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Abstract

Implicit Discourse Relation Recognition
(IDRR), which infers discourse relations
without the help of explicit connectives,
is still a crucial and challenging task for
discourse parsing. Recent works tend to
exploit the hierarchical structure information
from the annotated senses, which demonstrate
enhanced discourse relation representations
can be obtained by integrating sense hierarchy.
Nevertheless, the performance and robustness
for IDRR are significantly constrained by the
availability of annotated data. Fortunately,
there is a wealth of unannotated utterances
with explicit connectives, that can be utilized to
acquire enriched discourse relation features. In
light of such motivation, we propose a Prompt-
based Logical Semantics Enhancement (PLSE)
method for IDRR. Essentially, our method
seamlessly injects knowledge relevant to
discourse relation into pre-trained language
models through prompt-based connective
prediction. Furthermore, considering the
prompt-based connective prediction exhibits
local dependencies due to the deficiency
of masked language model (MLM) in cap-
turing global semantics, we design a novel
self-supervised learning objective based on
mutual information maximization to derive
enhanced representations of logical semantics
for IDRR. Experimental results on PDTB 2.0
and CoNLL16 datasets demonstrate that our
method achieves outstanding and consistent
performance against the current state-of-the-art
models.1

1 Introduction

Implicit discourse relation recognition (IDRR) fo-
cuses on identifying semantic relations between
two arguments (sentences or clauses), with the ab-
sence of explicit connectives (e.g., however, be-

∗∗Corresponding author.
1Our code will be released at https://github.com/

lalalamdbf/PLSE_IDRR.

Figure 1: An unannotated instance with an explicit con-
nective and an IDRR instance from Gigaword (Napoles
et al., 2012) and PDTB 2.0 (Prasad et al., 2008) respec-
tively. For IDRR, the Implicit Connective is absent in
the raw text, which are assigned by the annotator based
on the semantic relations between Argument1 and Argu-
ment2.

cause). As a fundamental and crucial task in dis-
course parsing, IDRR has benefited a multitude
of natural language processing (NLP) downstream
tasks, such as question answering (Rutherford and
Xue, 2015), text summarization (Cohan et al., 2018)
and event relation extraction (Tang et al., 2021). Ex-
plicit discourse relation recognition (EDRR) has
already incontrovertibly demonstrated the remark-
able effectiveness by utilizing explicit connectives
in discerning discourse relation type (Varia et al.,
2019a). However, implicit discourse relation recog-
nition remains a challenging and demanding task
for researchers due to the absence of connectives.

Early works based on traditional machine learn-
ing are dedicated to the extraction of intricate syn-
tax features (Lin et al., 2009; Park and Cardie,
2012). With the rapid development of deep learn-
ing, pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), have remarkably improved the perfor-
mance of IDRR. Recently, there has been a grow-
ing inclination among various work to exploit the
multi-level hierarchical information (an instance in-
troduced in Appendix A.1) derived from annotated
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senses (Wu et al., 2022; Jiang et al., 2022; Long
and Webber, 2022; Chan et al., 2023b). Neverthe-
less, such usage exhibits an excessive reliance on
the annotated data, thereby restricting the poten-
tial of IDRR for further expansion to some degree.
Fortunately, there exists a plethora of unannotated
utterances containing explicit connectives that can
be effectively utilized to enhance discourse relation
representations.

As depicted in Figure 1, even in the absence of
annotated sense, the explicit data can proficiently
convey a Contingency.Cause.Result relation, elu-
cidating a strong correlation between the connec-
tive and the discourse relation. In expectation of
knowledge transfer from explicit discourse rela-
tions to implicit discourse relations, Kishimoto
et al. (2020) has undertaken preliminary investi-
gations into leveraging explicit data and connective
prediction. This work incorporated an auxiliary
pre-training task named explicit connective pre-
diction, which constructed an explicit connective
classifier to output connectives according to the rep-
resentation of the [CLS]. Nonetheless, this method
falls short in terms of intuitive connective predic-
tion through the [CLS] and fails to fully harness
the valuable knowledge gleaned from the masked
language model (MLM) task. Besides, Zhou et al.
(2022) proposed a prompt-based connective pre-
diction (PCP) method, but their approach relies on
Prefix-Prompt, which is not inherently intuitive and
introduces additional complexity of inference.

In this paper, we propose a novel Prompt-based
Logical Semantics Enhancement (PLSE) method
for implicit discourse relation recognition. Specifi-
cally, we manually design a Cloze-Prompt template
for explicit connective prediction (pre-training)
and implicit connective prediction (prompt-tuning),
which achieves a seamless and intuitive integration
between the pre-training and the downstream task.
On the other hand, previous work (Fu et al., 2022)
has revealed that the contextualized representations
learned by MLM lack the ability to capture global
semantics. In order to facilitate connective pre-
diction, it is important to have a comprehensive
understanding of the text’s global logical seman-
tics. Inspired by recent unsupervised representa-
tion learning with mutual information (Hjelm et al.,
2019; Zhang et al., 2020), we propose a novel self-
supervised learning objective that maximizes the
mutual information (MI) between the connective-
related representation and the global logic-related

semantic representation (detailed in Section 3.2).
This learning procedure fosters the connective-
related representations to effectively capture global
logical semantic information, thereby leading to
enhanced representations of logical semantics.

Our work focuses on identifying implicit inter-
sentential relations, thus evaluating our model on
PDTB 2.0 (Prasad et al., 2008) and CoNLL16 (Xue
et al., 2016) datasets. Since the latest PDTB 3.0
(Webber et al., 2019) introduces numerous intra-
sentential relations, there is a striking difference in
the distribution between inter-sentential and intra-
sentential relations reported by (Liang et al., 2020).
Given this issue, we don’t conduct additional ex-
periments on PDTB 3.0.

