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Abstract

Neural network models of language have long
been used as a tool for developing hypotheses
about conceptual representation in the mind
and brain. For many years, such use involved
extracting vector-space representations of
words and using distances among these
to predict or understand human behavior
in various semantic tasks. Contemporary
large language models (LLMs), however,
make it possible to interrogate the latent
structure of conceptual representations using
experimental methods nearly identical to those
commonly used with human participants. The
current work utilizes three common techniques
borrowed from cognitive psychology to
estimate and compare the structure of concepts
in humans and a suite of LLMs. In humans,
we show that conceptual structure is robust
to differences in culture, language, and
method of estimation. Structures estimated
from LLM behavior, while individually fairly
consistent with those estimated from human
behavior, vary much more depending upon
the particular task used to generate responses–
across tasks, estimates of conceptual structure
from the very same model cohere less with
one another than do human structure estimates.
These results highlight an important difference
between contemporary LLMs and human
cognition, with implications for understanding
some fundamental limitations of contemporary
machine language.

1 Introduction

Since Elman’s pioneering work (Elman, 1990)
showcasing the ability of neural networks
to capture many aspects of human language
processing (Rumelhart et al., 1986), such models
have provided a useful tool, and sometimes
a gadfly, for developing hypotheses about the
cognitive and neural mechanisms that support
language. When trained on a task that seems
almost absurdly simplistic–continuous, sequential

prediction of upcoming words in sentences–early
models exhibited properties that upended received
wisdom about what language is and how it works.
They acquired internal representations that blended
syntactic and semantic information, rather than
keeping these separate as classic psycho-linguistics
required. They handled grammatical dependencies,
not by constructing syntactic structure trees, but
by learning and exploiting temporal patterns
in language. Perhaps most surprisingly, they
illustrated that statistical structure latent in natural
language could go a long way toward explaining
how we acquire knowledge of semantic similarity
relations among words. Because words with
similar meanings tend to be encountered in similar
linguistic contexts (Firth, 1957; Osgood, 1952;
Harris, 1954), models that exploit contextual
similarity when representing words come to
express semantic relations between them. This
enterprise of learning by predicting has persisted
into the modern era of Transformer-based language
models (Devlin et al., 2018; Brown et al., 2020a).

Though early work was limited in the nature and
complexity of the language corpora used to train
models (Elman, 1991; McClelland et al., 1990),
these ideas spurred a variety of computational
approaches that could be applied to large corpora
of written text. Approaches such as latent semantic
analysis (Deerwester et al., 1990) and skip-
gram models (Mikolov et al., 2013a; Bojanowski
et al., 2017), for instance, learn vector-space
representations of words from overlap in their
linguistic contexts, which turn out to capture a
variety of semantic relationships amongst words,
including some that are highly abstract (Grand
et al., 2022; Elman, 2004; Lupyan and Lewis,
2019).

In all of this work, lexical-semantic repre-
sentations are cast as static points in a high-
dimensional vector space, either computed directly
from estimates of word co-occurrence in large
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text corpora (Deerwester et al., 1990; Burgess,
1998), or instantiated as the learned activation
patterns arising in a neural network model trained
on such corpora. To evaluate whether a given
approach expresses semantic structure similar
to that discerned by human participants, the
experimenter typically compares the similarities
between word vectors learned by a model to
decisions or behaviors exhibited by participants in
semantic tasks. For instance, LSA models were
tested on synonym-judgment tasks drawn from
a common standardized test of English language
comprehension by comparing the cosine distance
between the vectors corresponding to a target word
and each of several option words, and having
the model "choose" the option with the smallest
distance (Landauer et al., 1998). The model was
deemed successful because the choice computed
in this way often aligned with the choices of
native English speakers. Such a procedure was
not just a useful way for assessing whether model
representations are human-like—it was just about
the only way to do so for this class of models.

In the era of large language models such as
Open AI’s GPT3 (Brown et al., 2020a), Meta’s
LLaMa family (Touvron et al., 2023; Taori et al.,
2023), Google’s FLAN (Wei et al., 2021), and
many others (Zhang et al., 2022; Chowdhery et al.,
2022; Hoffmann et al., 2022; Du et al., 2022),
this has changed. Such models are many orders
of magnitude larger than classical connectionist
approaches, employ a range of architectural and
training innovations, and are optimized on truly
vast quantities of data—but nevertheless they
operate on principles not dissimilar to those
that Elman and others pioneered. That is, they
exploit patterns of word co-occurrence in natural
language to learn distributed, context-sensitive
representations of linguistic meaning at multiple
levels, and from these representations they generate
probabilistic predictions about likely upcoming
words. Current models generate plausible and
grammatically well-formed responses, created by
iteratively predicting what words are likely to come
next and sampling from this distribution using
various strategies (Wei et al., 2022; Wang et al.,
2022; Yao et al., 2023). So plausible is the text
that recent iterations like ChatGPT (Ouyang et al.,
2022) can write essays sufficiently well to earn a
A in an undergraduate setting (Elkins and Chun,
2020), pass many text-based licensing exams in

