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Abstract

This paper explores the potential of leveraging
Large Language Models (LLMs) for data aug-
mentation in multilingual commonsense rea-
soning datasets where the available training
data is extremely limited. To achieve this, we
utilise several LLMs, namely Dolly-v2, Sta-
bleVicuna, ChatGPT, and GPT-4, to augment
three datasets: XCOPA, XWinograd, and XS-
toryCloze. Subsequently, we evaluate the ef-
fectiveness of fine-tuning smaller multilingual
models, mBERT and XLMR, using the syn-
thesised data. We compare the performance
of training with data generated in English and
target languages, as well as translated English-
generated data, revealing the overall advantages
of incorporating data generated by LLMs, e.g.
a notable 13.4 accuracy score improvement for
the best case. Furthermore, we conduct a hu-
man evaluation by asking native speakers to
assess the naturalness and logical coherence
of the generated examples across different lan-
guages. The results of the evaluation indicate
that LLMs such as ChatGPT and GPT-4 ex-
cel at producing natural and coherent text in
most languages, however, they struggle to gen-
erate meaningful text in certain languages like
Tamil. We also observe that ChatGPT falls
short in generating plausible alternatives com-
pared to the original dataset, whereas exam-
ples from GPT-4 exhibit competitive logical
consistency. We release the generated data at
https://github.com/mbzuai-nlp/Gen-X.

1 Introduction

The success of NLP models greatly depends on
the availability and quality of training data. This
poses a significant challenge for multilingual NLP,
as data for languages other than English is typically
limited (Ponti et al., 2019; Joshi et al., 2020; White-
house et al., 2022). An approach to address the
data scarcity challenge is through zero-shot cross-
lingual transfer or multitask training, in which a

∗∗Work conducted while visiting MBZUAI.

model is trained across data of diverse tasks and
languages, exhibiting the capability to handle un-
seen tasks, particularly in larger models (Artetxe
and Schwenk, 2019; Nooralahzadeh et al., 2020;
Huang et al., 2021). However, when aiming for
task-specific objectives, a smaller, fine-tuned model
dedicated to that particular task often outperforms
larger general-purpose, zero-shot models. In addi-
tion, a smaller task-specific model is more practi-
cal and cost-effective for training and deployment.
Nevertheless, developing a powerful task-specific
model becomes challenging in the absence of train-
ing data (Lauscher et al., 2020).

Conversely, recent powerful Large Language
Models (LLMs) excel at handling general instruc-
tions and have shown promise in data genera-
tion tasks (Wang et al., 2023). In this work, we
leverage LLMs to generate synthetic data for var-
ious multilingual commonsense reasoning tasks,
XCOPA (Ponti et al., 2020), XWinograd (Tikhonov
and Ryabinin, 2021), and XStoryCloze (Lin et al.,
2022), where the training data is limited even for
English (see Table 1). To augment the training data,
we provide LLMs with instructions and examples
from the original training data, prompting them to
generate new and diverse examples. We explore
the generation of synthetic data in English using
different LLMs, including open-source models like
Dolly-v21 and StableVicuna2, as well as ChatGPT
and GPT-4. Although the weights and capabili-
ties of the latter two models remain undisclosed,
we explore them as they extend the capability of
generating texts in languages beyond English.

We develop task-specific models by fine-tuning
multilingual pre-trained language models, namely
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020), using the generated data. We
then compare their performance against models
trained on a limited set of human-created data in the

1https://github.com/databrickslabs/dolly
2https://github.com/Stability-AI/StableLM
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DATASET
Train Validation Test

EN XX EN XX EN XX

XCOPA 400 0 100 100 500 500
XWinograd 1858 0 233 0 233 424
XStoryCloze 300 300 60 60 1511 1511

Table 1: Number of examples available in XCOPA,
XWinograd, and XStoryCloze. XX denotes the average
number of non-English examples per language. Since a
validation split is not specified in XStoryCloze, we take
60 random examples from the train split for validation.
XWinograd has no train/validation/test split, and we
follow an 80/10/10 split for the experiments.

target language whenever available, and otherwise
through zero-shot transfer learning from manually
created English training data. Our experiments
demonstrate that training the models with relatively
large synthetically generated datasets yields better
performance than training with limited manually-
created datasets. This finding empirically confirms
the utility of synthetic data generated by LLMs for
improving downstream task-specific models.

We expand the multilingual data synthesis using
ChatGPT and GPT-4 on XCOPA and find that gen-
erating multilingual datasets generally surpasses
the effectiveness of the zero-shot cross-lingual
transfer. We further assess the quality of the gener-
ated dataset in different languages by asking native
speakers to evaluate the naturalness and logical
soundness of the generated dataset compared to the
human-written examples. The annotation results
reveal that while ChatGPT and GPT-4 successfully
generate natural text in most languages, they strug-
gle with generating understandable text in certain
languages such as Tamil. Moreover, a noticeable
gap is observed in terms of commonsense coher-
ence when comparing ChatGPT-generated data to
human-constructed data. On the other hand, GPT-4
significantly narrows this difference.

To summarise, our work has the following key
contributions:

• Augmenting three low-resource, multilingual
commonsense reasoning datasets by leverag-
ing and prompting four LLMs;

• Fine-tuning smaller models, mBERT and
XLMR, using the synthesised data and show-
casing the practical value of the LLM-
generated data;

• Performing an extensive analysis of the effects
of various target languages in data generation
and scaling, as well as a human evaluation of

the naturalness and logical coherence of the
data generated in various languages;

• Releasing the synthesised datasets for public
use and reproducibility.

2 Related Work

Multilingual and Low-Resource NLP

Recently, there has been increased attention on
expanding NLP beyond English, including the de-
velopment of multilingual models (Devlin et al.,
2019; Conneau et al., 2020; Xue et al., 2021; Scao
et al., 2022) as well as the creation of benchmarks
to address multilingual challenges (Conneau et al.,
2018; Artetxe et al., 2020; Adelani et al., 2021;
Winata et al., 2023). Among the prevailing chal-
lenges faced across various languages, a common
theme is the scarcity of available data.

Consequently, when data is lacking, one ap-
proach is to employ zero-shot cross-lingual trans-
fer. Studies conducted by Winata et al. (2023) have
demonstrated the effectiveness of zero-shot cross-
lingual transfer for related languages. Additionally,
Muennighoff et al. (2023) show that models fine-
tuned only with English instruction data are capable
of understanding multilingual instructions. In this
work, we are tackling a similar scenario where the
availability of data is limited.

Multilingual Data Augmentation

Lauscher et al. (2020) show that few-shot can dras-
tically increase the cross-lingual performance of
small models, proving that multilingual data aug-
mentation is an effective strategy. A series of works
try to predict the cross-lingual accuracy of models
through measurements and modelling (Xia et al.,
2020), and study strategies for multilingual data
augmentation, such as choosing the transfer lan-
guages (Lin et al., 2019), and predicting multilin-
gual few-shot accuracy leading for optimal data
augmentation approaches (Srinivasan et al., 2022).