The main contributions of this paper are summa-
rized as follows:

• We propose a prompt-based logical semantics en-
hancement method for IDRR, which sufficiently
exploits unannotated utterances with connectives
to learn better discourse relation representations.

• Our proposed connective prediction based on
Cloze-Prompt seamlessly injects knowledge re-
lated to discourse relation into PLMs and bridges
the gap between the pre-training and the down-
stream task.

• Our method, aiming at capturing global logical
semantics information through MI maximization,
effectively results in enhanced discourse relation
representations.

2 Related Work

Prompt-based Learning Along with the boom-
ing development of large-scale PLMs like BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
T5 (Raffel et al., 2020) and GPT3 (Brown et al.,
2020), prompt-based learning has become a new
paradigm in the filed of natural language process-
ing (Liu et al., 2021). In contrast to the fine-tuning
paradigm, prompt-based methods reformulate the
downstream tasks to match the pre-training objec-
tive. For example, Schick and Schütze (2021) con-
verted a diverse set of classification problems into
cloze tasks by constructing appropriate prompts
and verbalizers that associate specific filled words
with predicted categories.

Representation Learning with MI Methods
based on mutual information have a long history
in unsupervised representation learning, such as
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Figure 2: The overall architecture of our framework. It consists of the pre-training phase (a) and the prompt-tuning
phase (b). In the pre-training phase, explicit data is automatically extracted from an unannotated corpus, while in
the prompt-tuning phase, implicit data is randomly selected from the training data.

the infomax principle (Linsker, 1988; Bell and Se-
jnowski, 1995) and ICA algorithms (Hyvärinen and
Pajunen, 1999). Alemi et al. (2016) was the first to
integrate MI-related optimization into deep learn-
ing models. From then on, numerous studies have
demonstrated the efficacy of MI-maximization for
unsupervised representation learning (Hjelm et al.,
2019; Zhang et al., 2020; Kong et al., 2019). In-
spired by these superior works, we explore how to
derive enhanced discourse relation representations
by incorporating global logical semantic informa-
tion through MI-maximization.

Implicit Discourse Relation Recognition For
this task, many prior works based on deep neu-
ral network have proposed various approaches to
exploiting better semantic representation of argu-
ments, such as shallow CNN (Zhang et al., 2015)
and LSTM with multi-level attention (Liu and Li,
2016). Recently, PLMs have substantially im-
proved the performance of IDRR by leveraging
their robust contextualized representations (Shi and
Demberg, 2019; Liu et al., 2020). Furthermore,
Kishimoto et al. (2020) proposed an auxiliary pre-
training task through unannotated explicit data and
connective prediction. Zhou et al. (2022) proposed
a connective prediction (PCP) method based on
Prefix-Prompt. Regrettably, their approaches fail to

capitalize on the potential of data and PLMs. On
the other hand, the multi-level hierarchical informa-
tion has been explored by (Wu et al., 2022; Jiang
et al., 2022; Long and Webber, 2022; Chan et al.,
2023b). However, the efficacy of these methods
remains significantly constrained by the availability
of annotated data. Therefore, our work is dedicated
to the proficient utilization of unannotated explicit
data via prompt-based connective prediction and
MI-maximization.

3 Methodology

Figure 2 shows the overall architecture of our
framework.2 In the following sections, we will
elaborate on our methodologies including a Cloze-
Prompt template based on connective prediction, a
robust pre-training approach to incorporating ex-
plicit data, and an effective prompt-tuning method
by leveraging implicit data.

3.1 Prompt Templatize

As Figure 2 illustrates, the input argument pair
x = (Arg1, Arg2) is reformulated into a Cloze-

2In the pre-training phase, Figure 2 does not depict the
Masked Language Mask (MLM) task for universal words, yet
it still remains an integral part of our framework to enhance
the universal semantics of discourse relations for PLMs.
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Prompt template by concatenating two arguments
and inserting some PLM-specific tokens such as
[MASK], [CLS] and [SEP]. The [MASK] token is
mainly used to predict the connective between two
arguments, while the [CLS] and [SEP] tokens are
inserted to indicate the beginning and ending of the
input. In addition, the [SEP] tokens also serve the
purpose of delineating the boundaries between two
arguments.

3.2 Pre-training

In this section, we will provide a comprehensive in-
troduction to the pre-training data and tasks, includ-
ing Connectives Mask (CM), Masked Language
Model (MLM), Global Logical Semantics Learn-
ing (GLSL).
Pre-training Data Acquiring implicit discourse
relational data poses an immensely arduous un-
dertaking. Fortunately, explicit discourse relation
data is considerably more accessible owing to the
presence of connectives. Therefore, we approx-
imately collected 0.56 million explicit argument
pairs from an unannotated corpus renowned as Gi-
gaword (Napoles et al., 2012) by leveraging its vast
collection of connectives. The collected data is
divided into training and validation sets in a 9:1
ratio.

Connectives Mask Based on the strong corre-
lation observed between explicit connectives and
discourse relations, we propose the "Connectives
Mask" task as a pivotal approach to incorporat-
ing discourse logical information into PLMs. This
task not only involves learning the intricate rep-
resentations of connectives but also serves as a
vital bridge between the realms of the pre-training
and the downstream task, that facilitates seamless
knowledge transfer. For the mask strategy, we re-
place the connective with (1) the [MASK] token
90 % of the time (2) the unchanged token 10% of
the time. The cross-entropy loss for Connectives
Mask (CM) is as follows:

LCM =
1

N

N∑

i=1

−logP (ci |T (xi)) (1)

where N denotes the number of training examples,
T embodies a prompt template designed to trans-
form the input argument pair x, c represents the
connective token between the argument pair, and
P estimates the probability of the answer word c.