law and medicine (Newton and Xiromeriti, 2023;
Choi et al., 2023; Kung et al., 2023) produce
working Python code from a general description
of the function (OpenAI, Year of the webpage,
e.g., 2023), generate coherent explanations for a
variety of phenomena, and answer factual questions
with remarkable accuracy 1. Even in the realm of
failures, work has shown that the kinds of reasoning
problems LLMs struggle with are often the same
ones that humans tend to find difficult (Dasgupta
et al., 2022). In short, if solely evaluated based on
their generated text, such models appear to show
several hallmarks of conceptual abilities that until
recently were uniquely human.

These innovations allow cognitive scientists, for
the first time, to measure and evaluate conceptual
structure in a non-human system using precisely
the same natural-language-based methods that
we use to study human participants. Large
language models can receive written instructions
followed by a series of stimuli and generate
interpretable, natural-language responses for each.
The responses generated can be recorded and
analyzed in precisely the same manner as responses
generated by humans, and the results of such
analyses can then be compared within and between
humans and LLMs, as a means of understanding
whether and how these intelligences differ.

The current paper uses this approach to
understand similarities and differences in the
way that lexical semantic representations are
structured in humans vs LLMs, focusing on one
remarkable aspect of human concepts–specifically,
their robustness. As Rosch showed many years
ago (Rosch, 1975, 1973), the same conceptual
relations underlie behavior in a variety of tasks,
from naming and categorization to feature-listing
to similarity judgments to sorting. Similar
conceptual relations can be observed across distinct
languages and cultures (Thompson et al., 2020).
Robustness is important because it allows for
shared understanding and communication across
cultures, over time, and through generations:
Homer still speaks to us despite the astonishing
differences between his world and ours, because
many of the concepts that organized his world
cohere with those that organize ours. Our
goal was to assess whether conceptual structure

1While it is likely that GPT-3 has been trained on examples
of many of these exams and tasks, that it can efficiently
retrieve this knowledge when queried with natural language is
nonetheless worth noting.
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in contemporary LLMs is also coherent when
evaluated using methods comparable to those
employed with human participants, or whether
human and LLM “mind” differ in this important
regard.

To answer this question, we first measured
the robustness of conceptual structure in humans
by comparing estimates of such structure for a
controlled set of concepts using three distinct
behavioral methods – feature-listing, pairwise
similarity ratings, and triadic similarity judgements
– across two distinct groups – Dutch and North
American – differing in culture and language. We
then conducted the same behavioral experiments
on LLMs, and evaluated (a) the degree to
which estimated conceptual relations in the LLM
accord with those observed in humans, and
(b) whether humans and LLMs differ in the
apparent robustness of such structure. We
further compared the structures estimated from
the LLM’s overt patterns of behavior to those
encoded in its internal representations, and also to
semantic vectors extracted from two other common
models in machine learning. In addition to
simply demonstrating how methods from cognitive
psychology can be used to better understand
machine intelligence, the results point to an
important difference between current state of the
art LLMs and human conceptual representations.

2 Related work

In addition to many of the studies highlighted in
the previous section, here we note prior efforts
to model human semantics using NLP models.
Many recent papers have evaluated ways in which
LLMs are and are not humanlike in their patterns
of behavior when performing tasks similar to
those used in psychology–enough that, despite the
relative youth of the technology, there has been
a recent review summarising how LLMs can be
used in psychology(Demszky et al., 2023), along
with work highlighting cases where LLMs can
replicate classical findings in the social psychology
literature (Dillion et al., 2023). Looking further
back, several authors have evaluated the semantic
structure of learned word embeddings in static-
vector spaces (Mikolov et al., 2013b; Marjieh et al.,
2022b), while others have examined the semantic
structure of more fine-grained text descriptions of
concepts in language models capable of embedding
sequences (Marjieh et al., 2022a). A few studies

have used models to generate lists of features and
estimated semantic structure from feature overlap
(Hansen and Hebart, 2022; Suresh et al., 2023;
Mukherjee et al., 2023), or have asked models
to produce explicit pairwise similarity ratings
(Marjieh et al., 2023). While such work often
compares aspects of machine and human behaviors,
to our knowledge no prior study has evaluated the
coherence of elicited structures across tasks within
a given model, or between structures elicited from
humans and machines using the same set of tasks.

3 Measuring Human Conceptual
Structure

For both human and LLM experiments, we focused
on a subset of 30 concepts (as shown in Table
1) taken from a large feature-norming study
conducted at KU Leuven (De Deyne et al., 2008).
The items were drawn from two broad categories–
tools and reptiles/amphibians–selected because
they span the living/nonliving divide and also
possess internal conceptual structure. Additionally
this dataset has been widely used and validated in
the cognitive sciences.