Many works focus on synthetic data augmenta-
tion for code-mixing, including utilising linguistic
theories (Lee et al., 2019; Pratapa et al., 2018), ma-
chine translation models (Tarunesh et al., 2021),
parallel corpus and Wikipedia (Winata et al., 2019;
Whitehouse et al., 2022), and employing ChatGPT
(Dai et al., 2023). Our work explores data augmen-
tation on multilingual commonsense datasets with
powerful instruction-tuned LLMs.
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XCOPA XWINOGRAD XSTORYCLOZE

We are collecting more examples for the
COPA dataset which will be used to test a
system’s ability of Commonsense Causal
Judgments. The format of the data:
A premise: a statement of something that
happened, and two choices that could plau-
sibly {occur as the result / be the cause}
of the premise. The correct choice is the
alternative that is more plausible than the
wrong choice.
Here are n examples in {language}:
Example 1: Premise: The man wanted to
save money. What happened as a result?
Correct choice: He cut back on making
frivolous purchases. Wrong choice: He
withdrew money from his savings account.
. . . Example n: . . .
Based on the examples above, generate m
new examples in {language}.

We are collecting more examples for
the Winograd Schema Challenge. Each
example has a short sentence that con-
tains two noun phrases and one pronoun
replaced by “_”, and the challenge is to de-
termine the referent of the pronoun, which
can only be inferred from the context.
Here are n examples of the data:
Example 1: Sentence: Harley hides from
Dyna because _ is scary. Who/What is
scary? Correct answer: Dyna. Wrong an-
swer: Harley. . . . Example n: . . .
Based on the examples above, generate
m new examples. Both noun phrases in
each example can be males, females, inan-
imate objects, or groups of people or ob-
jects. There should only be one “_” in the
sentence. The correct and wrong answer
should be one of the noun phrases men-
tioned in the sentence.

We are collecting more examples for a story cloze
dataset. Each example consists of a 4-sentence story,
one correct ending sentence which is a plausible continu-
ation of the story, and one wrong ending sentence which
is logically inconsistent with the context.
Here are n examples of the data:
Example 1: Sent-1: Tina is very tired every single morn-
ing. Sent-2: She does not get enough sleep because of
her two jobs. Sent-3: Tina decides to quit one of the jobs.
Sent-4: She now gets enough sleep to function everyday.
Correct ending: Tina is well rested. Wrong ending: Tina
is more tired than ever before. . . . Example n: . . .
Based on the examples above, provide m new similar
examples. Requirements: 1) the story should read like
a coherent story, with a specific beginning and ending,
where something happens in between 2) both ending
sentences should be entirely reasonable, realistic and
sensible when read in isolation, and 3) both ending sen-
tences should follow up the story by sharing at least one
of the characters of the story.

Premise: The politician made a contro-
versial statement. What happened as a re-
sult? Correct choice: The politician faced
criticism from the media. Wrong choice:
The politician’s approval ratings increased.

Premise: 我裤子口袋里的钥匙不见
了。What was the cause? Correct choice:
这个口袋上有一个洞。 Wrong choice:
裤子是新的。

Sentence: Sam gave Andrew the book
because _ had already read it. Who/What
had already read the book? Correct an-
swer: Sam. Wrong answer: Andrew.

Sentence: The dog chased the cat , but
_ was too fast. Who/What was too fast?
Correct answer: the cat. Wrong answer:
The dog.

Sent-1: Jordan was a high school student who wanted
to become a doctor. Sent-2: He spent all his free time
studying biology and chemistry. Sent-3: One day, his
school hosted a science fair competition. Sent-4: Jor-
dan’s project won first place. Correct ending: Jordan
went on to study medicine in college. Wrong ending:
Jordan gave up his dream of becoming a doctor.

Table 2: Examples of instructions and LLM-responses (ChatGPT) for XCOPA, XWinograd, and XStoryCloze.

3 Dataset Augmentation

Our experiments use XCOPA, XWinograd, and XS-
toryCloze, which are selected due to (1) the limited
availability of training data and (2) commonsense
reasoning datasets present greater challenges for
data synthesis. Table 1 summarises the statistics of
the three datasets.

XCOPA is a cross-lingual Choice of Plausible
Alternatives dataset that translates and re-annotates
the validation and test sets of English (EN) COPA
(Roemmele et al., 2011) into 11 target languages
(ET: Estonian, HT: Haitian Creole, ID: Indonesian,
IT: Italian, QU: Quechua, SW: Swahili, TA: Tamil,
TH: Thai, TR: Turkish, VI: Vietnamese, and ZH:
Chinese).3 Each instance consists of a premise, a
question (cuase/result), and two alternatives. The
task is to predict the more plausible alternative.

XWinograd expands the original English Wino-
grad Schema Challenge (WSC) (Levesque et al.,
2012) to five other languages (FR: French, JA:
Japanese, PT: Portuguese, RU: Russian, and ZH),4

which consists of pronoun resolution problems aim-

3https://huggingface.co/datasets/xcopa
4https://huggingface.co/datasets/Muennighoff/

xwinograd

ing to evaluate the commonsense reasoning ability
of a machine. Given a statement with two noun
phrases and a pronoun, the challenge of WSC is to
determine the referent of the pronoun, which can
only be inferred from the context.

XStoryCloze is collected by Lin et al. (2022),
where the validation split of the original English
StoryCloze dataset (Mostafazadeh et al., 2016) is
translated into 10 other typologically diverse lan-
guages (RU, ZH, ES: Spanish, AR: Arabic, HI:
Hindi, ID, TE: Telugu, SW, EU: Basque, and
MY: Burmese). Each example consists of a four-
sentence commonsense story, a correct ending, as
well as a wrong ending.

3.1 LLMs for Data Generation

Our preliminary experiments reveal that language
models that are specifically fine-tuned on down-
stream NLP tasks, such as BLOOMZ (Scao et al.,
2022) and Flan-T5 (Chung et al., 2022), struggle
to follow the complex instructions. Conversely,
more recent LLMs such as Dolly-v2, StableVicuna,
ChatGPT, and GPT-4, which are designed to han-
dle more intricate and general-purpose instructions,
have demonstrated success in following our instruc-
tions for data generation. ChatGPT and GPT-4 also
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stand out with the capability of generating exam-
ples in non-English languages.

We explore synthetic data generation with
the four aforementioned LLMs, balancing be-
tween open-access models and closed models (see
§5.1). Specifically, we use dolly-v2-12b,5 which
is derived from EleutherAI’s Pythia-12b (Bider-
man et al., 2023) and fine-tuned on a ∼15K in-
structions generated by Databricks employees;
and StableVicuna-13B, an RLHF (reinforcement
learning from human feedback) fine-tuned Vicuna
model on various conversational and instructional
datasets - Vicuna is an open-source LLaMA model
(Touvron et al., 2023a) fine-tuned on user-shared
conversations collected from ShareGPT.6

3.2 Instructions and Responses

We utilise LLMs to generate synthetic examples
for all datasets by prompting them. We construct
instructions using the descriptions from the dataset
papers as a reference and provide LLMs with some
examples, randomly sampled from the train (+vali-
dation) split of the original dataset, then ask LLMs
to generate similar data points. We experiment
with various instructions and evaluate the synthe-
sised data on a smaller scale, update the instruc-
tions based on the errors, and then choose the best
instruction to generate the final datasets.

The final instructions and responses are in Ta-
ble 2. Our data generation process comprises the
following key steps: (1) We establish the desired
total number of examples to generate. This quantity
can be determined by various factors such as bud-
get constraints, a fixed ratio concerning the original
dataset, etc. (2) We proceed to generate examples
through the following iterative process: (a) To en-
sure diversity,7 we randomly sample a set of n
examples from the training datasets. (b) We ap-
pend these sampled examples to the instructions
and prompt the model to generate an additional set
of m new examples. (c) Afterwards, we perform
post-processing and only add valid and unique ex-
amples to the generated set. Typically, the values
of n and m are set to 5 to 10.

