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Abstract

Science progresses by building upon the prior
body of knowledge documented in scientific
publications. The acceleration of research
makes it hard to stay up-to-date with the re-
cent developments and to summarize the ever-
growing body of prior work. To address this,
the task of citation text generation aims to pro-
duce accurate textual summaries given a set of
papers-to-cite and the citing paper context. Due
to otherwise rare explicit anchoring of cited
documents in the citing paper, citation text gen-
eration provides an excellent opportunity to
study how humans aggregate and synthesize
textual knowledge from sources. Yet, exist-
ing studies are based upon widely diverging
task definitions, which makes it hard to study
this task systematically. To address this chal-
lenge, we propose CITEBENCH: a benchmark
for citation text generation that unifies multi-
ple diverse datasets and enables standardized
evaluation of citation text generation models
across task designs and domains. Using the new
benchmark, we investigate the performance of
multiple strong baselines, test their transfer-
ability between the datasets, and deliver new
insights into the task definition and evaluation
to guide future research in citation text gen-
eration. We make the code for CITEBENCH
publicly available at https://github.com/
UKPLab/citebench.

1 Introduction

Citations are a key characteristic of scientific com-
munication. A paper is expected to substantiate
its arguments and relate to prior work by means
of exact bibliographic references embedded into
the text, and the accumulated number of citations
serves as a metric of publication importance. The
acceleration of research and publishing in the past
decades makes it increasingly challenging to both
stay up-to-date with the recent publications and to
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Figure 1: Citation text generation task, text in the grey
box adopted from Devlin et al. (2019).

aggregate information from the ever-growing pool
of pre-existing work, affecting both junior and ex-
pert researchers alike. The task of related work
generation aims to facilitate these processes by
providing topic-based multi-document summaries
given a pre-defined set of papers-to-cite (Hu and
Wan, 2014; Hoang and Kan, 2010).

The applications of related work generation
would greatly reduce the reading and writing effort
that accompanies research. Yet, the importance
of related work generation spans beyond practical
applications. Unlike most other genres, scientific
writing enforces the use of citation markers that
point to the information source, which in most
cases is itself a highly structured scientific text
backed by further citations. By circumventing the
challenge of establishing information provenance,
related work generation provides a unique opportu-
nity to study knowledge aggregation and synthesis
from textual sources, and contributes to our better
understanding of text work in general.

A key sub-task of related work generation is
citation text generation – generating citation text
for pre-selected cited papers given the context of
the citing paper (Figure 1). This task is actively
studied by the NLP community and a plethora of
approaches and datasets have been proposed in the
past years: it has been cast as extractive (Hoang
and Kan, 2010; Hu and Wan, 2014) and abstractive
summarization (AbuRa’ed et al., 2020; Xing et al.,
2020; Ge et al., 2021; Chen et al., 2021; Luu et al.,
2021; Lu et al., 2020; Shah and Barzilay, 2021;
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Arita et al., 2022); taking one (AbuRa’ed et al.,
2020; Xing et al., 2020; Ge et al., 2021) or multi-
ple papers as input (Hu and Wan, 2014; Lu et al.,
2020; Chen et al., 2021; Shah and Barzilay, 2021),
and aiming to generate a single citation sentence
(AbuRa’ed et al., 2020; Xing et al., 2020; Ge et al.,
2021; Luu et al., 2021) or a paragraph (Lu et al.,
2020; Chen et al., 2021).

Yet, the divergence in the existing task defini-
tions and evaluation setups (Table 1) prevents the
systematic study of the task. A common task for-
mulation and a unified evaluation setup that would
enable fair comparison of citation text generation
models are missing. To address this gap, we con-
tribute (1) CITEBENCH: a citation text generation
benchmark that brings together four existing task
designs by casting them into a single, general task
definition, and unifying the respective datasets. We
couple our benchmark with (2) a range of baseline
implementations, and (3) a standardized evaluation
kit complemented by additional diagnostic modules
for qualitative intent- and discourse-based analy-
sis of citation texts. We use CITEBENCH to (4)
systematically investigate the task of citation text
generation, revealing qualitative and quantitative
differences between the existing datasets.

CITEBENCH adds substantial value to the re-
search in citation text generation. It enables sys-
tematic comparison of existing approaches across
a range of task architectures and domains, and pro-
vides a scaffolding for future citation text genera-
tion efforts. Our proposed qualitative evaluation
methodology based on citation intent and discourse
structure advances the state of the art in assessing
the performance and properties of citation text gen-
eration models beyond shallow evaluation metrics.

2 Related work

2.1 Benchmarking

NLP benchmarks are unified dataset collections
coupled with evaluation metrics and baselines that
are used to systematically compare the perfor-
mance of NLP systems for the targeted tasks in
a standardized evaluation setup. Well-constructed
benchmarks can boost progress in the correspond-
ing research areas, such as SQuAD (Rajpurkar
et al., 2016) for question answering, GLUE (Wang
et al., 2018) for natural language understanding,
KILT (Petroni et al., 2021) for knowledge-intensive
tasks, GEM (Gehrmann et al., 2021, 2022) for
general-purpose text generation, and DynaBench

(Kiela et al., 2021) for dynamic benchmark data
collection. CITEBENCH is the first benchmark for
the citation text generation task.

2.2 Text generation for scientific documents
Scientific documents are characterized by academic
vocabulary and writing style, wide use of non-
linguistic elements like formulae, tables and fig-
ures, as well as structural elements like abstracts
and citation anchors. Recent years have seen a
rise in natural language generation for scientific
text, including text simplification (Luo et al., 2022),
summarization (Qazvinian and Radev, 2008; Erera
et al., 2019; Cachola et al., 2020), slides gener-
ation (Sun et al., 2021), table-to-text generation
(Moosavi et al., 2021), and citation text genera-
tion (Li and Ouyang, 2022). Closely related to the
task of citation text generation, Luu et al. (2021)
study how scientific papers can relate to each other,
and how these relations can be expressed in text.
Related to our work, Mao et al. (2022) propose
a benchmark for scientific extreme summariza-
tion. Compared to extreme summarization, which
amounts to generating short context-independent
summaries of individual manuscripts, citation text
generation focuses on context-dependent descrip-
tions that relate the cited papers to the citing pa-
per. In line with the recent efforts that address the
lack of systematic automated evaluation of natural
language generation in general (Gehrmann et al.,
2021), our paper contributes the first unified bench-
mark for citation text generation in the scientific
domain.