Masked Language Model In order to enhance

the universal semantics of discourse relations for
PLMs, we still retain the Masked Language Model
(MLM) task for universal words. The cross-entropy
loss for MLM is as follows:

LMLM =
1

N

N∑

i=1

mean
j∈masked

−logP (ui,j |T (xi)) (2)

where N and T remain consistent with Equation
(1), u denotes the universal token within the argu-
ment pair, and P approximates the probability of
the answer word u.

Global Logical Semantics Learning To address
the local dependencies of predicted connectives
representations and capture global semantic in-
formation with logical coherence, we propose a
novel method based on MI maximization learn-
ing. Give an argument pair x = (Arg1, Arg2)
and the Cloze-Prompt template T (·), we feed T (x)
through a Transformer (Vaswani et al., 2017) en-
coder to acquire contextualized token representa-
tions H . Specifically, we design a Multi-Head
Cross-Attention (MHCA) module to extract the
global logic-related semantic representation. As
illustrated in the part (a) of Figure 2, we separate H
into Harg1, Hcmask and Harg2, denoting as the con-
textualized representations of arg1, connective
mask and arg2, respectively. The global logic-
related representation HGlogic is calculated through
MHCA module as follows:

Q = Hcmask K = V = Harg1 ⊕Harg2 (3)

HGlogic = MultiHead(Q,K, V ) (4)

The learning objective is to maximize the mutual
information between the connective-related rep-
resentation Hcmask and the global logic-related
representation HGlogic . Due to the notorious in-
tractability of MI estimation in continuous and
high-dimensional settings, we typically resort to
maximizing lower bound estimators of MI. In our
method, we adopt a Jensen-Shannon MI estima-
tor suggested by (Hjelm et al., 2019; Zhang et al.,
2020):

ÎJSD
ω (HGlogic ;Hcmask) :=

EP[−sp(−Tω(HGlogic , Hcmask)]

−EP×P̃[sp(Tω(H
′
Glogic , Hcmask)]

(5)

where Tω is a discrimination function parameter-
ized by a neural network with learnable parame-
ters ω. It takes a pair of the global logic-related

690



representation HGlogic and the connective-related
representation Hcmask as input and generates the
corresponding score to estimate ÎJSD

ω . H ′
Glogic is a

negative example randomly sampled from distribu-
tion P̃ = P, and sp(z) = log(1+ez) is the softplus
function. The end-goal training objective is maxi-
mizing the MI between HGlogic and Hcmask , and
the loss is formulated as follows:

LGLSL = −ÎJSD
ω (HGlogic ;Hcmask) (6)

Through maximizing ÎJSD
ω , The connective-

related representation Hcmask is strongly encour-
aged to maintain a high level of MI with its
global logic-related representation. This will foster
Hcmask to incorporate comprehensive logical se-
mantic information, leading to enhanced discourse
relation representations.

The overall training goal is the combination of
Connectives Mask loss, MaskedLM loss, and
Global Logical Semantics Learning loss:

L = LCM + LMLM + LGLSL (7)

3.3 Prompt-tuning
As depicted in the part (b) of Figure 2, the input
argument pair x = (Arg1, Arg2) and the Cloze-
Prompt template T (·) exhibit a remarkable consis-
tency with the pre-training phase. This noteworthy
alignment indicates that the prompt-tuning through
connective prediction fosters the model to fully
leverage the profound reservoir of discourse rela-
tion knowledge acquired during the pre-training
phase. In order to streamline the downstream task
and avoid introducing additional trainable parame-
ters, the MHCA module isn’t used in the prompt-
tuning phase. Besides, we construct a verbalizer
mapping connectives to implicit discourse relation
labels.

Verbalizer Construction A discrete answer
space, which is a subset of the PLM vocabulary, is
defined for IDRR. Given that the implicit discourse
relational data has already been annotated with ap-
propriate connectives in PDTB 2.0 (Prasad et al.,
2008) and CoNLL16 (Xue et al., 2016) datasets,
we manually select a set of high-frequency and
low-ambiguity connectives as the answer words of
the corresponding discourse relations. Therefore,
we construct the verbalizer mapping connectives to
implicit discourse relation labels for PDTB 2.0 in
Table 1, and the verbalizer for CoNLL16 is shown
in Appendix A.3.

Top-level Second-level Connectives

Comparison
Concession

however
although, though

Contrast but

Contingency
Cause

because, so, thus
consequently, therefore

Pragmatic cause as, since

Expansion

Alternative instead, rather

Conjunction
and, also

fact, furthermore
Instantiation instance, example

List finally

Restatement
specifically

indeed, particular

Temporal
Asynchronous then, after, before

Synchrony meanwhile, when

Table 1: The verbalizer mapping connectives between
implicit discourse relation labels and connectives on
PDTB 2.0 dataset, consisting of four top-level and 11
second-level senses.

The cross-entropy loss for the prompt-tuning is
as follows:

L =
1

N

N∑

i=1

−logP (li = V (ci) |T (xi)) (8)

where N and T remain consistent with Equation
(1), V denotes the verbalizer mapping the connec-
tive c to implicit discourse relation label l, and P
estimates the probability of the gold sense label l.