We focus on a fixed-budget scenario and first
generate a total of 3-4K data points for each dataset
with LLMs. LLMs tend to generate fewer samples
than requested or inconsistent output in invalid for-

5Model details are included in Appendix A.
6https://github.com/lm-sys/FastChat
7An analysis of the diversity of the generation as well as topic

coverage is included in Appendix B.

Model XCOPA XWinograd XStoryCloze

DOLLY-V2 41.6% 22.4% 41.2%
STABLEVICUNA 36.1% 33.8% 36.1%
CHATGPT 86.4% 43.8% 77.6%
GPT-4 89.7% 85.0% 89.3%

Table 3: Generation Success Rate in English (valid
examples obtained / total examples requested) with dif-
ferent LLMs on the three datasets.

mats. We report the success rate for different LLMs
on the three datasets in Table 3, which indicates
that GPT-4 has the most robustness.

Among the datasets, LLMs have the lowest gen-
eration success rate for XWinograd, which is more
challenging. XWinograd requires both answers
to be from the generated sentence, with only one
pronoun being replaced. In addition, we observed
pronoun inconsistency in the generated XWinograd
data. Despite the requirement for interchangeable
pronouns in the options, models frequently fail to
comply. For example, “The dog bit the mailman
because _ entered the yard.” is generated by Chat-
GPT with the options ‘The dog‘” or “the mailman”,
however, “_” in the sentence cannot be replaced by
the same pronoun for the given two options, hence
it may make the task easier and the example is con-
sidered suboptimal. We keep those instances in the
dataset and discuss further in §6.1.

4 Experimental Setups

We first generate synthetic English examples for
XCOPA, XWinograd, and XStoryCloze, with
Dolly-v2, StableVicuna, ChatGPT, and GPT-4.
The size of the final filtered synthesised data for
the three datasets is 3.7k, 2K, and 1.7K, respec-
tively. We then fine-tune mBERT, XLMR-base,
and XLMR-large with the synthesised data and
compare the zero-shot cross-lingual transfer perfor-
mance across different languages, where we use
the original validation set in target languages.

For XCOPA, we additionally experiment with
generating data points directly in non-English lan-
guages, by providing examples in the target lan-
guage and specifying the language desired for the
generated data (see Table 2). However, since no
examples for cause are included in TH and TR
train/validation data (they do appear in the test
split), we do not generate XCOPA for the two lan-
guages. We use ChatGPT and GPT-4 for multilin-
gual synthetic data generation, as both Dolly-v2
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Fine-tuned
Model

LLM for
Generation

XCOPA XWINOGRAD XSTORYCLOZE

ORI400 GEN3.7k O+G4.1k ORI1.8k GEN2k O+G3.8k ORI300 GEN1.7k O+G2k

mBERT

DOLLY-V2 47.9 53.3 ↑5.4 54.0 ↑6.1 52.9 59.6 ↑6.7 59.3 ↑6.4 65.0 68.7 ↑3.7 68.1 ↑3.1
STABLEVICUNA 47.9 52.9 ↑5.0 54.7 ↑6.8 52.9 53.7 ↑0.8 58.5 ↑5.6 65.0 64.6 ↓0.4 67.3 ↑2.3
CHATGPT 47.9 55.0 ↑7.1 54.1 ↑6.2 52.9 56.0 ↑3.1 58.3 ↑5.4 65.0 64.3 ↓0.7 68.3 ↑3.3
GPT-4 47.9 56.4 ↑8.5 57.2 ↑9.3 52.9 54.9 ↑2.0 57.5 ↑4.6 65.0 68.0 ↑3.0 69.8 ↑4.8

XLMR-Base

DOLLY-V2 54.8 58.1 ↑3.3 58.1 ↑3.3 53.5 56.5 ↑3.0 66.3 ↑12.8 73.0 75.8 ↑2.8 76.5 ↑3.5
STABLEVICUNA 54.8 57.6 ↑2.8 59.3 ↑4.5 53.5 59.0 ↑5.5 66.0 ↑12.5 73.0 69.6 ↓3.4 74.2 ↑1.2
CHATGPT 54.8 58.2 ↑3.4 59.4 ↑4.6 53.5 62.7 ↑9.2 65.9 ↑12.4 73.0 67.4 ↓5.6 74.5 ↑1.5
GPT-4 54.8 62.7 ↑7.9 63.0 ↑8.2 53.5 63.3 ↑9.8 66.9 ↑13.4 73.0 74.6 ↑1.6 79.3 ↑6.3

XLMR-Large

DOLLY-V2 63.0 58.6 ↓4.4 65.0 ↑2.0 80.1 76.9 ↓3.2 83.1 ↑3.0 85.0 84.8 ↓0.2 86.4 ↑1.4
STABLEVICUNA 63.0 64.4 ↑1.4 68.7 ↑5.7 80.1 68.2 ↓11.9 82.0 ↑1.9 85.0 74.6 ↓10.4 84.8 ↓0.2
CHATGPT 63.0 64.6 ↑1.6 68.1 ↑5.1 80.1 73.2 ↓6.9 83.2 ↑3.1 85.0 77.3 ↓7.7 85.8 ↑0.8
GPT-4 63.0 72.1 ↑9.1 72.2 ↑9.2 80.1 76.4 ↓3.7 83.5 ↑3.4 85.0 86.0 ↑1.0 88.4 ↑3.4

Table 4: Comparison of Average Accuracy across all languages for mBERT, XLMR-Base, and XLMR-Large on
XCOPA, XStoryCloze, and XWinograd. Training datasets include ORI (original EN data), GEN (LLM-generated
EN data), and O+G (both), with the number of examples used for training indicated by the subscripts. The best
results obtained with the same amount of training data are highlighted in bold. Green and red subscripts denote
improvement and decline in performance compared to the baseline (ORI). See per language results in Appendix D.

and StableVicuna exhibit limitations in effectively
generating multilingual text. The size of the multi-
lingual synthesised data is ∼3.6K in each language.

We fine-tune models on all datasets as multiple-
choice tasks8 by searching best learning rate from
{5e−6, 10e−6}, and batch size from {8, 16, 32}.
All the fine-tuning experiments are conducted on a
single 40G A100. For generating data with Dolly-
v2 and StableVicuna, we use 2×40G A100.

5 Results and Discussion

This section presents the main results of fine-tuned
models on the three datasets and compares per-
formance with generated data in different LLMs,
languages, and scales.

5.1 General Result

Table 4 presents the average accuracy of fine-tuned
mBERT, XLMR-Base, and XLMR-Large models
across all languages on the three datasets. The
models are trained using original data (ORI), dif-
ferent LLM-generated data (GEN), as well as a
combination of both sources (O+G) in English.

Across different datasets, LLMs, and fine-tuned
models, consistent improvements are observed
when using both original and LLM-generated data.
Among the models, Dolly-v2 performs the best
on Xingorad when fine-tuned on mBERT, while

8In our preliminary experiments, we find that formulating
XWinograd as a binary text classification results poorly, in line
with the observation from Liu et al. (2020) that the task formula-
tion is essential to the performance of Winograd.

GPT-4 achieves the highest accuracy in other set-
tings. The most significant improvement is shown
in XWinograd with XLMR-Base, where the addi-
tion of an extra 2k datapoints leads to an average
accuracy enhancement of 12.8 compared to the
baseline, across all four LLMs.