2.3 Citation text generation
The task of citation text generation was introduced
in Hoang and Kan (2010), who generate a sum-
mary of related work specific to the citing paper.
Since then, several task definitions and setups have
been proposed (Table 1). Lu et al. (2020) cast the
task as generating a multi-paragraph related work
section given the abstracts of the citing paper and
of the cited papers. AbuRa’ed et al. (2020) use the
cited paper’s title and abstract to generate a citation
sentence. Xing et al. (2020) use the abstract of the
cited paper and include context before and after
the citation sentence as the input, and produce the
citation sentence as the output. A recent work by
Chen et al. (2021) uses multiple cited abstracts as
input to generate a related work paragraph. The
great variability of the task definitions and setups
in citation text generation prevents the study of ci-
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Dataset
Input Output

Data sources
Cited document (Dt) Citing context (Cs) Citation text (T )

Single Abs Multi Abs Title Abs Text Sent Para
ABURAED ✓ ✓ ✓ Multiple
CHEN ✓ ✓ S2ORC and Delve
LU ✓ ✓ ✓ arXiv.org and MAG
XING ✓ ✓ ✓ ✓ AAN

Table 1: Overview of datasets in CITEBENCH. Single Abs = Single abstract, i.e., one cited document per instance.
Multi Abs = Multiple abstracts, i.e., multiple cited documents per instance. Abs = Abstract, i.e., a dataset contains
the abstract of the citing paper. Text = a dataset contains additional context from the citing paper. Sent = generation
target is a single sentence. Para = generation target is a paragraph.

Dataset #Train #Validation #Test Inputs > 4,096 tok. Outputs > 1,024 tok.
ABURAED 15,000 1,384 219 0% 0%
LU 30,369 5,066 5,093 <0.001% 0%
XING 77,086 8,566 400 <0.001% <0.001%
CHEN
- Delve 72,927 3,000 3,000 <0.001% 0.004%
- S2ORC 126,655 5,000 5,000 0.017% <0.001%
Total 322,037 23,016 13,712 0.007% <0.001%

Table 2: Datasets statistics. The validation set for XING has been created by us via randomly sampling 10% of the
original training data. Across datasets, very few inputs contain more than 4,096 tokens, and few outputs are longer
than 1,024 tokens. We exploit this property to speed up the evaluation in Section 3.3.

tation text generation methods across datasets and
evaluation setups. Unlike prior work that explores
varying task settings, CITEBENCH brings the di-
verging task definitions and datasets together in a
unified setup. This allows us to compare citation
text generation models across different datasets in
a standardized manner using an extensive set of
quantitative metrics, as well as novel automated
qualitative metrics.

3 Benchmark

3.1 Task definition and datasets

We formalize the task of citation text generation as
follows: Given a set of n (cited) target documents{Dt

1...D
t
n}, a (citing) source document Ds and a

set of m citing document contexts {Cs
1 ...Cs

m} ∈
Ds, generate a citation text T ′ that is as close as
possible to the original citation text T ∈ Ds. This
general definition allows wide variation in how the
task is implemented. The cited document Dt

i can be
represented by the abstract ati , the concatenation
of the title and the abstract, or even the full text
of the paper. The context set Cs covers sentences
before and after the citation text in Ds, as well as
the abstract as ∈Ds.

Such general, open definition allows us to ac-
commodate diverse approaches to the task within
one framework (Table 1). To populate the bench-

mark, we select four datasets, focusing on the task
design and domain variety: ABURAED (AbuRa’ed
et al., 2020), CHEN (Chen et al., 2021), LU (Lu et al.,
2020), and XING (Xing et al., 2020). Dataset trans-
formation details are provided in Appendix A.1.
Table 2 shows the quantitative statistics, and Fig-
ure 2 provides data examples from each dataset.
The CHEN dataset has two subsets – CHEN Delve
and CHEN S2ORC – based on the data source; we
use CHEN to denote the union of the two subsets.
The datasets are distributed under varying licenses;
we have obtained explicit permissions from the au-
thors to use the data for research purposes in cases
when licensing was underspecified (see Ethics state-
ment).

We note that the datasets included in the bench-
mark are not only structurally diverse, but also
cover a wide range of domains, from medicine to
computer science. In particular, ABURAED and XING
exemplify citation text generation in the computa-
tional linguistics domain, CHEN Delve cover the
computer science domain; LU and CHEN S2ORC span
a wide range of domains represented on arxiv.org
and in the S2ORC corpus, respectively, including
biology, medicine and physics.

3.2 Evaluation and analysis kit

CITEBENCH uses two quantitative evaluation met-
rics to estimate the performance of the models.
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extracting structural paraphrases from 
aligned monolingual corpora. we present an 
approach for automatically learning 
paraphrases from…A
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D [0] asked judges whether their 

paraphrases were  roughly 
interchangeable given the genre.[None]

Cited document(s) Citing context(s) Citation text+

this paper proposes a vehicletovehicle 
communication protocol for cooperative 
collision warning . emerging wireless 
technologies for…

in this paper we conduct a feasibility study of 
delaycritical safety applications over 
vehicular ad hoc networks…

medium access control ( mac ) 
issues have been addressed in 
[0]... transportation safety issues 
have been addressed in [1], 
where vehicles communicate with 
each other and with the static 
network nodes such as traffic 
lights , bus shelters…[1]
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N

[None][0]

In this paper, we present a new approach for 
word sense disambiguation (WSD) using…

<abs>Abstract Interaction in virtual reality 
(VR) environments (e.g. grasping and 
manipulating virtual objects) is essential to 
ensure a pleasant and immersive 
experience. In this work, we 
propose…</abs>

Resnik [0] combines the use of 
WordNet … Ng and Lee [1] make 
use of several sources of 
information inside a training 
collection…

LU

[1]

Word groupings useful for language 
processing tasks are increasingly 
available…

<abs>We present a joint language and 
translation model based on a recurrent 
neural network…</abs>
<ctx_b>This is closely related to both the 
proposed RNN Encoder-Decoder…</ctx_b>
<ctx_a>One important difference between 
the proposed RNN 
Encoder-Decoder…</ctx_a>

[0]

In this paper, we propose a novel neural 
network model called RNN Encoder. 
Decoder that consists of two recurrent 
neural networks (RNN). One RNN encodes 
a sequence of symbols into a fixedlength 
vector representation, and the other 
decodes the representation into another 
sequence of symbols… 

More recently, another 
encoder-decoder model using an 
RNN was proposed in [0], where 
the decoder is conditioned on a 
representation of either a source 
sentence or a source context.

X
IN

G

Figure 2: Data examples extracted from the datasets (left). <abs> – citing paper’s abstract, <ctx_b> – context before
target citation text, <ctx_a> – context after target citation text, rightmost column – generated citation text. Title in
ABURAED marked with orange.