4 Experiment Settings

4.1 Datasets
The Penn Discourse Treebank 2.0 (PDTB 2.0)
PDTB 2.0 is a large scale corpus containing 2,312
Wall Street Journal (WSJ) articles (Prasad et al.,
2008), that is annotated with information relevant
to discourse relation through a lexically-grounded
approach. This corpus includes three levels of
senses (i.e., classes, types, and sub-types). We
follow the predecessors (Ji and Eisenstein, 2015)
to split sections 2-20, 0-1, and 21-22 as training,
validation, and test sets respectively. We evalu-
ate our framework on the four top-level implicit
discourse classes and the 11 major second-level im-
plicit discourse types by following prior works (Liu
et al., 2019; Jiang et al., 2022; Long and Webber,
2022). The detailed statistics of the top-level and
second-level senses are shown in Appendix A.2.

The CoNLL-2016 Shared Task (CoNLL16)
The CoNLL 2016 shared task (Xue et al., 2016)
provides more abundant annotation for shadow dis-
course parsing. This task consists of two test sets,
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the PDTB section 23 (CoNLL-Test) and Wikinews
texts (CoNLL-Blind), both annotated following the
PDTB annotation guidelines. On the other hand,
CoNLL16 merges several labels to annotate new
senses. For instance, Contingency.Pragmatic cause
is merged into Contingency.Cause.Reason to re-
move the former type with very few samples. There
is a comprehensive list of 14 sense classes to be
classified, detailed cross-level senses as shown in
Appendix A.3.3

4.2 Implementation Details

In our experiments, we utilize the pre-trained
RoBERTa-base (Liu et al., 2019) as our Transform-
ers encoder and employ AdamW (Loshchilov and
Hutter, 2017) as the optimizer. The maximum in-
put sequence length is set to 256. All experiments
are implemented in PyTorch framework by Hug-
gingFace transformers4 (Wolf et al., 2020) on one
48GB NVIDIA A6000 GPU. Next, we will pro-
vide details of the pre-training and prompt-tuning
settings, respectively.

Pre-training Details During the pre-training
phase, we additionally add a MHCA module and
a discriminator Tω to facilitate MI maximization
learning. The MHCA module is a multi-head atten-
tion network, where the number of heads is 6. The
discriminator Tω consists of three feedforward lay-
ers with ReLU activation, and the detailed architec-
ture is depicted in Appendix A.4. We pre-train the
model for two epochs, and other hyper-parameter
settings include a batch size of 64, a warmup ratio
of 0.1, and a learning rate of 1e-5.

Prompt-tuning Details The implementation of
our code refers to OpenPrompt (Ding et al., 2022).
We use Macro-F1 score and Accuracy as evaluation
metric. The training is conducted with 10 epochs,
which selects the model that yields the best perfor-
mance on the validation set. For top-level senses
on PDTB 2.0, we employ a batch size of 64 and
a learning rate of 1e-5. For second-level senses
on PDTB 2.0 and cross-level senses on CoNLL16,
we conducted a meticulous hyper-parameter search
due to the limited number of certain senses. The
bath size and learning rate are set to 16 and 1e-6,
respectively.

3Some instances in PDTB 2.0 and CoNLL16 datasets are
annotated with multiple senses. Following previous works, we
treat them as separate examples during training. At test time,
a prediction is considered correct when it aligns with one of
the ground-truth labels.

4https://github.com/huggingface/transformers

4.3 Baselines
To validate the effectiveness of our method, we
compare it with the most advanced baselines cur-
rently available. Here we mainly introduce the
Baselines that have emerged within the past two
years.

• CG-T5 (Jiang et al., 2021): a joint model that
recognizes the relation label and generates the tar-
get sentence containing the meaning of relations
simultaneously.

• LDSGM (Wu et al., 2022): a label dependence-
aware sequence generation model, which exploits
the multi-level dependence between hierarchi-
cally structured labels.

• PCP (Zhou et al., 2022): a connective prediction
method by applying a Prefix-Prompt template.

• GOLF (Jiang et al., 2022): a contrastive learn-
ing framework by incorporating the information
from global and local hierarchies.

• DiscoPrompt (Chan et al., 2023b): a path pre-
diction method that leverages the hierarchical
structural information and prior knowledge of
connectives.

• ContrastiveIDRR (Long and Webber, 2022): a
contrastive learning method by incorporating the
sense hierarchy and utilizing it to select the nega-
tive examples.

• ChatGPT (Chan et al., 2023a): a method based
on ChatGPT through the utilization of an in-
context learning prompt template.

5 Experimental Results

5.1 Main Results
Table 2 shows the primary experimental results of
our method and other baselines on PDTB 2.0 and
CoNLL16 datasets, in terms of Macro-F1 score and
Accuracy. Classification performance on PDTB 2.0
in terms of F1 score for the four top-level classes
and 11 second-level types is shown in Table 3 and
Table 4. Based on these results, we derive the
following conclusions:

Firstly, our PLSE method has achieved new
state-of-the-art performance on PDTB 2.0 and
CoNLL16 datasets. Specifically, our method ex-
hibits a notable advancement of 1.8% top-level F1,
3.35% top-level accuracy, 0.45% second-level F1,
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Model PDTB-Top PDTB-Second CoNLL-Test CoNLL-Blind
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

