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Abstract

While significant progress has been made in
natural language processing (NLP), existing
methods exhibit limitations in effectively inter-
preting and processing diverse mathematical
modalities. Therefore, we introduce UniMath,
a versatile and unified system designed for mul-
timodal mathematical reasoning tasks. Tack-
ling complex problem-solving in arithmetic,
geometry, and table-based math, UniMath uti-
lizes a fine-tuned T5 model augmented with
a variational autoencoder (VAE)-based image
tokenizer. By jointly training and evaluating
the model on three diverse datasets - SVAMP,
GeoQA, and TableMWP, UniMath achieves
state-of-the-art performance. The model’s gen-
eralization ability is further demonstrated via
fine-tuning on two additional datasets, MathQA
and Geo-Proving. Through comprehensive
evaluations, we show that joint training across
diverse math tasks improves overall model per-
formance and enhances its ability to generalize
across different mathematical reasoning tasks.
This pioneering approach provides a blueprint
and inspires further efforts on unified mathe-
matical reasoning with deep learning systems.

1 Introduction

Mathematical reasoning, an essential aspect of hu-
man intelligence, plays a pivotal role in our daily
lives and decision-making processes (Dehaene and
Sybesma, 1999). Despite the significant progress
in natural language processing (NLP) and research,
the development of a robust NLP system capable of
handling multimodal input and accommodating di-
verse downstream tasks remains an under-explored
challenge. Mathematical reasoning naturally in-
volves a wide range of tasks and modalities, re-
flecting the complexity and adaptability of human
thinking in this area.

One common task used to test mathematical
reasoning skills is solving math word problems
(MWP), which necessitates comprehension of tex-

tual information and execution of symbolic reason-
ing (Hosseini et al., 2014; Kushman et al., 2014).
Another essential aspect of mathematical reason-
ing is geometry problem-solving, which demands
the understanding of visual context and reasoning
on spatial relations (Seo et al., 2015; Lu et al.,
2021; Chen et al., 2022a). Furthermore, table-
based math problem-solving presents a unique chal-
lenge as it requires processing heterogeneous and
structured table content to extract relevant infor-
mation for problem-solving (Pasupat and Liang,
2015; Lu et al., 2023a). Existing work often re-
sorts to task-specific models, each fine-tuned for
a specific modality. While these models perform
efficiently in their specific domains, they struggle
to generalize across different modalities, which is
an essential capability for advanced AI systems.
Observing this limitation, we propose a shift to-
wards a unified model, applicable across all tasks
and grounded in formal symbolic language genera-
tion. Our proposed model aims to address a wide
range of tasks in the mathematical reasoning do-
main with a single adaptable model, improving its
capacity for advanced reasoning similar to human
cognition.

In the pursuit of multimodal reasoning, existing
approaches can be broadly categorized into two
types: 1) Lu et al. (2022) leveraging pre-trained
image captioning models to convert images into tex-
tual descriptions, which are then combined with the
text content, and 2) Chen et al. (2021a, 2022a) em-
ploying pre-trained image feature extractors, such
as ResNet He et al. (2016), to obtain latent repre-
sentations of images and concatenate them with
the latent features of the text component. How-
ever, these approaches exhibit limitations when
applied to mathematical reasoning tasks. Both im-
age captioning and ResNet models are primarily
designed to comprehend and describe real-world
images rather than mathematical diagrams contain-
ing geometric shapes. As a result, these models
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Figure 1: The overall workflow of our proposed UniMath.

may not be suitable for accurately interpreting ge-
ometry images in a mathematical context.

Another challenge in the development of a uni-
fied model for mathematical reasoning is the issue
of data management, including data collection and
tokenization. To achieve unified reasoning, We
need to process geometric diagrams, natural lan-
guages, and symbolic representations. Handling
these various data modalities, which involve tasks
such as pre-processing and tokenization, emerges
as a significant question of exploration. Ensuring
an efficient and coherent process to unify these
divergent data types is critical to the successful im-
plementation and performance of a singular model
for mathematical reasoning.

In this paper, we present UniMath, a unified
mathematical reasoner capable of processing mul-
timodal input, including math word problems
(MWP), geometry problems, and table-based MWP.
We achieve this by fine-tuning a T5 (Chung et al.,
2022) model and augmenting its vocabulary with
tokenized image representations generated by train-
able VQ-VAE (Van Den Oord et al., 2017; Razavi
et al., 2019). We jointly train and evaluate our
model on three held-in datasets, i.e., SVAMP (Pa-
tel et al., 2021), GeoQA (Chen et al., 2021a) and
TableMWP (Lu et al., 2023a). Also, we fine-
tune our UniMath towards two held-out datasets
MathQA (Amini et al., 2019) and Geo-Proving
(Chen et al., 2022a) to demonstrate its potential on
external tasks. Furthermore, we conduct a com-
prehensive evaluation of different data tokeniza-
tion methods and examine the impact of chain-
of-thought explanations in training such a multi-
modal reasoner. We believe that our work serves
as a pioneering study in the development of unified
mathematical reasoning systems, inspiring future
researchers to devise more advanced approaches in
this domain.