ROUGE (Lin, 2004) measures the n-gram over-
lap between the output text and the reference text.
Following the recently published GEM benchmark
(Gehrmann et al., 2021), we use the Huggingface
ROUGE calculation package1, with the original
citing text and the model outputs as the input,
without additional stemming and lemmatization.
BERTScore (Zhang et al., 2020) is a recent alter-
native to ROUGE that uses contextual embeddings
to calculate a similarity score between the model
outputs and reference texts. We use the BERTScore
implementation provided by Huggingface2.

Quantitative metrics offer a coarse, high-level
picture of comparative model performance, but de-
liver little qualitative insights into the model be-
havior. To alleviate this, we enrich our kit with two
recently proposed citation analysis tools to study
the discourse structure of citation texts – citation
intent labeling (Cohan et al., 2019) and CORWA
tagging (Li et al., 2022), discussed below.

Citation intent labeling uses the fine-grained

1https://huggingface.co/spaces/
evaluate-metric/rouge

2https://huggingface.co/spaces/
evaluate-metric/bertscore

ACL-ARC schema by Jurgens et al. (2018)
to classify citation sentences into six intents:
Background provides background information;
CompareOrContrast explains similarities or dif-
ferences between the cited and the citing paper;
Extends builds upon the cited papers; Future
suggests cited papers as potential basis for future
work; Motivation illustrates a research need, and
Uses indicates the use of data or methods from the
cited papers. CORWA uses the sentence classifi-
cation schema proposed by Li et al. (2022), cover-
ing six citation sentence types: Single_summ and
Multi_summ refer to citation sentences that are de-
tailed summaries of a single and multiple cited pa-
pers, respectively; Narrative_cite are high-level
statements related to the cited papers; Reflection
sentences relate the cited paper to the current work
with focus on the citing paper; Transition are
non-citation sentences that connect different parts
of related work, and Other accommodates all other
sentences.

The two schemata offer complementary views
on the citation text analysis: while citation intent fo-
cuses on why a paper is cited, the CORWA schema
offers insights on how the citation text is composed
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and what role it plays in the surrounding text. Both
schemata offer valuable insights on the composi-
tion of citation texts, and our analysis toolkit uses
the publicly available model and implementation by
Cohan et al. (2019)3 for ACL-ARC-style citation
intent analysis, and the publicly available code and
model from Li et al. (2022)4 for CORWA tagging.
The authors report F1 scores of 67.9 for citation
intent classification and 90.8 for CORWA tagging
on ACL Anthology corpus (Bird et al., 2008) and
S2ORC respectively, indicating that the CORWA
tagger can be used with confidence for gaining in-
sights into citation text generation, particularly on
citation texts from the domains similar to ACL and
S2ORC.

3.3 Baselines
We complement our evaluation setup with widely
used unsupervised extractive baselines from pre-
vious work. LEAD (Lu et al., 2020) selects the first
three sentences from the input, represented as the
concatenation of the cited abstracts, as citation
text. TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004) are graph-based
unsupervised models for extractive text summariza-
tion. For TextRank, we use the default settings
from the package summa5. For LexRank, we use
the package lexrank6 with the default settings and
summary size of three sentences to match LEAD.

In addition, we provide a range of new distantly
supervised abstractive baselines based on the pre-
trained Longformer Encoder Decoder (LED) (Belt-
agy et al., 2020). While LED is capable of handling
inputs up to 16,384 tokens, to reduce the compu-
tational overhead, we truncate the inputs to 4,096
tokens, substantially reducing the computation cost
while only affecting a negligible proportion of data
instances (Table 2). We experiment with three
different versions of the LED model: led-base,
led-large and led-large-arxiv 7 which is fine-
tuned on the arXiv dataset for long document sum-
marization (Cohan et al., 2018).

Finally, CITEBENCH features a range of directly
supervised abstractive baselines marked with
*: the *led-base and *led-large-arxiv models

3https://github.com/allenai/scicite
4https://github.com/jacklxc/CORWA
5https://github.com/summanlp/textrank
6https://github.com/crabcamp/lexrank
7https://huggingface.co/allenai/

led-base-16384; https://huggingface.co/allenai/
led-large-16384; https://huggingface.co/allenai/
led-large-16384-arxiv

are fine-tuned on the mixture of all training splits
of all datasets in the benchmark; the *led-base
model is trained for 3 epochs with batch size 16 on
4 GPUs; the *led-large-arxiv model is trained
for 3 epochs with batch size 8 on 4 GPUs. In trans-
fer learning experiments, we train and evaluate the
*led-base-[X] models, each fine-tuned on a spe-
cific dataset X , for example, *led-base-xing.

4 Results

4.1 Baseline performance

Table 3 reports the baseline performance on
the CITEBENCH datasets in ROUGE-L8 and
BERTScore. As a coarse reference point, and
keeping in mind the differences in evaluation
settings (Section 5.1), Lu et al. (2020) report
ROUGE-L score of 30.63 for their best super-
vised, task-specific model, and 18.82 for LEAD. We
note that our extractive LEAD baseline outperforms
the distantly supervised abstractive led-base and
led-large baselines on all datasets in terms of all
different ROUGE metrics and BERTScore. The
led-large-arxiv baseline systematically outper-
forms led-base and led-large as well, which
we attribute to the in-domain fine-tuning on the
arXiv data that consists of scientific text simi-
lar to CITEBENCH datasets. Directly supervised
baselines (*led-base and *led-large-arxiv)
achieve the best overall performance. We note
that with few exceptions the rankings produced by
the two evaluation metrics correlate: the best per-
forming models on ROUGE also achieve the best
performance on BERTScore, except *led-base
that performs best on the CHEN Delve subset
in terms of BERTScore but slightly falls behind
*led-large-arxiv in terms of ROUGE-L.