MANN (Lan et al., 2017) 47.80 57.39 - - - 40.91 - 40.12
RWP-CNN (Varia et al., 2019b) 50.20 59.13 - - - 39.39 - 39.36
BERT-FT (Kishimoto et al., 2020) 58.48 65.26 - 54.32 - - - -
BMGF-RoBERTa (Liu et al., 2020) 63.39 69.06 35.25 58.13 40.68 57.26 28.98 55.19
CG-T5 (Jiang et al., 2021) 57.18 65.54 37.76 53.13 - - - -
LDSGM (Wu et al., 2022) 63.73 71.18 40.49 60.33 - - - -
PCP (Zhou et al., 2022) 64.95 70.84 41.55 60.54 33.27 55.48 26.00 50.99
GOLF (Jiang et al., 2022) 65.76 72.52 41.74 61.16 - - - -
DiscoPrompt (Chan et al., 2023b) 65.79 71.70 43.68 61.02 45.99 60.84 39.27 57.88
ContrastiveIDRR (Long and Webber, 2022) 69.60 72.18 49.66 61.69 - - - -
ChatGPT (Chan et al., 2023a) 36.11 44.18 16.20 24.54 - - - -

PLSE 71.40 75.43 50.11 64.00 54.69 61.49 39.19 58.35

Table 2: The Macro-F1 score (%) and Accuracy (%) are evaluated on PDTB 2.0 and CoNLL16 datasets. Italics
numbers indicate the reproduced results from (Chan et al., 2023b). Bold numbers correspond to the best results.
Underlined numbers correspond to the second best.

Model Comp. Cont. Exp. Temp.

BMGF-RoBERTa (Liu et al., 2020) 59.44 60.98 77.66 50.26
CG-T5 (Jiang et al., 2021) 55.40 57.04 74.76 41.54
GOLF (Jiang et al., 2022) 67.71 62.90 79.41 54.55
DiscoPrompt (Chan et al., 2023b) 62.55 64.45 78.77 57.41
ContrastiveIDRR (Long and Webber, 2022) 65.84 63.55 79.17 69.86

PLSE 70.93 67.04 81.50 66.13

Table 3: The performance for top-level classes on PDTB
2.0 in terms of F1 score (%).

and 2.31% second-level accuracy over the current
state-of-the-art ContrastiveIDRR model (Long and
Webber, 2022) on PDTB 2.0. Moreover, with re-
gard to CoNLL16, our method also outperforms the
current state-of-the-art DiscoPrompt model (Chan
et al., 2023b) by a margin of 8.70% F1 on CoNLL-
Test and 0.47% accuracy on CoNLL-Blind. For the
performance of top-level classes on PDTB 2.0, our
method significantly improves the performance of
senses, particularly in Comp, Cont and Exp. It sur-
passes the previous best results by 3.22%, 2.59%
and 2.09% F1, respectively, demonstrating a sub-
stantial efficiency of our method. For the perfor-
mance of second-level types on PDTB 2.0, we also
compare our model with the current state-of-the-art
models. As illustrated in Table 4, our results show a
noteworthy enhancement in F1 performance across
five categories of second-level senses. Meanwhile,
our model still remain exceptional average perfor-
mance in most second-level senses.

Secondly, a series of recent works for IDRR (Wu
et al., 2022; Jiang et al., 2022; Chan et al., 2023b;
Long and Webber, 2022) frequently utilize the hi-
erarchical structure information from the annotated
senses, leading to good results. Nevertheless, it’s
crucial to note that the performance and robust-

Second-level Sense GOLF DP Contrast ours

Comp.Concession 0.00 9.09 0.00 0.0
Comp.Contrast 61.95 59.26 62.63 60.28
Cont.Cause 65.35 63.83 65.58 68.36
Cont.Pragmatic Cause 0.00 0.00 0.00 0.00
Exp.Alternative 63.49 72.73 53.85 60.87
Exp.Conjunction 60.28 61.08 58.35 59.80
Exp.Instantiation 75.36 69.96 73.04 76.71
Exp.List 27.78 37.50 34.78 40.00
Exp.Restatement 59.84 60.00 58.45 63.78
Temp.Asynchronous 63.82 57.69 59.79 64.22
Temp.Synchrony 0.00 0.0 78.26 57.14

Table 4: The performance for second-level types on
PDTB 2.0 in terms of F1 score (%). DP and Contrast
indicate the DiscoPrompt and ContrastiveIDRR.

ness of these models are excessively reliant on the
small-scale annotated data, that may pose a stum-
bling block to future research explorations. In the
NLP community, it has become a prevalent trend
to leverage large-scale unlabeled data and design
superior self-supervised learning methods. There-
fore, our work focuses on sufficiently exploiting
unannotated data containing explicit connectives
through prompt-based connective prediction. At
the same time, to tackle the local dependencies of
predicted connectives representations, we design
a MI-maximization strategy, which aids in captur-
ing the global logical semantics information perti-
nent to the predicted connectives. Overall results
demonstrate the great potential of our method.

Finally, we compare our method with ChatGPT
(Chan et al., 2023a), a recent large language model,
on the IDRR task. The performance of ChatGPT
significantly trails our PLSE model by approxi-
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Model Top-level Second-level
F1 Acc. F1 Acc.

PLSE 71.40 75.43 50.11 64.00

w/o LGLSL -MTLcls 68.64 73.23 47.53 63.52
w/o LGLSL -MTLmean 69.68 74.87 48.76 63.43
w/o LGLSL 69.17 74.66 47.94 63.71
w/o LCM 69.61 73.13 48.71 63.61
w/o LMLM 70.12 74.57 48.63 63.43
w/o LGLSL, LCM 68.18 73.23 47.20 63.13
w/o LGLSL, LMLM 68.62 74.95 47.50 63.62
w/o LGLSL, LCM , LMLM 67.12 71.03 46.54 62.17

Table 5: Ablation study on PDTB 2.0 in terms of
Macro-F1 score (%) and Accuracy (%); MTLcls and
MTLmean stand for the multi-task learning method
that additionally utilizes the [CLS] representation or the
mean representation of a sequence to predict senses.

mately 35% F1 and 30% accuracy on PDTB 2.0,
which highlights ChatGPT’s poor capacity to com-
prehend the logical semantics in discourses. There-
fore, further research on IDRR remains crucial and
imperative for the NLP community.