When using only LLM-generated data, smaller
models like mBERT and XLMR-Base generally
outperform the baseline. However, with XLMR-
Large, which achieves stronger baselines. e.g. >80
in XWinograd and XStoryCloze, the accuracy re-
mains similar or even worse compared to using
the original data. GPT-4-generated data demon-
strates the best robustness but still experiences a
decline in performance in XWinograd when the
generated data size is similar to the original data.
This highlights the challenges of generating data at
a human-level quality.

5.2 Multilingual Data Generation

We investigate whether the synthetically generated
multilingual dataset outperforms training solely
in English. We choose the XCOPA dataset and
explore two settings: synthetic multilingual data
by asking LLMs to generate responses in the tar-
get languages directly and translating the English-
generated data to target languages with Google
Translate API. We exclude Dolly-v2 and Stable-
Vicuna due to their limited effectiveness in gener-
ating non-English text. Although GPT-4 exhibits
the most promising performance, it is significantly
costlier compared to ChatGPT. Therefore, we also
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Fine-tuned LLM Training data AVG EN ET HT ID IT SW TA VI ZH

BASELINE ORI 47.2 53.8 44.2 48.6 47.2 46.2 45.4 48.4 43.6 47.4

GENEN +ORI 54.6 59.6 56.4 53.6 53.8 51.4 51.6 50.4 55.0 59.2
GENXX +ORI 56.8 59.6 58.8 54.6 56.2 61.2 54.6 53.6 52.0 60.2CHATGPT
GENTrans

EN +ORI 58.7 59.6 59.8 58.2 62.8 61.0 52.6 56.8 58.2 59.4

GENEN +ORI 59.3 72.6 58.8 53.0 62.0 61.0 50.0 54.0 57.6 64.6
GENXX +ORI 61.8 72.6 61.2 58.2 62.2 66.4 57.4 53.4 63.0 61.8

mBERT

GPT-4
GENTrans

EN +ORI 62.6 72.6 58.6 55.2 65.6 65.4 53.8 62.6 64.6 65.4

BASELINE ORI 55.6 57.6 54.6 50.6 59.6 54.8 55.0 53.4 54.8 59.6

GENEN +ORI 59.8 63.8 61.6 51.6 62.6 59.8 51.6 60.4 64.8 62.0
GENXX +ORI 59.9 63.8 60.6 55.0 64.6 59.6 54.6 56.4 59.6 64.8CHATGPT
GENTrans

EN +ORI 61.1 63.8 60.0 58.0 65.0 60.8 53.8 60.2 62.6 66.0

GENEN +ORI 63.6 69.6 63.8 51.2 67.2 62.4 58.4 63.8 66.8 69.4
GENXX +ORI 64.0 69.6 62.2 56.2 68.6 63.8 57.8 61.2 66.8 70.0

XLMR-Base

GPT-4
GENTrans

EN +ORI 63.9 69.6 61.6 56.6 68.4 65.2 58.2 60.2 66.0 69.6

BASELINE ORI 64.4 71.4 62.8 51.4 69.0 65.8 60.6 62.0 69.4 66.8

GENEN +ORI 69.5 76.4 69.8 48.2 76.0 72.8 63.4 67.8 73.4 77.8
GENXX +ORI 65.2 76.4 62.4 55.2 75.0 62.2 58.2 55.4 66.2 76.2CHATGPT
GENTrans

EN +ORI 67.0 76.4 60.0 59.6 66.2 66.6 59.0 64.8 74.8 75.6

GENEN +ORI 73.7 84.6 70.4 50.0 80.8 80.2 65.8 72.8 78.4 80.4
GENXX +ORI 74.6 84.6 77.0 56.0 82.2 77.0 65.0 73.8 76.2 80.0

XLMR-Large

GPT-4
GENTrans

EN +ORI 74.1 84.6 74.2 57.2 82.0 77.4 62.2 75.0 74.4 79.6

Table 5: Accuracy on XCOPA. ORI corresponds to the original data, GENEN and GENXX represents data generated
in English and target languages. Trans denotes translations of the English-generated data. We show languages that
are available in all settings. Improvement and decline in performance are represented with green and red shadows.

consider using ChatGPT as a contrasting experi-
ment under resource-constrained conditions.

Table 5 shows the results for the languages that
are available for all settings, excluding TR and
TH (unavailable for LLM-generation, refer to §4),
and QU (not supported by the Google Translate
API). We can see the impact of the generated data
varies across different fine-tuned models and lan-
guages, aligning with the findings of Kumar et al.
(2022). Training on GPT-4 synthesised data dis-
plays consistent improvement across all scenarios
and languages, except the zero-shot cross-lingual
result on HT with XLMR-Large.

More fluctuating results can be observed with
ChatGPT-generated data. A comparison between
GENEN + ORI and GENXX + ORI indicates that
utilising data generated in target languages gener-
ally leads to improved performance with GPT-4
generated data, as well as in base models with
ChatGPT-generated data. However, for XLMR-
Large, employing ChatGPT-generated data in tar-
get languages mostly yields negative outcomes. In
languages such as TA and VI, training on gener-
ated data in the target languages results in more
performance degradation compared to zero-shot
cross-lingual transfer. This suggests that ChatGPT

performs worse in those languages than XLMR-
Large (Ahuja et al., 2023).

Translating the English dataset generally shows
overall better results than training on the data gener-
ated directly in the target languages, with the excep-
tion of XLMR-Large with GPT-4. For SW, XLMR
models fined-tuned with ChatGPT-generated data
exhibit performance decline in most cases, even
when the English-generated data benefits all other
languages. This observation suggests that XLMR
struggles with SW. In §6.1 we select TA, SW, and
the two best languages, ID and ZH, along with EN,
for human evaluation.

Additionally, we conduct experiments adding
Target Languages in Validation (TLV). This only
results in minor variations in the performance, con-
sistent with the findings of Ponti et al. (2020). We
include the full results in Table 11 in Appendix D.

5.3 Dataset Scaling Up

We now investigate the impact of training on a
larger scale of generated data on model perfor-
mance. We focus on the XCOPA dataset and
expand the generated data with ChatGPT (more
budget-efficient) to 28.6k examples in English. We
also compare the results of zero-shot cross-lingual
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Model GENEN +ORIEN GENTrans
EN +ORIEN

3.7K 28.6K 3.7K 28.6K

mBERT 54.3 56.0 58.0 60.1
XLMR-Base 60.1 61.8 61.2 61.7
XLMR-Large 69.7 72.4 67.2 71.4

Table 6: Accuracy on XCOPA when scaling up the
generated data to over 28K with ChatGPT. We report
average results on all XCOPA languages excl. QU, since
it is not available with the Google Translate API.

transfer with translating the English-generated data
to target languages.

The results in Table 6 demonstrate the positive
impact of scaling up the generated data on model
performance. Particularly, XLMR-Large exhibits
the most significant improvement.

Furthermore, we conduct experiments on gener-
ating data with a fixed ratio of the original datasets
and the results are included in Appendix C.

6 Human Evaluation

To better evaluate the quality of the generated
datasets and compare them with the human-created
data, we ask native speakers to annotate the multi-
lingual data generated by ChatGPT and GPT-4.

For each dataset, we first select 50 generated
examples in English, and then request two anno-
tators to evaluate the examples in two categories:
(1) Text Naturalness. The annotators are asked to
choose one of the following options for each ex-
ample: “the text sounds natural”, “the text sounds
awkward but understandable”, or “the text is not
understandable”, and (2) Logic Soundness. This
category focuses on the commonsense aspect of the
examples. The annotators are required to select the
most appropriate description from: “the correct op-
tion is (clearly) more plausible”, “both options are
equally plausible”, “both options are implausible”,
or “the wrong option is actually more plausible”.
We only ask the annotators to evaluate the logic if
the text is at least understandable.