4.2 Transfer learning results

The unified task formulation in CITEBENCH allows
us to explore transfer learning between different
domains and citation text generation setups. We ex-
amine the transfer learning performance using the
*led-base-[X] models fine-tuned on individual
datasets, starting from the pre-trained led-base
model. Table 4 presents the results in ROUGE-
L and BERTScore; Table 7 (Appendix) provides
additional details. Expectedly, the models per-
form best both on ROUGE-L and BERTScore
when evaluated on the test portion of the same

8ROUGE-1 and ROUGE-2 scores are provided in the Ap-
pendix for the sake of completeness.
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Model ABURAED CHEN Delve CHEN S2ORC LU XING
R-L BertS R-L BertS R-L BertS R-L BertS R-L BertS

LEAD 11.32 75.42 11.48 74.70 11.34 74.33 13.34 75.89 10.55 75.25
TextRank 9.35 64.59 14.04 76.41 12.82 74.91 12.75 72.61 6.61 45.97
LexRank 10.80 74.90 12.93 75.96 12.85 75.11 14.24 76.70 10.06 75.14
led-base 9.06 74.84 5.55 70.86 5.41 70.55 7.36 72.35 10.07 74.87
led-large 8.30 73.26 6.22 69.57 6.22 69.77 6.89 70.51 9.35 74.30
led-large-arxiv 10.22 75.01 13.37 76.02 12.89 75.45 14.41 76.65 10.23 75.08
*led-base 13.44(0.03) 78.75 15.93 78.32 15.94 78.72 15.95 79.32 13.58(0.01) 78.49
*led-large-arxiv 14.90 79.0 16.27 78.13 15.92 78.58 16.53 79.41 12.42(0.01) 77.57

Table 3: Baseline performance per dataset, ROUGE-L and BERTScore, average over three runs, best scores are
bolded. For readability, only standard deviation equal or higher than 10−2 is shown (in parentheses).

Model ABURAED CHEN Delve CHEN S2ORC LU XING
R-L BertS R-L BertS R-L BertS R-L BertS R-L BertS

*led-base-aburaed 13.95 78.35 9.96 75.24 10.66 75.63 11.63 76.82 12.63* 78.00*
*led-base-chen 11.48 76.57 16.04 78.23 16.21 78.71 15.40* 78.58* 10.14 75.38
*led-base-lu 12.19* 76.31 14.58* 77.55* 14.59* 77.11* 16.25 79.25 11.56 77.03
*led-base-xing 11.97 77.56* 9.54 75.06 10.01 74.57 9.88 75.66 14.06 78.70

Table 4: In- and cross-dataset fine-tuned model performance in ROUGE-L and BERTScore on one run (standard
deviations on multiple runs are very small for all models). Best scores are bolded, * denotes the second best scores.
We use the union of two subsets in CHEN for fine-tuning and evaluation.

dataset (in-domain). We note that cross-dataset
(out-of-domain) transfer in several cases outper-
forms the strong unsupervised baselines. For in-
stance, *led-base-chen achieves better results
than all unsupervised models and off-the-shelf neu-
ral models on the ABURAED and LU datasets.

We also observe that the models often achieve
better transfer-learning performance on the test
sets that have task definitions similar to the train-
ing data. For instance, *led-base-aburaed and
*led-base-chen reach the best out-of-domain
scores on the XING dataset and the LU dataset, re-
spectively. As indicated by Table 1, both ABURAED
are XING generate a citation sentence for a single
cited document, while CHEN and LU generate a cita-
tion paragraph for multiple cited papers. We elabo-
rate on this observation in the Appendix A.4.

4.3 Discourse analysis

We now use the discourse analysis tools introduced
in Section 3.2 to qualitatively compare the citation
texts found in datasets and generated by the models.
We apply the citation intent and CORWA taggers to
the baseline test set outputs and macro-average the
results across all datasets in CITEBENCH. We com-
pare the resulting distributions to the distributions
in the true citation text outputs found in the datasets,
along with a macro-averaged total over the datasets.
To quantify the discrepancies, we calculate KL di-
vergence between the label distributions in model

outputs and individual datasets.

The distribution of citation intents in Fig-
ure 3 suggests a discrepancy between the gen-
erated and original citation texts: while the
baselines tend to under-generate the Background
and CompareOrContrast sentences, they produce
more Future, Uses and Extends sentences than
the gold reference. The KL divergence of citation
intent distributions (Figure 3) shows that all mod-
els’ outputs are more deviated from the original
citation intentions on ABURAED compared to other
datasets. Interestingly, the two fine-tuned models
that perform well in terms of ROUGE scores tend
to also achieve lower KL divergence scores for all
datasets, e.g., *led-base and *led-large-arxiv.
This suggests that the two models learn a dataset’s
citation intent distribution during fine-tuning.

Turning to the CORWA results, Figure 4 sug-
gests high discrepancy between the baseline model
ouputs and the test set outputs. Most of our
baselines under-generate the Narrative_cite and
– surprisingly – Single_summ class, while over-
generating the Reflection, compared to the dis-
tributions in the gold reference texts. The only
two exceptions are the fine-tuned *led-base and
*led-large-arxiv models, which aligns with
their high performance in terms of ROUGE and
BERTScore. High KL divergence values in Figure
4 confirm that the predicted CORWA tags are more
discriminative across the datasets compared to ci-

7342



Figure 3: Citation intent distribution (left) for model outputs (top) and datasets (bottom), and KL divergence between
datasets and model outputs (right).

tation intent labels. The lowest CORWA tag distri-
bution divergence is observed for the *led-base
and *led-large-arxiv baselines, suggesting that
the learned ability to capture the CORWA tag dis-
tribution might play a role in improved citation text
generation performance.

5 Discussion

5.1 Replicability of ROUGE

While re-implementing the baselines, we found that
replacing the Huggingface ROUGE implementa-
tion with the files2rouge package used by Lu et al.
(2020) results in a substantial ROUGE-1/L score
increase of approx. 3 points. Our investigation
revealed that this discrepancy is due to preprocess-
ing: both packages apply transformations to the
inputs, yet, while files2rouge includes stemming
by default, the Huggingface implementation does
not. We found additional effects due to tokeniza-
tion and stopword removal. This implies that the
differences in ROUGE scores across publications
can be attributed to the particularities of the eval-
uation library, and not to the merits of a particular
model. This underlines the importance of clearly
specifying the ROUGE package and configuration
in future evaluations.

5.2 Qualitative evaluation

None of the existing automatic evaluation metrics
for text generation can substitute in-depth quali-
tative analysis of model outputs by humans. Yet,

such an analysis is often prohibitively expensive,
limiting the number of instances that can be manu-
ally assessed. The progress in automatic discourse
analysis of citation texts makes it possible to study
the composition of reference texts and compare it
to the aggregate model outputs. We proposed cita-
tion intent classification and CORWA tagging as an
inexpensive middle-ground solution for qualitative
evaluation of citation texts. Our results indicate
that the composition of citation texts indeed differs,
among datasets and system outputs.