5.2 Ablation Study

To better investigate the efficacy of individual mod-
ules in our framework, we design numerous abla-
tions on Global Logical Semantics Learning,
Connectives Mask and MaskedLM tasks. Ta-
ble 5 indicates that eliminating any of the three
tasks would hurt the performance of our model on
both top-level and second-level senses. It is worth
noting that removing Global Logical Semantics
Learning significantly hurts the performance. Fur-
thermore, to assess the proficiency of Global
Logical Semantics Learning, we compare it
with an auxiliary classification task leveraging the
[CLS] representation or the average representation
of a sequence, which aims to introduce global infor-
mation. The performance’s improvement through
MTLmean highlights the effectiveness of incor-
porating global semantics. Surprisingly, MTLcls

detrimentally impacts the model’s performance.
The reason could be that the [CLS] representation
encompasses a vast amount of information irrele-
vant to global logical semantics, thereby interfer-
ing with connective prediction. Our method con-
siderably outperforms MTLmean, which demon-
strates that our MI maximization strategy by inte-
grating global logical semantics is indeed benefi-
cial for connective prediction. Besides, eliminating
Connectives Mask or MaskedLM also dimin-
ishes the performance of our model, illustrating
that our method can effectively utilize large-scale

Figure 3: Effects of the unannotated data scale on the
test set in PDTB 2.0.

unannotated data to learn better discourse relation
representations by injecting discourse logical se-
mantics and universal semantics into PLMs.

5.3 Data Scale Analysis

To investigate the impact of unannotated data scale
on the performance of our model, we conduct sup-
plementary extension experiments. As show in
Figure 3, the performance swiftly accelerates prior
to reaching a data scale of 500, 000, yet beyond
this threshold, the pace of improvement markedly
decelerates. The primary reason is the difference
in semantic distributions of explicit and implicit
data. For example, the connectives in explicit data
play an essential role in determining the discourse
relations. Conversely, the implicit data does not
contain any connectives, while the discourse rela-
tions of sentences remain unaffected by implicit
connectives in annotations. Therefore, consider-
ing both performance and training cost, we select
unannotated explicit data at a scale of 500, 000.

5.4 Few-Shot Learning

To evaluate the robustness of our model in few-shot
learning, we conduct additional experiments using
10%, 20%, and 50% of training data, respectively.
The results of few-shot learning are summarized
in Figure 4. The orange line illustrates the out-
comes achieved by our PLSE method, while the
blue line depicts the results obtained without pre-
training. The results of the comparison demonstrate
that our method significantly outperforms the base-
line across all metrics. In particular, our method,
when trained on only 50% of training data, achieves
performance comparable to the baseline trained on
full training data, which further underscores the
efficacy of our approach.
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(a) Macro-F1 (top-level) in PDTB 2.0 (b) Macro-F1 (second-level) in PDTB 2.0 (c) Macro-F1 in CoNLL-Test (d) Macro-F1 in CoNLL-Blind

(e) Accuracy (top-level) in PDTB 2.0 (f) Accuracy (second-level) in PDTB 2.0 (g) Accuracy in CoNLL-Test (h) Accuracy in CoNLL-Blind

Figure 4: Performance comparison of few-shot learning on PDTB 2.0 and CoNLL16 datasets.

6 Conclusion

In this paper, we propose a novel prompt-based
logical semantics enhancement method for IDRR.
Our approach sufficiently exploits unannotated ex-
plicit data by seamlessly incorporating discourse
relation knowledge based on Cloze-Prompt con-
nective prediction and comprehensively learning
global logical semantics through MI maximization.
Compared with the current state-of-the-art meth-
ods, our model transcends the limitations of overus-
ing annotated multi-level hierarchical information,
which achieves new state-of-the-art performance
on PDTB 2.0 and CoNLL2016 datasets.

Limitations

Despite achieving outstanding performance, there
are still some limitations of our work, which could
be summarized into the following two aspects. The
first is the different semantic distributions between
explicit and implicit data, as illustrated in Section
5.3, that significantly hampers further improve-
ments of our model’s performance. A promising
future research would involve the exploration of
innovative approaches to bridging the gap between
explicit and implicit data, or the development of
strategies to filter explicit data exhibiting similar
distribution patterns to implicit data. Additionally,
our connective prediction method is limited by its
reliance on single tokens, thereby transforming two-
token connectives into one (e.g., for example →
example). Moreover, it discards three-token con-
nectives entirely (e.g., as soon as). As a result,
our approach doesn’t fully exploit the pre-trained
models and explicit data to some extent. In the

future, we will explore new methods for predicting
multi-token connectives.

Ethics Statement

This study focuses on model evaluation and techni-
cal improvements in fundamental research. There-
fore, we have refrained from implementing any ad-
ditional aggressive filtering techniques on the text
data we utilize, beyond those already applied to
the original datasets obtained from their respective
sources. The text data employed in our research
might possess elements of offensiveness, toxicity,
fairness, or bias, which we haven’t specifically ad-
dressed since they fall outside the primary scope
of this work. Furthermore, we do not see any other
potential risks.