For XWinograd, we introduce an additional eval-
uation criterion. Annotators are asked to determine
whether the two noun phrases in the examples can
be replaced by the same pronoun (refer to §3.2).
For XCOPA, we extend the annotations to non-
English languages, where we choose the two lan-
guages that demonstrate the most notable improve-
ment, namely ZH and ID, as well as the two lan-
guages that exhibit the least improvement or regres-

sion in performance with ChatGPT-generated data,
namely TA and SW (see Table 5). In addition to
the original examples and the generated examples
in the target languages, we include 50 examples
that are translated from the same English-generated
examples (that were selected for annotation).

To ensure impartiality, all the examples are shuf-
fled, and the annotators are not provided with in-
formation regarding the source of the examples
(human-created, LLM-generated, or translated).

6.1 Text Naturalness
Figure 1 presents the annotation results for XCOPA,
averaged from two annotators for each language.
For Text Naturalness, we can see that in EN, ID,
ZH, and SW, both ChatGPT and GPT-4 achieved
higher naturalness than the original dataset. This is
particularly prominent in ID, revealing the fluency
issue in the original ID data in XCOPA, which is
also confirmed by a native speaker.

Issue with Tamil
In contrast, the performance of the TA dataset is
surprisingly low, with a majority of examples clas-
sified as "not understandable." Upon consulting
language experts, we have identified several main
issues in Tamil, including (1) the insertion of redun-
dant words with the same meaning, such as “I will
retry to try it again” (2) verb agreement errors, and
(3) the presence of uncommon and out-of-context
words.

It is worth noting that generating Tamil us-
ing GPT-4 is both slow and costly. We suspect
that the tokenizer for Tamil, as well as similar
languages like Telugu and Kannada, are poorly
trained, resulting in unusable generation in those
languages. While the low quality of the generated
data could explain the significant decline in the per-
formance of the XLMR-Large model when trained
on ChatGPT-generated data in Tamil, intriguingly,
models trained on Tamil data generated by GPT-4
show improvement over the baselines.

To further investigate this issue, we conduct an
experiment where we fine-tune the models using
only five examples from the TA examples generated
by GPT-4 that are identified as natural and sound by
the annotators. The improvement on mBERT under
this setting is 50% of the total improvement seen
with the entire 3.6K TA examples. For XLMR-base
and XLMR-large, 15% and 3% of the total improve-
ment can be observed, respectively. Considering
that the estimated number of correct samples in
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Figure 1: Human evaluation of 50 random examples from the original XCOPA, ChatGPT (top) and GPT-4 (bottom)
generated data in target languages, and translation of English generated data. Examples are annotated by two native
speakers in each language. The subplots in the last column show the logic issues of the XCOPA data, where the
three bars for each language represent Oringal, GenXX , and GenTrans

EN (from left to right).

the 3.6k dataset is around 360, it is plausible that
training solely on those examples could raise the
accuracy level, or even surpass, what we observe
for the entire dataset.9 An intriguing question that
remains to be investigated in future research is why
the remaining 3.2k incorrect or unnatural examples
do not negatively impact the model’s performance.

The translated text is typically less natural than
the original and generated data (apart from ID due
to issues in the original data). This result affirms
that LLMs generally excel in generating fluent text
for the languages it supports.

6.2 Logic Soundness

In terms of logic soundness, ChatGPT falls short
compared to the original dataset. We further illus-
trate the categorised issues in the last column of
the plots in Figure 1. We can see that for ChatGPT,
the majority of the examples are labelled as “both
options are equally plausible”, only SW has more
problematic examples with “the wrong option is
actually more plausible”. We suspect that this issue
arises from the instruction provided (taken from the
description of the original COPA dataset), which
states that “both options could be plausible, but
one is more plausible.” In some cases, ChatGPT
generates two choices that are excessively similar
in terms of plausibility. On the other hand, GPT-4

9We could not conduct this experiment as the entire dataset
was not manually labelled.

tends to generate options with more clear-cut dif-
ferences in plausibility, mirroring the original data.
We note that despite the description/instruction that
both alternatives could happen, both the original
dataset and the data synthesised by GPT-4 tend to
present one plausible and one implausible option.

For English XWinograd and XstoryCloze, the
majority of the examples in both original and gener-
ated examples are evaluated as natural and logically
sound. For XWinograd, although more than 47 ex-
amples are evaluated to exhibit high text quality
and follow commonsense logic, only 23 ChatGPT-
generated examples fulfil the requirement that both
noun phrases should be interchangeable with the
same pronoun. GPT-4 examples demonstrate better
consistency, with 36 following this rule, whereas
all original examples are found satisfactory.

7 Conclusions

This paper explores the effectiveness of utilis-
ing LLMs for data augmentation in cross-lingual
datasets with limited training data. We specifically
focus on commonsense reasoning tasks that are
challenging for data synthesis. Our experiments
including four LLMs for data generation on three
datasets, showcase enhanced cross-lingual zero-
shot transfer on smaller fine-tuned task-specific lan-
guage models. However, the impact varies across
different datasets and languages. Notably, larger
models such as XLMR-Large, which have higher
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baselines, demonstrate more difficulty in achieving
performance improvements with LLM-generated
data. Among the four LLMs, GPT-4-generated data
exhibits mostly consistent superior performance.

Expanding data generation directly in target lan-
guages also shows general improvements com-
pared to cross-lingual zero-shot with the English-
generated data. Human evaluation of the synthe-
sised multilingual dataset shows that the ChatGPT
and GPT-4 generated data demonstrate high natu-
ralness in most languages, even surpassing the orig-
inal data. However, in certain languages like TA,
both models fail to generate natural text. Addition-
ally, when assessing the logical soundness of the
dataset, examples synthesised by ChatGPT reveal
notable inconsistencies regarding more plausible
options compared to the original human-created
data. In contrast, GPT-4 exhibits a performance on
par with human-written data.

In conclusion, leveraging LLMs for data aug-
mentation shows promise. However, the choice of
LLM used for data generation significantly influ-
ences the quality of the resulting data, as well as its
applicability to the language under consideration.
In circumstances where a more advanced model
such as GPT-4 cannot be accessed, other models
can be utilised, though this might result in perfor-
mance difficulties in certain non-English languages
- a challenge that also exists for GPT-4 - and con-
cerns regarding logical coherence. A compelling
direction for future research could involve explor-
ing the efficacy of more recent instruction-tuned
or aligned open-source LLMs, such as LLaMA 2
(Touvron et al., 2023b) or TÜLU (Wu et al., 2023),
in enhancing data augmentation.

Limitations

We have identified the following limitations in this
work: (1)While LLMs, especially GPT-4, exhibit
promising results in the context of multilingual
commonsense data augmentation, they may en-
counter challenges when applied to extremely low-
resource languages. (2) In order to achieve opti-
mal performance, few-shot examples in the target
language are still necessary for generating new ex-
amples. However, acquiring such examples may
not always be feasible for all languages of inter-
est. (3) The usage of closed models like GPT-4 is
limited by licensing restrictions, and the results ob-
tained from these models may not be reproducible.
Nonetheless, the experiments conducted in this

study demonstrate the potential benefits of leverag-
ing LLMs for multilingual dataset augmentation.