2 Our Approach

The architecture of our proposed model can be
found in Fig. 1, a detailed description of our frame-
work is located in the appendix. We build UniMath
on a T5 backbone (also extendable to any encoder-
decoder LLMs). For the MWP solving and table
MWP solving task, we train the model with textual
problem description as input and the answer as out-
put. For tables, we follow the approach in (Lu et al.,
2023a) to transform tables into texts. Also, We sep-
arate the explanation and answer of the TableMWP
dataset into two targets during training controlled
by different prefixes. For geometry problems, we
integrate an external Vector Quantized Variational
Autoencoders (VQ-VAE) as our image encoder to
transform image patches to new tokens and con-
catenate them with the textual tokens as the input.
This framework is flexible to deal with text-only
input and text-image mixed input. Also, the image
tokenizer employed in our approach is flexible and
compatible with various backbone models, allow-
ing for the integration of more advanced geome-
try feature extractors when they become available.
Empirically, we use two 2-layer ResBlocks as our
encoder and decoder in VQ-VAE. Our UniMath is
trained by simply adding the VAE reconstruction
loss and the cross-entropy loss of our pre-trained
language model backbone. During testing, the de-
coder part of VQ-VAE is discarded.

3 Experiments

3.1 Held-in Datasets
SVAMP The SVAMP dataset (Patel et al., 2021)
comprises 1,000 English math word problems,
created by introducing challenging variations to
existing problems. We adopt the original eval-
uation settings proposed in (Patel et al., 2021),
where MAWPS (Koncel-Kedziorski et al., 2016)
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Held-in Tasks Held-out Tasks

SVAMP GeoQA TableMWP MathQA UniGeo-Proving

Best Fine-tuned Baseline 47.3a 46.8b∗ 58.5c 78.6a 80.6b∗

Train Individually on T5-base 29.8 43.7 62.7 82.3 82.7
Train Individually on Flan-T5-base 30.5 45.1 64.5 82.0 83.0
UniMath-T5-base 37.3 49.6 65.4 83.3 82.9
UniMath-Flan-T5-base 41.8 50.0 66.5 82.7 83.0

Table 1: The comparison between our unified model and baselines in terms of solution accuracy. a: Jie et al. (2022),
b: (Chen et al., 2022a), c: (Lu et al., 2023a). *: Our reproduced results based on the official codes from the authors.

and ASDiv-a (Miao et al., 2020) serve as the train-
ing set and SVAMP is used as the testing set.

GeoQA GeoQA (Chen et al., 2021a) contains
4,998 diverse real-world geometry problems found
in Chinese middle school exams. Each problem
is further annotated with specific programs that
outline the problem-solving process. All problems
in this dataset are of the calculation type, implying
that their solutions are derived and calculated from
the problem description. We utilize the English
version of this dataset provided in (Chen et al.,
2022a) to ensure linguistic consistency with other
datasets.

TableMWP The TabMWP dataset (Lu et al.,
2023a) includes 38,431 tabular math word prob-
lems consisting of free-text questions and multiple-
choice questions. A distinguishing feature of
TabMWP is that each problem is accompanied by
a tabular context, in both image format and texual
format, which are essential to solve the problem.

3.2 Held-out Datasets
MathQA MathQA (Amini et al., 2019) contains
37,200 math problems collected from GRE exams.
However, many problems are either unsolvable
through equations or annotated in an incorrect for-
mat. Consequently, we follow Jie et al. (2022) and
select an MWP subset, comprising 16,191 prob-
lems in the training set and 1,601 for testing.

UniGeo-Proving UniGeo-Reasoning (Chen
et al., 2022a) features 9,543 proving problems,
with each entry consisting of a colored geometry
diagram, a description text, and a proof with
reasons. The latter includes the reasoning skills or
geometry theorems applied in each step.

