press/v119/chan20b.html
https://proceedings.mlr.press/v119/chan20b.html
https://proceedings.mlr.press/v119/chan20b.html
https://aclanthology.org/2020.emnlp-main.581
https://aclanthology.org/2020.emnlp-main.581
https://aclanthology.org/2020.emnlp-main.581
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/P19-1331
https://aclanthology.org/P19-1331
https://aclanthology.org/P19-1331
http://arxiv.org/abs/2304.01746
http://arxiv.org/abs/2304.01746
http://arxiv.org/abs/2304.01746
https://aclanthology.org/N19-1348
https://aclanthology.org/N19-1348
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf


Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of ACL-IJCNLP, pages 120–
133, Online.

Shangtong Gui, Chenze Shao, Zhengrui Ma, Xishan
Zhang, Yunji Chen, and Yang Feng. 2023. Non-
autoregressive machine translation with probabilistic
context-free grammar. In Advances in NIPS, New
Orleans, USA.

Awni Hannun. 2017. Sequence modeling with ctc. Dis-
till. Https://distill.pub/2017/ctc.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie
Huang. 2022a. On the learning of non-autoregressive
transformers. In Proceedings of ICML, pages 9356–
9376.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022b. Directed acyclic transformer for non-
autoregressive machine translation. In Proceedings
of ICML, pages 9410–9428.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun
Suzuki, and Kentaro Inui. 2020. Encoder-decoder
models can benefit from pre-trained masked language
models in grammatical error correction. In Proceed-
ings of ACL, pages 4248–4254, Online. Association
for Computational Linguistics.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correction
using a pretrained encoder-decoder model. In Pro-
ceedings of AACL, pages 827–832.

Logan Lebanoff, Franck Dernoncourt, Doo Soon Kim,
Lidan Wang, Walter Chang, and Fei Liu. 2020.
Learning to fuse sentences with transformers for sum-
marization. In Proceedings of EMNLP, pages 4136–
4142, Online.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of ACL, pages 7871–
7880.

Jiquan Li, Junliang Guo, Yongxin Zhu, Xin Sheng, De-
qiang Jiang, Bo Ren, and Linli Xu. 2022. Sequence-
to-action: Grammatical error correction with action
guided sequence generation. In Proceedings of AAAI.

Jindřich Libovický and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of EMNLP, pages 3016–3021, Brussels, Bel-
gium.

Andrew L. Maas, Awni Y. Hannun, Daniel Jurafsky,
and Andrew Y. Ng. 2014. First-pass large vocabulary
continuous speech recognition using bi-directional
recurrent dnns.

Jonathan Mallinson, Jakub Adamek, Eric Malmi, Ali-
aksei Severyn, and Alexander Fraser. 2022. Edit5:
Semi-autoregressive text editing with t5 warm-start.
In Findings of EMNLP.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and
Guillermo Garrido. 2020. FELIX: Flexible text edit-
ing through tagging and insertion. In Findings of
EMNLP.

Eric Malmi, Yue Dong, Jonathan Mallinson, Aleksandr
Chuklin, Jakub Adamek, Daniil Mirylenka, Felix
Stahlberg, Sebastian Krause, Shankar Kumar, and
Aliaksei Severyn. 2022. Text generation with text-
editing models. In Proceedings of NAACL.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode, tag,
realize: High-precision text editing. In Proceedings
of EMNLP-IJCNLP.

Stuart Mesham, Christopher Bryant, Marek Rei, and
Zheng Yuan. 2023. An extended sequence tagging
vocabulary for grammatical error correction. In Find-
ings of EACL, pages 1608–1619, Dubrovnik, Croatia.

Jakub Náplava and Milan Straka. 2019. Grammatical
error correction in low-resource scenarios. In Pro-
ceedings of WNUT, pages 346–356.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and bench-
mark for grammatical error correction. In Proceed-
ings of ACL, pages 229–234.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
CoNLL, pages 1–14.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of BEA.

Kostiantyn Omelianchuk, Vipul Raheja, and Oleksandr
Skurzhanskyi. 2021. Text Simplification by Tagging.
In Proceedings of BEA, pages 11–25.