Ethical Consideration

Synthetic data generation with LLMs, especially
multilingual data, should be approached with sensi-
tivity and respect, as it reflects the linguistic, social,
and cultural identity of a multilingual community.
Since LLMs are trained on web data, they may
encode biases perpetuating stereotypes, discrimi-
nation, or marginalisation of specific languages or
communities. Therefore, collaboration with lin-
guists, language experts, and community represen-
tatives is necessary to avoid the unintentional per-
petuation of stereotypes and cultural insensitivity.
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A Model Details

The open-source models used in the experiments
are as follows:

• mBERT: https://huggingface.co/
bert-base-multilingual-uncased

• XLMR-base: https://huggingface.co/
xlm-roberta-base

• XLMR-large: https://huggingface.co/
xlm-roberta-large

• Dolly-v2: https://huggingface.co/
databricks/dolly-v2-12b

• StableVinuca: https://huggingface.co/
CarperAI/stable-vicuna-13b-delta

B Sentences and Event Diversity of
ChatGPT-generated StoryCloze Data

As the StoryCloze dataset contains more sentences
and has richer content, we follow the analysis of
the ROC story and further compare the stylistic
features in terms of sentence length, and the most
frequent events10 generated by ChatGPT with the
original data. This helps us to determine whether
ChatGPT-generated data can capture the corpus dis-
tribution by randomly sampling n examples from
the dataset in the instructions.

In Figure 2, we present the results of compar-
ing the generated data points with the original 300
train set used as few-shot examples in the gener-
ation instructions. We can see that 23 of the 30
most frequent events in the original dataset can
also be found in the 30 most frequent events of
the ChatGPT-generated data. Regarding the sen-
tence length, we observe that ChatGPT tends to

10Here we follow Mostafazadeh et al. (2016) where an event is
counted as any hyponym of “event” or “process” in WordNet.

Model Ratio XCOPA XWingrad XStoryCloze

mBERT

1× 64.0 50.2 74.6
2× 64.8 51.9 76.8
5× 68.0 57.1 80.6
10× 69.8 65.7 80.3

XLMR-Base

1× 58.0 45.9 70.7
2× 59.0 53.7 79.7
5× 63.0 67.8 81.9
10× 65.8 71.2 84.1

XLMR-Large

1× 56.0 78.1 81.1
2× 61.2 79.8 90.9
5× 81.4 82.0 89.9
10× 85.2 82.8 91.9

Table 7: Performance on English test examples training
on GPT-4-generated English data and the original data.
Original data points selected from the three datasets are
set to 200. 1× corresponds to using only the original
data, 2× means using 200 original data and 200 gener-
ated data.

generate longer sentences, especially for the end-
ing sentences, whereas in the original dataset, they
tend to be the shortest among all sentences.

C Fixed Ratio Data Augmentation

We experiment with generating data with a fixed
ratio of the original datasets. Specifically, we com-
pare training with the original English data (200
randomly selected examples) and augment it with
different quantities of English examples generated
by GPT-4, where we include original training in-
stances in all cases.

The results in Table 7 showcase the performance
on English test examples when fine-tuning mBERT
and XLMR models with training data sizes that
are 1×, 2×, 5×, and 10× the size of the orig-
inal dataset. We can see that performance con-
sistently improves as we increase the amount of
generated data except XStoryCloze, which has the
highest baselines, echoing the previous findings.
The relative performance gain is generally more
pronounced when increasing the data from 2× to
5× for the other two datasets.

D Additional Results

This section includes the following additional re-
sults: Table 8, Table 9, and Table 10 show gen-
erated data in English with different LLMs on
XCOPA, XWinograd, and XStoryCloze. Table 11
and Table 12 show the full result on XCOPA with
ChatGPT and GPT-4.
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Figure 2: Comparison between the 30 most frequent events and the lengths of the sentences in the original and the
ChatGPT-generated English StoryCloze dataset.

Fine-tuned Train Data LLM AVG EN ET HT ID IT QU SW TA TH TR VI ZH

MBERT

GEN

Dolly-v2 54.0 63.4 52.0 52.2 54.0 53.8 47.6 48.6 53.4 53.4 52.8 50.4 58.2
StableVicuna 53.5 62.4 51.6 49.2 55.8 55.8 50.0 50.2 50.2 52.6 51.0 50.4 56.0
ChatGPT 56.0 64.8 54.8 52.6 58.0 57.4 49.8 48.4 55.6 52.8 53.2 53.0 59.0
GPT-4 58.2 69.2 59.2 54.0 60.6 59.2 50.8 48.2 55.0 48.2 53.8 57.6 61.0

GEN+ORI

Dolly-v2 54.4 59.8 52.6 53.2 53.0 56.4 53.8 52.4 50.4 54.8 49.8 52.6 58.8
StableVicuna 55.6 65.2 53.4 50.4 59.0 60.0 51.6 50.4 49.4 52.0 52.4 54.0 58.2
ChatGPT 54.6 59.6 56.4 53.6 53.8 51.4 51.4 51.6 50.4 52.6 54.0 55.0 59.2
GPT-4 59.3 72.6 58.8 53.0 62.0 61.0 53.0 50.0 54.0 48.2 52.0 57.6 64.6

XLMR-Base

GEN

Dolly-v2 59.0 64.4 58.8 52.8 60.8 61.0 50.8 55.6 60.4 58.0 57.2 58.6 59.0
StableVicuna 58.5 60.4 59.4 53.6 60.8 56.8 49.2 56.0 61.2 60.4 54.8 59.6 58.6
ChatGPT 58.8 62.4 56.4 52.4 61.4 58.6 52.2 52.0 63.4 61.2 56.4 59.6 62.8
GPT-4 63.6 67.0 62.4 52.0 68.6 62.6 51.8 58.6 65.4 64.8 63.2 66.6 69.6

GEN+ORI

Dolly-v2 58.7 65.6 57.6 52.2 60.8 58.4 52.4 58.2 57.4 58.0 58.4 58.0 59.8
StableVicuna 61.1 65.0 62.4 49.4 64.2 62.4 46.2 60.4 59.6 58.0 58.0 63.0 63.4
ChatGPT 59.8 63.8 61.6 51.6 62.6 59.8 51.2 51.6 60.4 61.6 61.8 64.8 62.0
GPT-4 63.6 69.6 63.8 51.2 67.2 62.4 52.6 58.4 63.8 66.0 64.2 66.8 69.4

XLMR-Large

GEN

Dolly-v2 59.6 62.4 58.6 49.6 64.8 59.2 50.6 56.8 60.8 58.8 57.0 61.0 63.0
StableVicuna 65.7 71.4 66.2 50.4 71.4 70.2 50.0 60.0 64.0 63.6 68.0 68.2 69.8
ChatGPT 65.2 71.2 64.6 51.6 70.8 66.6 51.0 58.8 66.0 68.2 69.0 68.8 68.8
GPT-4 73.6 83.2 71.2 52.0 81.2 78.2 51.0 62.2 76.6 77.4 75.0 78.4 79.0

GEN+ORI

Dolly-v2 66.4 74.2 62.8 53.0 72.0 70.4 46.2 61.6 65.6 66.2 69.6 67.6 70.6
StableVicuna 69.9 76.0 69.8 51.2 75.0 74.2 51.2 64.4 70.2 71.6 72.2 72.6 75.4
ChatGPT 69.5 76.4 69.8 48.2 76.0 72.8 50.8 63.4 67.8 70.8 70.2 73.4 77.8
GPT-4 73.7 84.6 70.4 50.0 80.8 80.2 51.8 65.8 72.8 76.0 74.8 78.4 80.4

Table 8: Accuracy on XCOPA with English generated data from different LLMs.
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Fine-tuned Training data LLM AVG EN FR JA PT RU ZH