Driven by this, we used KL divergence between
reference and generated texts to study the differ-
ences between citation texts in aggregate. Fol-
lowing up on our analysis in Section 4.3, we ob-
serve that while the two best-performing baseline
models in terms of ROUGE and BERTScore also
achieve the lowest KL divergence on both discourse
schemata, the correlation is not perfect. We thereby
suggest the use of KL divergence of citation intent
and CORWA tag distributions as a supplementary
metric to track progress in citation text generation,
while keeping in mind that the performance of the
underlying discourse analysis models is itself sub-
ject to future improvement (see Limitations).

5.3 Human evaluation

To get a better understanding of the model out-
puts, three human annotators have manually in-
spected 25 baseline outputs from each of the
best-performing LexRank, led-large-arxiv and
*led-large-arxiv models, in each model type
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Figure 4: CORWA tag distribution (left) for model outputs (top) and datasets (bottom), and KL divergence between
datasets and model outputs (right). Empty cells in XING (right) denote∞ due to missing labels in system predictions.
Note the scale differences between the KL divergence plots here and in Figure 3, kept for presentation clarity.

category, on each of the two architecturally distinct
XING and CHEN DELVE datasets, 150 instances in
total. Each output was rated on a 5-point scale in
terms of readability and consistency. The estimated
Quadratic Cohen’s kappa agreement between anno-
tators on a 50-instance subsample was approx. 0.50
for readability and ranging between 0.18 and 0.42
for consistency, depending on the annotator pair
(Appendix A.5). Turning to the evaluation results,
on CHEN DELVE, the fine-tuned *led-large-arxiv
receives the highest average readability score of
4.32 and consistency score of 2.36, while the base-
line led-large-arxiv achieves the best scores
on both dimensions on XING, with an average
readability score of 3.88 and consistency score of
2.20. Overall, we observe that while some models
achieved satisfactory readability scores on some
datasets, none scored higher than 3 on the con-
sistency scale: while the generated citation texts
can be topically related to the gold reference, in
most cases they miss key factual details about the
cited papers and the contextual information in the
reference. Motivated by this, we conclude our dis-
cussion by turning to the question on the optimal
definition for the citation text generation task.

5.4 Task refinement

Unifying a wide range of citation text generation
setups within a common framework allows addi-
tional insights into the definition of the task. While
CiteBench accommodates different structural ver-

sions of the citation text generation task, input and
output structure and granularity are not the only pa-
rameters that influence task complexity, and future
work in citation text generation might explore other,
qualitative aspects of the task. A manual review of
the datasets included in CITEBENCH reveals that in
some cases citation text can not be generated based
on the provided inputs due to missing information
(see Appendix A.6 for examples). This raises the
question of what information is in fact required to
produce accurate citation texts.

In addition, we observed that prior data includes
instances of self-reference where citation text in
fact talks about the citing paper itself. To further
substantiate this observation, we have searched ci-
tation texts throughout CITEBENCH for keywords
that might indicate self-reference (“our work”, “in
this paper”, “we present”, “we introduce”) and
found that the datasets widely differ in terms of
self-reference, from ∼ 1% in the single-sentence
citation text datasets (ABURAED and XING) to up to
14% in CHEN Delve (Appendix A.6). This sug-
gests that task design can influence the qualitative
composition of citation texts, and calls for further
investigation of data selection procedures for cita-
tion text generation.

Finally, we note that citation text might vary de-
pending on the author’s intent. As our analysis in
Figures 3 and 4 demonstrates, datasets do differ
in terms of the distribution of citation intents and
discourse tags. Lauscher et al. (2022) show that
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intent classification can benefit from citation con-
texts, and we argue that modeling citation intent
explicitly could lead to a more robust and realis-
tic definition of the citation text generation task: a
Comparison citation would differ in content and
style from a Background. Thus, we deem it promis-
ing to extend the input with the information about
intent, guiding the model towards more plausible
outputs.

6 Conclusion

Citation text generation is a key task in scholarly
document processing – yet prior work has been
scattered across varying task definitions and evalu-
ation setups. We introduced CITEBENCH: a bench-
mark for citation text generation that unifies four
diverse task designs under a general definition, har-
monizes the respective datasets, provides multiple
baselines and a standard evaluation framework, and
thereby enables a systematic study of citation text
generation.

Our analysis delivered new insights about the
baseline performance and the discourse composi-
tion of the datasets and model outputs. The base-
line results show that simple extractive summa-
rization models like LexRank perform surprisingly
well. Furthermore, we observe non-trivial ability
for transfer learning among the baselines. The dis-
course analysis-based evaluation suggests that the
models performing best in terms of ROUGE and
BERTScores capture the natural citation intent dis-
tribution in the generated texts.

Finally, our discussion outlines recommenda-
tions and promising directions for future work,
which include detailed reporting of evaluation pack-
ages, the use of discourse-based qualitative metrics
for evaluation, and further refinements to the cita-
tion text generation task definition. We argue that
the current definitions for citation text generation
overly simplify the complex process of composing
a related work section, which hinders the devel-
opment of successful real-world applications. In
general, we view our work represents a crucial first
step in addressing the extremely challenging prob-
lem of AI-assisted writing related work. We invite
the community to build upon CITEBENCH by ex-
tending it with new datasets, trained models and
metrics.

Limitations

The datasets in CITEBENCH are in English, lim-
iting our baseline models and results to English.
While CITEBENCH covers a wide variety of sci-
entific domains, humanities and social sciences
are under-represented. Since the citation patterns
might differ across research communities, this
might lead to performance degradation due to do-
main shift. The over-focus on English data from
natural and computer sciences is a general feature
of scholarly NLP. We hope that the future devel-
opments in the field will enable cross-domain and
cross-lingual applications of NLP to citation text
generation.

The analysis results on citation intent and
CORWA tagging are based on the output of the
corresponding discourse tagging models. The per-
formance of these models is not perfect. For ci-
tation intent classification, the best model by Co-
han et al. (2019) on ACL-ARC has an F1 score of
67.9. In a further analysis of the classification er-
rors, Cohan et al. (2019) note that the model tends
to make false positive errors for the Background
class and that it confuses Uses with Background.
For CORWA tagging, Li et al. (2022) report an F1
score of 90.8 for their best-performing model. The
limitations of automatically inferred labels need to
be taken into consideration when interpreting the
results. Given the data source overlap between the
CORWA and ACL-ARC datasets and CITEBENCH,
we have attempted to find overlapping instances
to estimate the performance of the models on the
subset of data used in CITEBENCH. Yet, the com-
parison between CORWA and ACL-ARC test sets
and CITEBENCH test sets9 only yielded eight over-
lapping instances in the LU dataset out of 14,459
total instances, preventing the further investigation.
We leave the validation of our findings with human-
annotated citation intents and discourse tags to fu-
ture work. Furthermore, while we focus on sen-
tences as an easy-to-obtain coarse-grained unit for
discourse tagging, optimal granularity for citation
analysis is another open research question to be
investigated (Li et al., 2022).