3.3 Implementation Details
We implement our code with Pytorch framework,
all the experimental results can be produced by a

single NVIDIA RTX 3090 GPU. As for hyperpa-
rameters, We utilized a batch size of 16, thereby en-
suring an optimal balance between computational
efficiency and model accuracy. To mitigate the ef-
fect of overfitting and help regularize the model,
we implemented a dropout rate of 0.1. This al-
lowed for a healthy proportion of neurons to be
randomly ignored during training, promoting gen-
eralization and reducing potential over-dependency
on certain features. In addition, we used AdamW
as our optimizer with a learning rate of 0.0004
and weight decay of 0.01, aiding in optimizing our
model’s parameters while controlling for overfit-
ting by preventing the weights from growing too
large. To encourage the model to converge more
reliably during the initial stages of training, we
employed a linear warm-up with ratio of 0.1. Fur-
thermore, to avoid exploding gradients which can
result in destabilization of the training process, we
employed gradient clipping with a maximum gradi-
ent norm of 5.0. This selection of hyperparameters
was strategic, balancing model performance with
computational resource usage.

3.4 Main Results

We evaluated the effectiveness of our UniMath
model on two backbones, T5 and Flan-T5, and
benchmarked it against the best fine-tuned base-
lines (we exclude those prompting-based baselines
that use LLMs), as illustrated in Table 1. First, the
model was jointly trained and evaluated on three
held-in tasks, the results of which are shown in the
first three columns. Then, to test the model’s gen-
eralizability while training on out-of-distribution
data, it was fine-tuned separately on two external
datasets, with the results in the last two columns.
To demonstrate the impact of our unified training
approach, we also provide the accuracies when
each dataset was separately and individually trained
on the same backbone. Notably, UniMath outper-
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forms the baseline in two of the three held-in tasks
and in both held-out tasks. While UniMath does
not beat the DeductiveReasoner (Jie et al., 2022)
on the SVAMP dataset, it should be noted that the
baseline model uses a specialized neural-symbolic
decoder, which typically outperforms a general-
purpose decoder like T5, albeit lacking generaliz-
ability to non-MWPs. The main takeaways are:
1. We successfully obtain an effective unified math-

ematical reasoner with very competitive accu-
racy against state-of-the-art baselines.

2. The mathematical reasoning ability derived
from held-in tasks is able to generalize and help
improve the fine-tuning on held-out tasks.

3.5 Analysis on Symbol Pre-processing
Mathematical problem-solving often involves var-
ious symbolic representations such as +,−,△,⊥
,∼=,≃. Pre-processing these special tokens has
been a topic of interest in recent research (Wang
et al., 2017; Zhang et al., 2020b; Jin et al., 2021;
Chen et al., 2022a). We examined the pre-
processing techniques of two categories of sym-
bols: arithmetic operations (i.e., +,−) and geomet-
ric relations (e.g., ⊥ and ∼=). In Table 2, we show
a comprehensive list of symbol-to-name transfor-
mations. We considered four different settings: 1)

Category Symbol Representation
Arithmetic + cal_add
Arithmetic - cal_minus
Arithmetic * cal_multiply
Arithmetic / cal_divide
Geometric ̸= not_equal
Geometric ≈ approximate
Geometric △ triangle
Geometric ∠ angle
Geometric ∥ parallel
Geometric ⊙ circle
Geometric ⊥ perpendicular
Geometric ∼= congruent
Geometric □ parallelogram
Geometric ∼ similar
Geometric ⌢ arc

Table 2: The symbol-to-name transformations used in
our paper. We transform all geometric relations during
data pre-processing to help the language model under-
stand them.

no transformation, 2) transform arithmetic oper-
ators only, 3) transform geometric relations only,

4) transform both. As evidenced by the results
in Figure 2(a), arithmetic operators perform opti-
mally when preserved in their original form, while
geometric symbols are better when transcribed
into their natural language counterparts such as
perpendicular_to and congruent_to like func-
tion names. This discrepancy may stem from the
higher frequency of arithmetic operators in the pre-
training corpus, thereby enabling models like T5 to
have a more nuanced understanding of them com-
pared to the less common geometric symbols. In
our UniMath tokenizer, we only transform geomet-
ric relations according to the results of our analysis
in this section.