MBERT

GEN

Dolly-v2 56.47 71.24 53.01 52.45 53.23 54.92 53.97
StableVicuna 53.73 54.94 56.63 50.26 50.57 52.06 57.94
ChatGPT 56.00 54.94 54.22 54.01 52.09 55.87 64.88
GPT-4 54.90 56.22 56.63 52.55 51.71 52.38 59.92

GEN+ORI

Dolly-v2 59.32 71.24 57.83 53.81 56.65 59.05 57.34
StableVicuna 58.46 57.94 63.86 53.81 57.41 58.41 59.33
ChatGPT 58.26 56.65 66.27 53.60 56.27 60.00 56.75
GPT-4 57.48 53.65 62.65 54.43 55.89 57.14 61.11

XLMR-Base

GEN

Dolly-v2 59.63 71.24 57.83 55.79 57.03 57.78 58.13
StableVicuna 58.95 60.09 55.42 57.35 52.47 58.73 69.64
ChatGPT 62.69 69.10 60.24 61.42 57.03 61.27 67.06
GPT-4 63.32 69.10 61.45 61.52 56.65 60.95 70.24

GEN+ORI

Dolly-v2 66.33 75.54 63.86 65.80 64.26 62.86 65.67
StableVicuna 65.97 64.38 66.27 67.15 63.88 65.71 68.45
ChatGPT 65.94 65.24 60.24 68.93 70.72 62.86 67.66

GPT-4 66.88 68.24 67.47 66.94 63.88 63.49 71.23

XLMR-Large

GEN

Dolly-v2 76.86 87.55 67.47 81.02 76.43 74.29 74.40
StableVicuna 68.22 74.25 63.86 68.20 66.16 63.81 73.02
ChatGPT 73.20 81.97 66.27 73.10 66.92 72.38 78.57
GPT-4 76.37 81.55 74.70 75.91 71.86 75.24 78.97

GEN+ORI

Dolly-v2 83.10 90.56 79.52 85.19 84.03 80.95 78.37
StableVicuna 82.02 83.26 80.72 83.84 86.31 82.22 75.79
ChatGPT 83.22 85.84 80.72 87.38 85.93 80.95 78.50
GPT-4 83.52 85.41 81.93 85.92 86.69 80.63 80.56

Table 9: Accuracy on XWinograd with English generated data from different LLMs.

Fine-tuned Training data LLM AVG EN RU ZH ES AR HI ID TE SW EU MY

Dolly-v2 68.7 78.8 71.3 73.6 74.2 67.4 66.9 69.0 65.0 60.9 66.8 62.0
StableVicuna 64.6 71.4 66.8 68.8 68.1 64.3 63.6 66.1 61.2 58.6 63.6 58.4
ChatGPT 64.3 69.7 66.4 68.1 68.0 64.6 64.5 66.6 59.8 59.2 62.3 58.4

GEN

GPT-4 68.0 75.5 70.8 73.3 70.4 67.6 68.2 69.6 63.1 62.3 65.4 62.2

Dolly-v2 68.1 75.7 71.2 72.4 73.2 66.4 67.1 68.9 64.5 61.4 67.1 61.0
StableVicuna 67.3 77.0 71.0 70.2 71.4 67.2 66.5 68.4 62.4 60.5 64.3 61.4
ChatGPT 68.3 76.4 68.5 72.9 73.0 66.3 68.6 71.1 62.0 62.0 67.4 63.4

MBERT

GEN+ORI

GPT-4 69.8 79.5 73.1 75.3 73.4 68.1 69.8 71.9 64.1 62.0 68.9 61.6

Dolly-v2 75.8 81.4 79.2 80.3 78.0 73.6 74.7 80.7 73.0 68.8 72.2 71.7
StableVicuna 69.6 72.3 71.1 71.5 70.4 68.3 70.4 72.1 68.4 65.7 68.0 67.7
ChatGPT 67.4 69.7 68.9 68.5 68.7 66.1 68.2 68.7 67.0 63.7 65.6 66.6

GEN

GPT-4 74.6 78.2 78.0 78.1 77.0 73.5 75.7 77.6 71.7 68.4 73.6 69.2

Dolly-v2 76.5 81.5 80.0 80.5 79.4 75.1 75.0 79.6 74.5 71.5 72.3 72.6
StableVicuna 74.2 79.2 77.4 77.8 76.4 74.0 74.5 78.2 70.2 67.6 71.7 69.6
ChatGPT 74.5 78.0 76.6 78.8 76.2 72.9 73.9 78.9 71.5 69.6 72.3 71.0

XLMR-Base

GEN+ORI

GPT-4 79.3 85.4 83.2 82.6 83.0 78.0 79.9 82.7 75.9 72.9 74.9 74.3

Dolly-v2 84.8 87.4 87.3 87.8 86.6 83.0 84.4 87.1 84.1 81.0 82.9 81.4
StableVicuna 74.6 76.7 75.9 77.4 76.2 72.9 74.5 76.2 74.3 70.8 73.5 72.5
ChatGPT 77.3 78.6 79.9 78.0 77.9 75.8 77.4 78.0 76.4 73.5 77.1 77.7

GEN

GPT-4 86.0 88.5 88.2 88.2 88.0 84.9 85.7 87.8 83.7 81.3 85.6 84.3

Dolly-v2 86.4 89.2 87.2 89.5 87.1 85.2 86.7 87.7 85.0 83.0 85.7 83.8
StableVicuna 84.8 88.4 87.6 87.8 86.6 82.9 83.3 87.4 83.7 81.3 83.7 80.0
ChatGPT 85.8 88.5 88.0 88.3 87.3 83.7 85.9 87.2 83.7 81.6 85.4 83.8

XLMR-Large

GEN+ORI

GPT-4 88.4 92.3 91.5 91.5 90.5 86.4 88.4 91.1 84.8 83.1 87.4 85.2

Table 10: Accuracy on XStoryCloze with English generated data from different LLMs.
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Model Training Data |Data| AVG EN ET HT ID IT QU SW TA TH TR VI ZH

ORI (BASELINE) 400 47.2 53.8 44.2 48.6 47.2 46.2 50.6 45.4 48.4 49.8 49.8 43.6 47.4
GENEN 3.7k 56.0 64.8 54.8 52.6 58.0 57.4 49.8 48.4 55.6 52.8 53.2 53.0 59.0
GENEN + ORI 4.1k 54.6 59.6 56.4 53.6 53.8 51.4 51.4 51.6 50.4 52.6 54.0 55.0 59.2
GENEN + ORI (TLV) 4.1k 57.6 68.0 55.4 54.0 61.2 59.8 51.8 51.2 55.8 54.4 52.2 53.4 59.2
GENEN 28.6k 57.2 66.2 55.8 50.8 58.6 58.2 53.2 51.2 57.2 53.2 52.0 56.0 61.0
GENEN + ORI 29k 57.0 66.6 55.4 51.4 59.2 58.6 52.4 50.8 53.6 53.2 50.0 54.8 62.8
GENEN + ORI (TLV) 29k 57.0 66.6 55.4 51.4 59.2 58.6 52.4 50.8 53.6 53.2 50.0 54.8 62.8
GENXX 3.6k/lang 57.5 64.8 57.8 57.4 58.0 60.2 54.6 51.4 53.0 – – 53.0 62.0
GENXX + ORI 4k 56.8 59.6 58.8 54.6 56.2 61.2 53.6 54.6 53.6 – – 52.0 60.2
GENTrans