While our general task definition allows incorpo-
rating any information from the target and source
documents, we offer no standardized way to in-

9We calculate the normalized Levenshtein distance
(using package: https://maxbachmann.github.io/
Levenshtein/levenshtein.html) with a threshold of 0.9
to identify the overlapped instances between two datasets.
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clude structured information like citation graph
context and paper metadata. Yet such information
might be useful: for example,Wang et al. (2022) ex-
plore the use of citation graphs for citation text gen-
eration. We leave the standardization of additional
information sources for citation text generation to
the future work. Our baseline implementations
limit the input sequences to 4,096 tokens, which
only affects a small portion of the data. This re-
striction can be lifted as long as the target language
model can efficiently process long documents, and
experimental time is not a concern – even in a lim-
ited setting, performing the full run of all fine-tuned
citation text generation models in the benchmark
is computationally expensive (Appendix A.2). Fi-
nally, CITEBENCH inherits the structural limita-
tions of the datasets it subsumes, e.g. not preserv-
ing the full document information and document
structure, and filtering out multimodal content. We
leave the investigation of these extensions to the
future.

Ethics Statement

Citation text generation is intended to support
scholars in performing high-quality research, cop-
ing with information overload, and improving writ-
ing skills. Although we do not foresee negative
societal impact of the citation text generation task
or the accompanying data per se, we point at the
general challenges related to factuality and bias
in machine-generated texts, and call the potential
users and developers of citation text generation
applications to exert caution and to follow the up-
to-date ethical policies, incl. non-violation of intel-
lectual property rights, maintaining integrity and
accountability.

In addition, the raising ethical standards in the
field put new demands on clear dataset licensing.
While enforcing the license on third-party datasets
presents an organizational and legal challenge and
lies beyond the scope of our work, we made the
effort to clarify the copyright status of the existing
datasets to the best of our ability. LU10 is distributed
under the open MIT license11. CHEN12 openly dis-
tribute their annotations for non-commercial use,
while referring to the source datasets for license
on the included research publications: the S2ORC

10https://github.com/yaolu/Multi-XScience
11https://opensource.org/licenses/MIT
12https://github.com/iriscxy/

relatedworkgeneration

corpus is released under the open non-commercial
CC BY-NC 4.0 license13; yet, we could not es-
tablish the licensing status of the Delve corpus
based on available sources. XING14 is based on the
openly licensed ACL Anthology Network corpus
but does not specify license for the annotations.
We contacted the authors to obtain explicit permis-
sion to use their annotations for research purposes.
ABURAED15 do not attach license to the data, which
is partly extracted from the ACL Anthology Net-
work Corpus. We collected an explicit permission
from the authors to use their dataset for research
purposes. Our observations underline the urgent
need for clear standartized data licensing practices
in NLP. To work around the potential limitations on
data reuse, CITEBENCH provides the instructions
and a script to fetch and transform the data from the
respective datasets. All datasets used in this work
were created for the task of citation text generation
and are employed according to their intended use.
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A Appendix

A.1 Data transformation
Prior work not only explores a wide range of task
definitions for citation text genration, but also em-
ploys a multitude of formats to serialize the task
information in the data. Thus, to construct a unified
benchmark, we also needed to unify the data. The
data format used in CITEBENCH is a concatenation
of different types of inputs embedded into tags –
special tokens that denote which input is stored
within. The abstracts of the cited papers are always
available and are not embedded into a tag. The
final CITEBENCH input is assembled as follows,
depending on the availability of the inputs in the
source dataset’s task definition:

• <abs></abs> the abstract of the citing paper
• <ctx_b></ctx_b> the sentence(s) before the

citation text in the citing paper
• the abstract(s) of the cited paper(s) discussed

in the citation text (without a surrounding tag)
• <ctx_a></ctx_a> the sentence(s) after the ci-

tation text in the citing paper
The CITEBENCH data stores these input com-

ponents as a list. To pass the data to the model,
we simply concatenate the items on the list. In
addition, for each instance we store the gold refer-
ence target text, which is used as output example
at the training stage, and as an evaluation target at
the testing stage. Table 5 provides an example of
an instance coded according to the CITEBENCH

schema.
Unification required us to process the original

data. No instance-level filtering was applied, i.e.
every instance from the source datasets is contained
in the benchmark. All changes to the underlying
datasets are documented in the automatic scripts
supplied with this paper, which can be used to re-
construct CITEBENCH from the sources. The para-
graphs below briefly outline the main modifications
that these scripts perform.

For all datasets, we unify the citation anchor
format. In CITEBENCH, cited papers in the cita-
tion text are represented by an integer placeholder
(e.g. [0], [1]) which increments with each new en-
countered paper in the input text, but is consistent
throughout the text. For example, if a paper "[0]"
was encountered twice, this would result in a ci-
tation text going as "As it has been shown in [0],
[1], [2]... In particular, [0] demonstrate that...". In
XING the citations of papers that are not included
in the input are marked in the original data using a
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Input Target
["<abs> The SRI Core Language Engine (CLE) is a
general-purpose natural anguage front end for interac-
tive systems. It translates English <...> is described and
evaluated. </abs>",
"<ctx_b> The system also facilitates the process of adding
word forms to the user is own dictionary. <...> how to ac-
complish this task with the user is assisstance. </ctx_b>",
"Spelling-checkers have become an integral part of most
text processing software. <...> a special method has been
developed for easy word classification.",
"<ctx_a> The hnplementation f the algoritlma <...> it
should be included in the second version). </ctx_a>"]

The idea is similar to Finkler and Neumann #OTHEREFR,
though simplified for our purposes; [0] in his VEX system
also uses the method of giving sunple questions to the user
(supposedly non-linguist) to learn about word is behaviour,
but it is for English and primarily intended for assigning
syntax properties rather than morphological.

Table 5: Example CITEBENCH instance taken from the XING dataset.

placeholder #OTHEREFR; these tokens are kept in
the benchmark.
ABURAED dataset operates with single cited docu-

ments, providing their abstract and title, and aims
to generate a single citation sentence. We use the
script from the original study17 to extract the input
and the gold reference. The gold reference is used
directly to populate the "target" field. The input
is constructed by concatenating the title and the
abstract of the cited paper.