3.6 Analysis on Image Tokenizer
Geometry problem-solving necessitates models ca-
pable of deciphering geometric diagrams. Exist-
ing techniques, such as those referenced in (Chen
et al., 2021a, 2022a), employ frozen ResNet-101
to derive embeddings by treating diagrams as im-
ages. However, given the significant differences
between geometric diagrams and real-world im-
ages, the suitability of ResNet is questionable. In
this study, documented in Figure 2(b), we carry
out a thorough examination of various image to-
kenizer designs. We considered five different set-
tings: 1) Frozen ResNet, 2) Trainable ResNet, 3)
Two trainable Resblocks, 4) Trainable ResNet +
VQ-VAE, and 5) Two trainable Resblocks + VQ-
VAE. Notably, while the ResNet was pre-trained
on ImageNet, the Resblocks were randomly initial-
ized. Additionally, it’s worth mentioning that two
Resblocks have significantly fewer parameters than
ResNet. Our findings reveal that ResNet coupled
with VQ-VAE yields the most impressive results,
though two ResBlocks in conjunction with VQ-
VAE can achieve comparable performance with
much fewer parameters. This result underscores
the beneficial impact of VQ-VAE reconstruction
loss in enhancing image tokenizer efficacy. Also,
we can conclude that the pre-trained ResNet does
not contribute as effectively to geometric diagram
comprehension.

3.7 Analysis on Chain-of-Thought
Explanations

One of our held-in tasks, namely TableMWP, is
originally annotated with Chain-of-Thought (CoT)
(Wei et al., 2022) explanations (i.e., step-by-step
descriptions of solutions). We evaluated perfor-
mance across three different settings: 1) Omitting
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Figure 2: Detailed analysis on pre-processing, tokenizers, and chain-of-thought explanations. The descriptions of
different settings are in italics in Section 3.5, 3.6 and 3.7.

CoT and focusing solely on the final answer; 2)
Combining CoT with the final answer to form a
joint target; and 3) Generating CoT and the final
answer with different prefixes, essentially splitting
them into two tasks.

Our experimental findings, detailed in Figure
2(c), indicate that incorporating the CoT method
can considerably improve the problem-solving ac-
curacy, not only on the TableMWP dataset but also
on SVAMP, a dataset not originally annotated with
CoT. This suggests a promising capacity for CoT
to be generalized to external datasets. Additionally,
our results show that multi-task learning tends to be
the most effective approach compared to the other
two strategies we examined.

4 Related Work

Math Word Problem Solving: Math word prob-
lem solving is a prevalent evaluation method for
NLP models (Amini et al., 2019; Patel et al., 2021;
Cobbe et al., 2021). Early solutions relied on statis-
tical and rule-based parsing (Hosseini et al., 2014;
Koncel-Kedziorski et al., 2015), and have evolved
into Seq2Seq-based neural networks (Xie and Sun,
2019; Zhang et al., 2020a; Liang et al., 2022a,b)
and LLM-enhanced solvers (Liang et al., 2023a,b).
Geometry Problem Solving: Geometry problem
solving often necessitates the understanding of vi-
sual diagrams and textual descriptions. State-of-
the-art models and datasets, namely Geometry3K
(Lu et al., 2021), GeoQA (Chen et al., 2021a),
GeoQA+ (Cao and Xiao, 2022), and UniGeo (Chen
et al., 2022a), are aiming to enhance both perfor-
mance and explainability.
Structural Problem Solving: Structural math
problems, especially those entailing tables, require
an intricate blend of interpretation and reasoning.

For example, TAPAS (Herzig et al., 2020) intro-
duced a new way of parsing tabular data using
pre-training on a large corpus of tables. Lu et al.
(2023a) introduced a new dataset and employed re-
inforcement learning to select in-context examples.

For a more detailed summary of mathematical
problem solving, please refer to the survey (Lu
et al., 2023b).
Multimodal Foundation Models: Pioneering
works such as BEiT (Bao et al., 2022) and Uni-
perceiver (Zhu et al., 2022) have been investigat-
ing pre-training strategies for handling multimodal
data. Further, all-in-one Transformer (Wang et al.,
2023) and OFA (Wang et al., 2022) have shown
promise in providing a unified approach to handling
diverse modalities. ML-MFSL (Najdenkoska et al.,
2023) introduced meta-learning that enables flexi-
ble adaptation across vision and language tasks.

5 Conclusion

In this work, we introduce UniMath, a unified math-
ematical reasoner, aiming to address diverse and
multi-modal mathematical tasks. Our extensive
experiments demonstrate its superior performance
and generalizability across various mathematical
modalities, outperforming many task-specific base-
lines. Moreover, we share key insights on data pre-
processing and tokenization techniques to achieve
our unification goal. We further discuss the impact
of chain-of-thought explanations in the training pro-
cess of such a unified reasoner. We hope that this
work will encourage further exploration in NLP,
and contribute to the broader goal of achieving
human-like mathematical reasoning in AI systems.