EN +ORI 4k 58.7 59.6 59.8 59.8 62.8 61.0 – 52.6 56.8 53.4 56.2 58.2 59.4

MBERT

GENTrans
EN +ORI 29k/lang 60.6 66.6 61.8 57.8 60.8 62.2 – 53.2 58.4 53.2 63.0 60.6 63.8

ORI (BASELINE) 400 55.6 57.6 54.6 50.6 59.6 54.8 46.0 55.0 53.4 56.2 55.2 54.8 59.6
GENEN 3.7k 58.8 62.4 56.4 52.4 61.4 58.6 52.2 52.0 63.4 61.2 56.4 59.6 62.8
GENEN + ORI 4.1k 59.8 63.8 61.6 51.6 62.6 59.8 51.2 51.6 60.4 61.6 61.8 64.8 62.0
GENEN + ORI (TLV) 4.1k 60.7 63.2 61.6 51.4 64.8 61.2 51.2 53.6 62.6 63.0 58.2 61.0 66.6
GENEN 28.6k 60.8 66.4 57.2 56.0 66.4 61.2 53.0 53.8 60.0 61.6 56.6 61.4 64.6
GENEN + ORI 29k 62.1 64.6 61.8 50.6 66.8 63.6 48.0 55.6 65.8 63.6 57.2 63.2 66.8
GENEN + ORI (TLV) 29k 60.9 66.4 61.8 49.8 66.2 59.8 54.6 53.4 62.4 63.8 58.2 62.8 65.8
GENXX 3.6k/lang 58.8 62.4 57.0 55.6 61.4 59.0 55.6 54.4 56.8 – – 60.6 62.0
GENXX + ORI 4k 59.9 63.8 60.6 55.0 64.6 59.6 52.6 54.6 56.4 – – 59.6 64.8
GENTrans

EN +ORI 4k 61.1 63.8 60.0 58.0 65.0 60.8 – 53.8 60.2 66.2 56.6 62.6 66.0

XLMR-BASE

GENTrans
EN +ORI 29k/lang 62.2 64.6 63.2 57.2 64.8 61.2 – 55.0 61.2 59.2 59.5 64.2 68.4

ORI (BASELINE) 400 64.4 71.4 62.8 51.4 69.0 65.8 52.0 60.6 62.0 64.0 61.2 69.4 66.8
GENEN 3.7k 65.2 71.2 64.6 51.6 70.8 66.6 51.0 58.8 66.0 68.2 69.0 68.8 68.8
GENEN + ORI 4.1k 69.5 76.4 69.8 48.2 76.0 72.8 50.8 63.4 67.8 70.8 70.2 73.4 77.8
GENEN + ORI (TLV) 4.1k 71.9 80.6 71.6 50.8 78.6 77.2 51.8 63.0 69.2 71.2 72.8 77.2 78.8
GENEN 28.6k 71.8 80.6 74.4 51.0 78.4 75.2 51.2 63.4 69.8 70.6 69.8 75.6 77.4
GENEN + ORI 29k 72.4 81.0 73.8 54.4 80.2 75.2 48.8 61.4 70.4 73.8 70.4 75.6 79.8
GENEN + ORI (TLV) 29k 72.4 81.0 73.8 54.4 80.2 75.2 48.8 61.0 70.4 73.8 70.4 75.6 79.8
GENXX 3.6k/lang 63.4 71.2 62.6 54.2 71.0 65.8 49.4 53.8 56.4 – – 64.0 71.6
GENXX + ORI 4k 65.2 76.4 62.4 55.2 75.0 62.2 54.0 58.2 55.4 – – 66.2 76.2
GENTrans

EN +ORI 4k 67.0 76.4 60.0 59.6 66.2 66.6 – 59.0 64.8 71.2 65.2 74.8 75.6

XLMR-LARGE

GENTrans
EN +ORI 29k/lang 71.5 81.0 71.8 57.2 79.8 74.4 – 54.8 71.4 72.6 70.0 77.2 75.6

Table 11: Full results on XCOPA (with ChatGPT-generated data). +TLV corresponds to including the original
validation set in all Target Languages in the Validation set. Rows are sorted by the number of instances used in
training. AVG shows average results for languages that are available in all settings (excl. QU, TH, TR).
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Model Training Data AVG EN ET HT ID IT QU SW TA TH TR VI ZH

mBERT

ORI 47.2 53.8 44.2 48.6 47.2 46.2 50.6 45.4 48.4 49.8 49.8 43.6 47.4
GENEN 58.2 69.2 59.2 54.0 60.6 59.2 50.8 48.2 55.0 48.2 53.8 57.6 61.0
GENEN +ORI 59.3 72.6 58.8 53.0 62.0 61.0 53.0 50.0 54.0 48.2 52.0 57.6 64.6
GENXX 60.2 69.2 59.4 56.2 60.2 63.8 54.4 55.2 54.0 – – 61.2 62.2
GENXX +ORI 61.8 72.6 61.2 58.2 62.2 66.4 54.4 57.4 53.4 – – 63.0 61.8
GENTrans

EN 61.4 69.2 59.2 56.8 65.4 65.2 – 53.4 56.8 52.6 59.6 61.8 65.0
GENTrans

EN +ORI 62.6 72.6 58.6 55.2 65.6 65.4 – 53.8 62.6 53.2 58.8 64.6 65.4

XLMR-Base

ORI 55.6 57.6 54.6 50.6 59.6 54.8 46.0 55.0 53.4 56.2 55.2 54.8 59.6
GENEN 63.6 67.0 62.4 52.0 68.6 62.6 51.8 58.6 65.4 64.8 63.2 66.6 69.6
GENEN +ORI 63.6 69.6 63.8 51.2 67.2 62.4 52.6 58.4 63.8 66.0 64.2 66.8 69.4
GENXX 63.2 67.0 60.8 56.4 68.6 62.4 57.4 58.2 60.2 – – 64.6 70.4
GENXX +ORI 64.0 69.6 62.2 56.2 68.6 63.8 56.8 57.8 61.2 – – 66.8 70.0
GENTrans

EN 62.5 67.0 60.0 55.6 66.0 62.4 – 58.0 60.4 64.4 64.6 64.0 68.8
GENTrans

EN +ORI 63.9 69.6 61.6 56.6 68.4 65.2 – 58.2 60.2 68.0 62.6 66.0 69.6

XLMR-Large

ORI 64.4 71.4 62.8 51.4 69.0 65.8 52.0 60.6 62.0 64.0 61.2 69.4 66.8
GENEN 73.6 83.2 71.2 52.0 81.2 78.2 51.0 62.2 76.6 77.4 75.0 78.4 79.0
GENEN +ORI 73.7 84.6 70.4 50.0 80.8 80.2 51.8 65.8 72.8 76.0 74.8 78.4 80.4
GENXX 72.8 83.2 75.2 55.2 78.4 76.0 52.4 63.0 68.2 – – 77.8 78.6
GENXX +ORI 74.6 84.6 77.0 56.0 82.2 77.0 56.0 65.0 73.8 – – 76.2 80.0
GENTrans

EN 71.0 83.2 72.4 55.6 79.4 78.2 – 60.6 67.8 77.8 72.6 64.0 77.4
GENTrans

EN +ORI 74.1 84.6 74.2 57.2 82.0 77.4 – 62.2 75.0 75.2 72.8 74.4 79.6

Table 12: Accuracy on XCOPA. GENEN and GENXX represents 3.7K and 3.6K data in English and target languages
generated by GPT-4. AVG shows average results for languages that are available in all settings (excl. QU, TH, TR).
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