Acknowledgement

The authors would like to thank the organizers of
EMNLP2023 and the reviewers for their helpful
suggestions. This work is partly supported by the
grants from the National Natural Science Founda-
tion of China (No. 62172044) and the Open Project
Program of the National Defense Key Laboratory
of Electronic Information Equipment System Re-
search (No. 614201001032203).

References
Alexander A Alemi, Ian Fischer, Joshua V Dillon, and

Kevin Murphy. 2016. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410.

Anthony J Bell and Terrence J Sejnowski. 1995. An
information-maximization approach to blind separa-

695



tion and blind deconvolution. Neural computation,
7(6):1129–1159.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Chunkit Chan, Jiayang Cheng, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2023a. Chatgpt evaluation on sentence level rela-
tions: A focus on temporal, causal, and discourse
relations. arXiv preprint arXiv:2304.14827.

Chunkit Chan, Xin Liu, Jiayang Cheng, Zihan Li,
Yangqiu Song, Ginny Y Wong, and Simon See.
2023b. Discoprompt: Path prediction prompt tun-
ing for implicit discourse relation recognition. arXiv
preprint arXiv:2305.03973.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of NAACL-HLT, pages 615–621.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
Openprompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 105–113.

Zhiyi Fu, Wangchunshu Zhou, Jingjing Xu, Hao Zhou,
and Lei Li. 2022. Contextual representation learning
beyond masked language modeling. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2701–2714, Dublin, Ireland. Association for
Computational Linguistics.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-
Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. 2019. Learning deep
representations by mutual information estimation and

maximization. In International Conference on Learn-
ing Representations.

Aapo Hyvärinen and Petteri Pajunen. 1999. Nonlin-
ear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429–439.

Yangfeng Ji and Jacob Eisenstein. 2015. One Vector
is Not Enough: Entity-Augmented Distributed Se-
mantics for Discourse Relations. Transactions of the
Association for Computational Linguistics, 3:329–
344.

Feng Jiang, Yaxin Fan, Xiaomin Chu, Peifeng Li, and
Qiaoming Zhu. 2021. Not just classification: Recog-
nizing implicit discourse relation on joint modeling
of classification and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2418–2431, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Yuxin Jiang, Linhan Zhang, and Wei Wang. 2022.
Global and local hierarchy-aware contrastive frame-
work for implicit discourse relation recognition.
arXiv preprint arXiv:2211.13873.

Yudai Kishimoto, Yugo Murawaki, and Sadao Kuro-
hashi. 2020. Adapting BERT to implicit discourse
relation classification with a focus on discourse con-
nectives. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 1152–
1158, Marseille, France. European Language Re-
sources Association.

Lingpeng Kong, Cyprien de Masson d’Autume, Wang
Ling, Lei Yu, Zihang Dai, and Dani Yogatama. 2019.
A mutual information maximization perspective of
language representation learning. arXiv preprint
arXiv:1910.08350.

Man Lan, Jianxiang Wang, Yuanbin Wu, Zheng-Yu Niu,
and Haifeng Wang. 2017. Multi-task attention-based
neural networks for implicit discourse relationship
representation and identification. In Proceedings of
the 2017 conference on empirical methods in natural
language processing, pages 1299–1308.

Li Liang, Zheng Zhao, and Bonnie Webber. 2020. Ex-
tending implicit discourse relation recognition to the
PDTB-3. In Proceedings of the First Workshop on
Computational Approaches to Discourse, pages 135–
147, Online. Association for Computational Linguis-
tics.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the penn
discourse treebank. In Proceedings of the 2009 con-
ference on empirical methods in natural language
processing, pages 343–351.

Ralph Linsker. 1988. Self-organization in a perceptual
network. Computer, 21(03):105–117.

696

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-long.193
https://doi.org/10.18653/v1/2022.acl-long.193
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.1162/tacl_a_00142
https://doi.org/10.18653/v1/2021.emnlp-main.187
https://doi.org/10.18653/v1/2021.emnlp-main.187
https://doi.org/10.18653/v1/2021.emnlp-main.187
https://aclanthology.org/2020.lrec-1.145
https://aclanthology.org/2020.lrec-1.145
https://aclanthology.org/2020.lrec-1.145
https://doi.org/10.18653/v1/2020.codi-1.14
https://doi.org/10.18653/v1/2020.codi-1.14
https://doi.org/10.18653/v1/2020.codi-1.14


Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv e-prints, pages arXiv–2107.

Xin Liu, Jiefu Ou, Yangqiu Song, and Xin Jiang. 2020.
On the importance of word and sentence represen-
tation learning in implicit discourse relation classifi-
cation. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence.

Yang Liu and Sujian Li. 2016. Recognizing implicit
discourse relations via repeated reading: Neural net-
works with multi-level attention. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1224–1233, Austin,
Texas. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Wanqiu Long and Bonnie Webber. 2022. Facilitating
contrastive learning of discourse relational senses by
exploiting the hierarchy of sense relations. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 10704–
10716, Abu Dhabi, United Arab Emirates. Associa-
tion for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Courtney Napoles, Matthew R Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Proceed-
ings of the joint workshop on automatic knowledge
base construction and web-scale knowledge extrac-
tion (AKBC-WEKEX), pages 95–100.