Codes and data are available at https://github.
com/Zhenwen-NLP/UniMath.
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Limitations

Our UniMath model, while effective, does have
some limitations that need to be addressed. First,
we currently use convolutional neural networks,
specifically ResNet or Resblocks, to process ge-
ometry diagrams. Although this is a common ap-
proach in previous studies, it might not be the best
solution for every situation. In other words, there
might be a more effective way to handle geom-
etry diagrams. In our future work, we plan to
incorporate a more specialized tool, a geometric
parser, into our model to improve how it handles
these tasks. Secondly, UniMath is built around
an encoder-decoder structure, similar to the T5
model. The adaptability of our approach on popu-
lar decoder-only models, like BLOOM (Scao et al.,
2022) and LLaMA (Touvron et al., 2023) models,
is still unknown. In future work, we intend to ex-
plore how we can add more tokenizers to these
decoder-only models.
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A Appendix

A.1 Our Approach

Our proposed method builds upon the T5 model
series (Raffel et al., 2020; Chung et al., 2022),
an encoder-decoder transformer architecture that
has shown promising results in various natural lan-
guage processing tasks. The encoder receives in-
puts and the decoder produces results. To enable
the encoder being able to understand geometry
diagrams, we integrate an external Vector Quan-
tized Variational Autoencoder (VQ-VAE) (Van
Den Oord et al., 2017; Razavi et al., 2019) as our
image encoder. This allows us to transform image
patches into tokens, which can then be concate-
nated with the textual tokens to form the input for
UniMath. Because VQ-VAE uses a discrete latent
space to encode the image patches, which can be
efficiently processed by the T5 model.

For the tabular input, we adapt the approach
of (Lu et al., 2023a) to transform tables into tex-
tual representations. Tables can be complex to
parse and understand directly due to their multi-
dimensional nature and various possible formats.
By converting the tables into text, we can leverage
the existing language understanding capabilities
of the T5 model to solve these problems. Specifi-
cally, we convert the raw table text into a flattened
token sequence, with each row separated by a new-
line character ‘\n’ and each column separated by
‘|’. Once the table is transformed into this textual
format, it can be input into UniMath in the same
manner as regular problem descriptions. Also, in
the TableMWP dataset, every problem is annotated
with a step-by-step chain-of-thought (CoT) expla-
nation and the final answer. We apply a multi-task
learning way to separate the CoT and the answer,
which is accomplished by using different prefixes
to control the output of the model, enabling the
model to generate both the problem solution and
the explanation for the solution. An analysis of this
can be found in Section 3.7.

A.1.1 VQ-VAE Implementation
In our implementation of VQ-VAE, we use a se-
ries of two 2-layer ResBlocks as our encoder and
decoder, and each ResBlock is:

y = ReLU(Conv2(ReLU(Conv1(x))) + x)

where x and y are the input and output, respec-
tively.

The loss function we use for training the VQ-
VAE follows the one proposed in (Van Den Oord
et al., 2017). This loss function can be formulated
as the addition of the following three terms:

Lreconstruction = ||x− Decoder(zq)||22
Lquantization = ||sg[ze − zq]||22
Lcommitment = β ∗ ||ze − sg[zq]||22

where x represents the input to the model, which
is the geometry diagram in our model. ze is the out-
put from the encoder, which is a continuous latent
representation. zq is the selected quantized vec-
tor that is closest to ze in the codebook of vectors.
The symbol sg denotes the stop-gradient opera-
tion. This operation is used in the computation of
the quantization loss and commitment loss. When
the stop-gradient operation is applied to a variable,
during backpropagation, no gradient will be back-
propagated through this variable. This means that
the stop-gradient operation prevents its input from
being updated by gradient descent during training.
The reconstruction loss trains the image encoder
and decoder to reconstruct the input image. The
quantization loss encourages the quantized embed-
ding to move towards the latent feature generated
by the encoder. The commitment loss encourages
the output of the encoder to stay close to the chosen
embedding vector, preventing the encoder’s output
from fluctuating too frequently between different
code vectors.

A.1.2 Training and Testing
The training of UniMath is done by combining the
VAE reconstruction loss with the cross-entropy loss
of our T5 backbone. This results in a hybrid loss
function that optimizes both the language under-
standing and image encoding capabilities of Uni-
Math. During the testing phase, we only retain
the encoder part of the VQ-VAE. The decoder part,
which is used during training to reconstruct the
original image, is discarded.

To sum up, our UniMath model is a comprehen-
sive approach that handles various types of math
problems, including text-based problems, table-
based problems, and geometry problems, by com-
bining the power of a transformer-based language
model with a VQ-VAE-based image encoder. This
combination allows UniMath to effectively inter-
pret and solve a wide range of math problems.
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