Both CHEN datasets operate with multiple cited
documents, storing their abstracts, and have ci-
tation paragraph as the target granularity. CHEN
uses a field named "abs" to denote the citation text
to generate, which is not to be confused with the
"<abs></abs>" tag used in CITEBENCH to denote
the citing paper abstract. This field is used as gold
reference. To construct the input, we extract the
"multi_doc" field from CHEN data. The abstracts
of the individual documents in the source data be-
gin with a special marker "[x]". We remove this
marker and concatenate the inputs, maintaining the
original order of the abstracts.
LU also follows a multiple-abstract citation text

paragraph generation setting. We take the "re-
lated_work" field from the original data and use
it as our golden reference "target". From the
"ref_abstract" dictionary the citation markers and
cited paper abstracts are extracted. The citation
markers are converted to indexes e.g. "[0]" and
the abstracts are ordered according to these indices.
The "abstract" (citing paper’s abstract) and the cited
paper’s abstracts from "ref_abstract" are concate-
nated into the model input according to the proce-
dure described above.

Lastly, for XING the "explicit_citation" is the

17https://github.com/AhmedAbuRaed/SPSeq2Seq/
blob/master/preprocesstarget.py

gold reference and it is copied over to the "tar-
get" field in CITEBENCH, representing the gold
reference. The "tgt_abstract" (cited paper’s ab-
stract) is wrapped in "<abs></abs>" tags, the
"text_before_explicit_citation" (sentences before
citation text) is wrapped in "<ctx_b></ctx_b>" tags,
"text_after_explicit_citation" (sentences after cita-
tion text) is wrapped in "<ctx_a></ctx_a>" tags.
These items are added to the "input" list together
with the "src_abstract" (cited paper’s abstract), us-
ing the tags and order described above.

A.2 Model training

For the LED models, the following hyperparame-
ters were used: Encoder length 4,096, Decoder
length 1,024, Decoding type beam search, 2
beams, length penalty 2, with early stopping, no
repeat n-gram size 3, learning rate 5e − 5. To make
the study feasible given the number of experiments
in this work, no hyperparameter search was per-
formed. The *led-base and *led-large-arxiv
model were fine-tuned for 9 days on 4 GPUs; each
of the models fine-tuned on individual datasets
*led-base-X where trained for a maximum of 3
days on 4 GPUs (most of them took less than 3
days to train). Using the upper bounds that would
result in (9d + 9d + 4 × 3d) × 4 GPUs ×24hours= 2880 GPU hours in total for model fine-tuning.

A.3 ROUGE calculation

The ROUGE scores are calculated using the Hug-
gingface evaluate library18 with package versions:
rouge-score==0.0.4 and evaluate==0.1.2. The
scores that are reported are fmeasure for the
mid scores (see the library documentation for de-
tails). See Tables 6 and 7 for detailed ROUGE-L,
ROUGE-1 and ROUGE-2 results.

18https://huggingface.co/spaces/evaluate-metric/rouge
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Model ABURAED CHEN Delve CHEN S2ORC LU XING
LEAD 16.69 / 2.22 / 11.32 19.75 / 2.23 / 11.48 18.64 / 2.32 / 11.34 22.99 / 3.40 / 13.34 14.98 / 2.22 / 10.55
TextRank 13.59 / 1.54 / 9.35 27.39/3.77/14.04 23.09/3.48/12.82 23.05 / 3.98 / 12.75 8.51 / 1.14 / 6.61
LexRank 15.90 / 2.00 / 10.80 23.79 / 3.12 / 12.93 22.35 / 3.10 / 12.85 25.53 / 4.18 / 14.24 14.47 / 1.98 / 10.06
led-base 11.06 / 1.72 / 9.06 7.16 / 0.74 / 5.55 6.68 / 0.75 / 5.41 9.73 / 1.35 / 7.36 12.36 / 1.66 / 10.07
led-large 10.39 / 1.36 / 8.30 7.85 / 0.96 / 6.22 7.56 / 0.99 / 6.22 8.84 / 1.25/6.89 11.61/1.29/9.35
led-large-arxiv 15.55 / 1.89 / 10.22 25.78 / 3.35 / 13.37 23.45 / 3.20 / 12.89 26.27 / 4.44 / 14.41 14.57 / 2.04 / 10.23
*led-base 19.65 / 2.12 / 13.44 30.66 / 5.51 / 15.93 26.58 / 5.82 / 15.94 28.76 / 5.03 / 15.95 18.88 / 2.04 / 13.58

(0.018) / (0.006) /(0.025) (0.004) / - / (0.002) (0.003) / (0.003) / - (0.007) / (0.002) / (0.003) (0.009) / - / (0.006)
*led-large-arxiv 21.56 / 2.96 / 14.90 31.65 / 6.01 / 16.27 26.70 / 6.07 / 15.92 30.54 / 5.63 / 16.53 17.90 / 1.52/ 12.42

(0.003) / (0.005) / (0.011) (0.007) / (0.002) / (0.003) (0.007) / (0.001) / (0.002) (0.010) / (0.004) / (0.002) (0.012) / (0.009) / (0.008)

Table 6: Detailed baseline performance, ROUGE-1/2/L, average over three runs, best scores are bolded. For
readability, only standard deviation higher than 10−4 is shown (in parentheses).

A.4 Transfer Learning Results

A possible explanation for the better transfer per-
formance between ABURAED and XING (discussed in
Section 4.2 and seen in Table 4 and 7) might lie in
the behavior of the ROUGE metric: as observed by
Sun et al. (2019), ROUGE tends to award higher
scores to texts that are around 100 tokens long.
The average lengths of the outputs for ABURAED
and XING are 47.5 and 38.3 words respectively. For
CHEN Delve, CHEN S2ORC and LU the average out-
put lengths are 265.8, 186.3 and 140.2 words re-
spectively. For the inputs the average lengths for
ABURAED and XING are 65.3 and 145.9 words re-
spectively, while for CHEN Delve, CHEN S2ORC
and LU the lengths are 691.4, 1230.1 and 676.1
words respectively.