Joonsuk Park and Claire Cardie. 2012. Improving im-
plicit discourse relation recognition through feature
set optimization. In Proceedings of the 13th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 108–112.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The penn discourse treebank
2.0. In LREC.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Attapol Rutherford and Nianwen Xue. 2015. Improving
the inference of implicit discourse relations via classi-
fying explicit discourse connectives. In HLT-NAACL,
pages 799–808.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Wei Shi and Vera Demberg. 2019. Learning to explici-
tate connectives with Seq2Seq network for implicit
discourse relation classification. In Proceedings of
the 13th International Conference on Computational
Semantics - Long Papers, pages 188–199, Gothen-
burg, Sweden. Association for Computational Lin-
guistics.

Jialong Tang, Hongyu Lin, Meng Liao, Yaojie Lu, Xi-
anpei Han, Le Sun, Weijian Xie, and Jin Xu. 2021.
From discourse to narrative: Knowledge projection
for event relation extraction. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 732–742.

Siddharth Varia, Christopher Hidey, and Tuhin
Chakrabarty. 2019a. Discourse relation prediction:
Revisiting word pairs with convolutional networks.
In Proceedings of the 20th annual SIGdial meeting
on discourse and dialogue, pages 442–452.

Siddharth Varia, Christopher Hidey, and Tuhin
Chakrabarty. 2019b. Discourse relation prediction:
Revisiting word pairs with convolutional networks.
In Proceedings of the 20th Annual SIGdial Meeting
on Discourse and Dialogue, pages 442–452, Stock-
holm, Sweden. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The penn discourse treebank 3.0 annota-
tion manual. Philadelphia, University of Pennsylva-
nia, 35:108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Changxing Wu, Liuwen Cao, Yubin Ge, Yang Liu, Min
Zhang, and Jinsong Su. 2022. A label dependence-

697

https://doi.org/10.18653/v1/D16-1130
https://doi.org/10.18653/v1/D16-1130
https://doi.org/10.18653/v1/D16-1130
https://aclanthology.org/2022.emnlp-main.734
https://aclanthology.org/2022.emnlp-main.734
https://aclanthology.org/2022.emnlp-main.734
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/W19-0416
https://doi.org/10.18653/v1/W19-5951
https://doi.org/10.18653/v1/W19-5951
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


aware sequence generation model for multi-level im-
plicit discourse relation recognition. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11486–11494.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Attapol
Rutherford, Bonnie Webber, Chuan Wang, and Hong-
min Wang. 2016. CoNLL 2016 shared task on multi-
lingual shallow discourse parsing. In Proceedings of
the CoNLL-16 shared task, pages 1–19, Berlin, Ger-
many. Association for Computational Linguistics.

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong
Duan, and Junfeng Yao. 2015. Shallow convolutional
neural network for implicit discourse relation recog-
nition. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2230–2235.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maximiza-
tion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1601–1610, Online. Association for
Computational Linguistics.

Hao Zhou, Man Lan, Yuanbin Wu, Yuefeng Chen, and
Meirong Ma. 2022. Prompt-based connective pre-
diction method for fine-grained implicit discourse
relation recognition. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3848–3858, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

A Appendix

A.1 Multi-level Sense Hierarchy

The hierarchies of both PDTB 2.0 and CoNLL16
consist of three levels. According to the PDTB
annotation guidelines, all senses are organized into
a three-layer hierarchical structure. Figure 5 shows
the multi-level sense hierarchy of an IDRR instance
in the PDTB 2.0 corpus.

Figure 5: The multi-level sense hierarchy of an IDRR
instance in the PDTB 2.0 corpus.

A.2 Data Statistics

Top-level Senses Train Dev Test

Comparison (Comp.) 1942 197 152
Contingency (Cont.) 3340 292 279

Expansion (Exp.) 7004 671 574
Temporal (Temp.) 760 64 85

Total 12632 1183 1046

Table 6: Data statistics of four top-level implicit senses
in PDTB 2.0.

Second-level Senses Train Dev Test

Comp.Concession 184 15 17
Comp.Contrast 1610 171 134

Cont.Cause 3277 284 272
Cont.Pragmatic cause 64 7 7

Exp.Alternative 151 10 9
Exp.Conjunction 2882 264 209
Exp.Instantiation 1102 108 122

Exp.List 338 10 12
Exp.Restatement 2458 271 216

Temp.Asynchronous 555 50 57
Temp.Synchrony 204 13 28

Total 12406 1165 1039

Table 7: Data statistics of 11 second-level implicit
senses in PDTB 2.0.

A.3 Verbalizer for CoNLL16

Cross-level Senses Connectives

Comp.Concession
although,
however

Comp.Contrast but
Cont.Cause.Reason because

Cont.Cause.Result
so, consequently,

thus, therefore
Cont.Condition if
Exp.Alternative unless

Exp.Alternative.Chosen alternative instead, rather

Exp.Conjunction
and, also, fact,

furthermore
Exp.Exception except

Exp.Instantiation instance, example

Exp.Restatement
particular, indeed,

specifically
Temp.Asynchronous.Precedence then, before
Temp.Asynchronous.Succession after

Temp.Synchrony meanwhile, when

Table 8: The verbalizer mapping between implicit dis-
course relation labels and connectives on CoNLL16
dataset, including 14 cross-level senses.
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A.4 Mutual Information Discriminator
We concatenate the global logic-related representa-
tion HGlogic and the connective-related representa-
tion Hcmask as input. Then we feed this to the dis-
criminator Tω, which produces scores to maximize
the MI estimator in Equation (5). The architecture
of Tω is shown in Table 9.

Operation Size Activation

Input → Linear layer 1536 → 768 ReLU
Linear layer 768 → 768 ReLU
Linear layer 768 → 1

Table 9: The network architecture of discriminator Tω .
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