Sheena Panthaplackel, Miltiadis Allamanis, and Marc
Brockschmidt. 2021. Copy that! editing sequences
by copying spans. In Proceedings of AAAI, pages
13622–13630.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and
Jeff Dean. 2023. Efficiently scaling transformer in-
ference. In Proceedings of MLSys.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of ACL-IJCNLP,
pages 1993–2003, Online.

7084

https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://aclanthology.org/2021.findings-acl.11
https://openreview.net/forum?id=LloZFVwWvj
https://openreview.net/forum?id=LloZFVwWvj
https://openreview.net/forum?id=LloZFVwWvj
https://doi.org/10.23915/distill.00008
https://proceedings.mlr.press/v162/huang22k.html
https://proceedings.mlr.press/v162/huang22k.html
https://proceedings.mlr.press/v162/huang22m.html
https://proceedings.mlr.press/v162/huang22m.html
https://aclanthology.org/2020.acl-main.391
https://aclanthology.org/2020.acl-main.391
https://aclanthology.org/2020.acl-main.391
https://aclanthology.org/2020.aacl-main.83
https://aclanthology.org/2020.aacl-main.83
https://aclanthology.org/2020.emnlp-main.338
https://aclanthology.org/2020.emnlp-main.338
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://ojs.aaai.org/index.php/AAAI/article/view/21345
https://ojs.aaai.org/index.php/AAAI/article/view/21345
https://ojs.aaai.org/index.php/AAAI/article/view/21345
https://aclanthology.org/D18-1336
https://aclanthology.org/D18-1336
https://aclanthology.org/D18-1336
http://arxiv.org/abs/1408.2873
http://arxiv.org/abs/1408.2873
http://arxiv.org/abs/1408.2873
https://aclanthology.org/2022.findings-emnlp.156/
https://aclanthology.org/2022.findings-emnlp.156/
https://aclanthology.org/2020.findings-emnlp.111
https://aclanthology.org/2020.findings-emnlp.111
https://aclanthology.org/2022.naacl-tutorials.1
https://aclanthology.org/2022.naacl-tutorials.1
https://aclanthology.org/D19-1510
https://aclanthology.org/D19-1510
https://aclanthology.org/2023.findings-eacl.119
https://aclanthology.org/2023.findings-eacl.119
https://aclanthology.org/D19-5545
https://aclanthology.org/D19-5545
https://aclanthology.org/E17-2037
https://aclanthology.org/E17-2037
https://aclanthology.org/W14-1701
https://aclanthology.org/W14-1701
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/2021.bea-1.2
https://ojs.aaai.org/index.php/AAAI/article/view/17606
https://ojs.aaai.org/index.php/AAAI/article/view/17606
https://proceedings.mlsys.org/paper_files/paper/2023/hash/523f87e9d08e6071a3bbd150e6da40fb-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/523f87e9d08e6071a3bbd150e6da40fb-Abstract-mlsys2023.html
https://aclanthology.org/2021.acl-long.155
https://aclanthology.org/2021.acl-long.155


Machel Reid and Graham Neubig. 2022. Learning to
model editing processes. In Findings of the EMNLP,
pages 3822–3832.

Machel Reid and Victor Zhong. 2021. LEWIS: Leven-
shtein editing for unsupervised text style transfer. In
Findings of ACL-IJCNLP.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of ACL-IJCNLP, pages 702–707, On-
line.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging Pre-trained Checkpoints for Se-
quence Generation Tasks. TACL, pages 264–280.

Chitwan Saharia, William Chan, Saurabh Saxena, and
Mohammad Norouzi. 2020. Non-autoregressive ma-
chine translation with latent alignments. In Proceed-
ings of EMNLP, pages 1098–1108, Online.

Chenze Shao, Zhengrui Ma, and Yang Feng. 2022.
Viterbi decoding of directed acyclic transformer for
non-autoregressive machine translation. In Findings
of EMNLP, pages 4390–4397, Abu Dhabi, United
Arab Emirates.

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit opera-
tions. In Proceedings of EMNLP.

Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei,
and Houfeng Wang. 2022. A unified strategy for
multilingual grammatical error correction with pre-
trained cross-lingual language model. In Proceed-
ings of IJCAI, pages 4367–4374.

Xin Sun, Tao Ge, Furu Wei, and Houfeng Wang. 2021.
Instantaneous grammatical error correction with shal-
low aggressive decoding. In Proceedings of ACL,
pages 5937–5947, Online. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in NIPS, pages 5998–6008.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing statisti-
cal machine translation for text simplification. TACL,
pages 401–415.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of ACL, pages
180–189.

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,
Bo Zhang, Chen Li, Fei Huang, and Min Zhang.
2022a. MuCGEC: a multi-reference multi-source
evaluation dataset for Chinese grammatical error cor-
rection. In Proceedings of NAACL.

#Sents Error (%) Usage
CLANG-8 2,372,119 57.8 Stage I
FCE 34,490 62.6 Stage II
NUCLE 57,151 38.2 Stage II
W&I+LOCNESS 34,308 66.3 Stage II & III
BEA19 4,384 65.2 Validation
CoNLL14 1,312 72.3 Test

Table 8: Statistics of English GEC data. #Sents and Error
(%) refers to the number of sentences and the proportion of
erroneous sentences, respectively.

Yue Zhang, Bo Zhang, Zhenghua Li, Zuyi Bao, Chen Li,
and Min Zhang. 2022b. SynGEC: Syntax-enhanced
grammatical error correction with a tailored GEC-
oriented parser. In Proceedings of EMNLP, pages
2518–2531, Abu Dhabi, United Arab Emirates.

A Training Details

Table 8 gives the detailed statistics of English GEC
data used for training/validating/testing the model.

We train our models for at most 64 epochs
based on roberta-large. The training pro-
cess is terminated once the performance on Dev
data does not improve after 10 epochs. The ex-
periments are conducted on 1 single Tesla A100
GPU, and it took about 30 hours to finish the Stage
I GEC pretraining on CLANG-8 data. We train
the models with roughly 100,000 tokens per mini-
batch and use AdamW for model optimization with
β1 “ 0.9, β2 “ 0.9, ϵ “ 10´12. The learning rate
is set to 5ˆ10´5, 5ˆ10´6 and 1ˆ10´6 for stage
I, II & III, respectively. We also multiply the de-
coder learning rate by a factor of 10, and warmup
the model by 1000 steps for better convergence.

Regarding other tasks and languages, we gen-
erally inherit the aforementioned hyperparameters
with some adaptations. For multilingual German
and Russian, we take xlm-roberta-large as
the base model. Taking into account that the size
of German and Russian data is relatively small, we
set the batch size to 10,000 tokens and the learning
rate to 2 ˆ 10´5 accordingly.

7085

https://aclanthology.org/2022.findings-emnlp.280
https://aclanthology.org/2022.findings-emnlp.280
https://aclanthology.org/2021.findings-acl.344
https://aclanthology.org/2021.findings-acl.344
https://aclanthology.org/2021.acl-short.89
https://aclanthology.org/2021.acl-short.89
https://doi.org/10.1162/tacl_a_00313
https://doi.org/10.1162/tacl_a_00313
https://aclanthology.org/2020.emnlp-main.83
https://aclanthology.org/2020.emnlp-main.83
https://aclanthology.org/2022.findings-emnlp.322
https://aclanthology.org/2022.findings-emnlp.322
https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/2020.emnlp-main.418
https://doi.org/10.24963/ijcai.2022/606
https://doi.org/10.24963/ijcai.2022/606
https://doi.org/10.24963/ijcai.2022/606
https://aclanthology.org/2021.acl-long.462
https://aclanthology.org/2021.acl-long.462
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/Q16-1029
https://aclanthology.org/Q16-1029
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://aclanthology.org/2022.naacl-main.227
https://aclanthology.org/2022.naacl-main.227
https://aclanthology.org/2022.naacl-main.227
https://aclanthology.org/2022.emnlp-main.162
https://aclanthology.org/2022.emnlp-main.162
https://aclanthology.org/2022.emnlp-main.162
https://huggingface.co/roberta-large
https://huggingface.co/xlm-roberta-large