A.5 Human evaluation details

For the human evaluation we focus on the
datasets XING and CHEN DELVE as these are
the datasets with most divergent task definitions,
and the models LexRank, led-large-arxiv and
*led-large-arxiv as these are the systems with
highest performance in their respective baseline cat-
egories. For each dataset, 25 data instances were
randomly selected and for each of these instances
the output from each model was generated. This
resulted in 2 × 3 × 25 = 150 instances to annotate.
The instances were shuffled and distributed among
three annotators (paper authors), fluent non-native
English speakers with background in computer sci-
ence and natural language processing, who were
asked to rate each instance according to its read-
ability and consistency with the gold reference. For
both dimensions we have used a 5-point scale. Re-
sults for the human evaluation are shown in Table
8. Readability scores were defined as:

• 1: the text lacks basic grammatical coherency
and is not readable;

• 2: the text lacks basic grammatical coherency
but is readable with some effort;

• 3: the text is readable but has some major
grammatical or fluency issues;

• 4: the text is readable and has only one or two
minor grammatical or fluency issues;

• 5: the text is perfectly readable.
Consistency scores were defined as:
• 1: the text is not related to the gold reference;
• 2: the text is topically related to the gold ref-

erence but misses all key aspects and the cor-
responding factual details about the cited pa-
pers;

• 3: the text is topically related to the gold ref-
erence but misses or misrepresents a few key
factual details about the cited papers;

• 4: the text is topically related to the gold ref-
erence and captures all key aspects about the
cited papers, but it misses some factual de-
tails;

• 5: the text conveys the same message and
detail as the original text.

To estimate the agreement between the anno-
tators, we randomly selected 25 instances from
each of the two annotators A and B, that were re-
labeled by the annotator C, resulting in a total of
50 instances. The Quadratic Cohen’s kappa for the
annotator pair (A-C) was measured at 0.48 for read-
ability and 0.18 for consistency; the annotator pair
(B-C) yielded the agreement of 0.52 for readability
and 0.42 for consistency. We note the discrepancy
with regard to the consistency score between an-
notator pairs19, which indicates that compared to
readability, consistency is a less intuitive notion and
might require a more strict definition or training in
future human evaluations.

A.6 Discussion examples

In Table 9 two examples from the benchmark are
shown where the input is not sufficient to generate
the output. It is not reasonable to expect a model

19Upon close examination, annotator C tends to be stricter
in evaluating the consistency score compared to annotator A.
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Model ABURAED CHEN Delve CHEN S2ORC LU XING

*led-base-aburaed 19.65 / 1.95 / 13.95 15.32 / 1.96 / 9.96 15.96 / 2.18 / 10.66 17.84 / 2.54 / 11.63 18.68 / 1.46 / 12.63
*led-base-chen 17.66 / 2.41 / 11.48 30.82 / 5.58 / 16.04 27.28 / 5.89 / 16.21 28.92 / 4.80 / 15.40 14.51 / 1.89 / 10.14
*led-base-lu 17.78 / 2.32 / 12.19 26.97 / 3.97 / 14.58 25.90 / 3.72 / 14.59 28.94 / 5.00 / 16.25 17.50 / 1.92 / 11.56
*led-base-xing 16.56 / 1.32 / 11.97 16.01 / 1.87 / 9.54 16.09 / 1.89 / 10.01 14.87 / 1.81 / 9.88 19.77 / 2.80 / 14.06

Table 7: Detailed transfer learning performance, in- and cross-dataset, ROUGE-1/2/L.

Dataset Model Readability Consistency
All All 3.73 ± 1.19 2.04 ± 0.84
All LexRank 3.42 ± 1.09 2.04 ± 0.75
All led-large-arxiv 3.94 ± 1.00 2.18 ± 0.85
All *led-large-arxiv 3.90 ± 1.39 1.94 ± 0.91
XING All 3.64 ± 1.30 1.92 ± 0.85

CHEN DELVE All 3.87 ± 1.06 2.19 ± 0.82
XING LexRank 3.56 ± 1.12 2.04 ± 0.79
XING led-large-arxiv 3.88 ± 1.01 2.20 ± 0.87
XING *led-large-arxiv 3.48 ± 1.69 1.52 ± 0.77

CHEN DELVE LexRank 3.28 ± 1.06 2.04 ± 0.73
CHEN DELVE led-large-arxiv 4.00 ± 1.00 2.16 ± 0.85
CHEN DELVE *led-large-arxiv 4.32 ± 0.85 2.36 ± 0.86

Table 8: Human evaluation results; average ± standard deviation.

to be able to generate these data instances. Table
10 provides examples of self-reference, and Table
11 provides self-reference statistics.
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Input Target Comment

We present the syntax-based string-totree statisti-
cal machine translation systems built for the WMT
2013 shared translation task. Systems were devel-
oped for four language pairs. We report on adapting
parameters, targeted reduction of the tuning set, and
post-evaluation experiments on rule binarization
and preventing dropping of verbs.

It is worth noting that the Ger-
man parse trees [0] tend to
be broader and shallower than
those for English.

From this input we can not de-
termine whether German parse
trees are broader and shallower
than English parse trees.

Data selection is an effective approach to domain
adaptation in statistical machine translation. The
idea is to use language models trained on small in-
domain text to select similar sentences from large
general-domain corpora, which are then incorpo-
rated into the training data. Substantial gains have
been demonstrated in previous works, which em-
ploy standard ngram language models. Here, we
explore the use of neural language models for data
selection. We hypothesize that the continuous vec-
tor representation of words in neural language mod-
els makes them more effective than n-grams for
modeling unknown word contexts, which are preva-
lent in general-domain text. In a comprehensive
evaluation of 4 language pairs (English to German,
French, Russian, Spanish), we found that neural
language models are indeed viable tools for data
selection: while the improvements are varied (i.e.
0.1 to 1.7 gains in BLEU), they are fast to train on
small in-domain data and can sometimes substan-
tially outperform conventional n-grams.

Analyses have shown that this
augmented data can lead to bet-
ter statistical estimation or word
coverage [0].

Here we do not know what
"this" refers to in the target and
the input does not mention any-
thing about "better statistical es-
timation" or "word coverage"

Table 9: Examples of targets that contain information missing from the input.

Samples of self reference sentences in the reference citation text
(1) In our context, we call upon computer vision techniques to study the cephaloocular behavior of drivers.
(2) The main objective of our work is the elaboration of a new computer vision system for evaluating and improving
driving skills of older drivers (age between 65 and 80 years).
(3) The features used in this work are complex and difficult to interpret and it isn’t clear that this complexity is required.
(4) Our approach enables easy pruning of the RNN decoder equipped with visual attention, whereby the best number of
weights to prune in each layer is automatically determined.

Table 10: Self-reference sentence examples; (1) and (2) from Chen et al. (2021); (3) and (4) from Lu et al. (2020).

Dataset Data points Ref to citing paper Prevalence
ABURAED 16,603 143 0.86%

CHEN Delve 78,927 11,787 14.93%
CHEN S2ORC 136,655 6,711 4.91%

LU 40,528 4,470 11.03%
XING 86,052 1,475 1.71%

Total 530,869 28,167 5.31%

Table 11: Self-reference sentence statistics.
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