To measure the robustness of conceptual
structure in humans, we estimated similarities
amongst the 30 items using 3 different tasks:
(1) semantic feature listing and verification
data collected from a Dutch-speaking Belgian
population in the early 2000s, (2) triadic similarity-
matching conducted in English in the US in 2022,
and (3) Likert-scale pairwise similarity judgments
collected in English in the US in 2023. The
resulting datasets thus differ from each other in
(1) the task used (feature generation vs triadic
similarity judgments vs pairwise similarity ratings),
(2) the language of instruction and production
(Dutch vs English), and (3) the population from
which the participants were recruited (Belgian
students in early 2000’s vs American MTurk
workers in 2022/2023). The central question
was how similar the resulting estimated structures
are to one another, a metric we call structure
coherence. If estimated conceptual similarities
vary substantially with language, culture, or
estimation method, the structural coherence
between groups/methods will be relatively low; if
such estimates are robust to these factors, it will
be high. The comparison then provides a baseline
against which to compare structural coherence in
the LLM.

724



3.1 Methods

3.1.1 Feature listing study
Data were taken from the Leuven feature-
listing norms(De Deyne et al., 2008). In an
initial generation phase, this study asked 1003
participants to list 10 semantic features for 6-10
different stimulus words which were were one of
295 (129 animals and 166 artifacts) concrete object
concepts. The set of features produced across all
items were tabulated into a 2600d feature vector. In
a second verification phase, four independent raters
considered each concept-feature pair and evaluated
whether the feature was true of the concept. The
final dataset thus contained a C (concept) by F
(feature) matrix whose entries indicate how many
of the four raters judged concept C to have feature
F . Note that this endeavour required the raters to
judge hundreds of thousands of concept-property
pairs.

From the full set of items, we selected 15 tools
and 15 reptiles for use in this study (as shown
in Table 1). We chose these categories because
they express both broad, superordinate distinctions
(living/nonliving) as well as finer-grained internal
structure (e.g. snakes vs lizards vs crocodiles).

The raw feature vectors were binarized by
converting all non-zero entries to 1, with the
rationale that a given feature is potentially true of a
concept if at least one rater judged it to be so. We
then estimated the conceptual similarity relations
amongst all pairs of items by taking the cosine
distance between their binarized feature vectors,
and reduced the space to three dimensions via
classical multidimensional scaling (Kruskal and
Wish, 1978). The resulting embedding expresses
conceptual similarity amongst 30 concrete objects,
as estimated via semantic feature listing and
verification, in a study conducted in Dutch on a
large group of students living in Belgium in the
early 2010s.

3.1.2 Triadic comparison study
As a second estimate of conceptual structure
amongst the same 30 items, we conducted a triadic
comparison or triplet judgment task in which
participants must decide which of two option words
is more similar in meaning to a third reference word.
From many such judgments, ordinal embedding
techniques (Jamieson et al., 2015; Hebart et al.,
2022; Hornsby and Love, 2020) can be used to
situate words within a low-dimensional space in

which Euclidean distances between two words
capture the probability that they will be selected
as "most similar" relative to some arbitrary third
word. Like feature-listing, triplet judgment studies
can be conducted completely verbally, and so can
be simulated using large language models.

Participants were 18 Amazon Mechanical
Turk workers recruited using CloudResearch.
Each participant provided informed consent in
compliance with our Institutional IRB and was
compensated for their time.

Stimuli were English translations of the 30 item
names listed above, half reptiles and half tools.

Procedure. On each trial, participants viewed a
target word displayed above two option words, and
were instructed to choose via button press which
of the two option words was most similar to the
target in its meaning. Each participant completed
200 trials, with the triplet on each trial sampled
randomly with uniform probability from the space
of all possible triplets. The study yielded a total
of 3600 judgments, an order of magnitude larger
than the minimal needed to estimate an accurate
3D embedding from random sampling according
to estimates of sample complexity in this task
(Jamieson et al., 2015). Ninety percent of the
judgments were used to find a 3D embedding
in which pairwise Euclidean distances amongst
words minimize the crowd-kernel triplet loss
on the training set (Tamuz et al., 2011). The
resulting embedding was then tested by assessing
its accuracy in predicting human judgments on the
held-out ten percent of data. The final embeddings
predicted human decisions on held-out triplets with
75% accuracy, which matched the mean level of
inter-subject agreement on this task.

3.1.3 Pairwise similarity study
Our final estimate of conceptual structure relied
on participants making similarity ratings between
pairs of concepts from the set of 30 items using a
standard 7 point Likert scale. Unlike the previous
two methods which implicitly arrive at a measure of
similarity between concepts, this approach elicits
explicit numerical ratings of pairwise similarity. To
account for the diversity in ratings between people,
we had multiple participants rate the similarity
between each concept pair in our dataset, with
each participant seeing each pair in a different
randomized order.

Participants were 10 MTurk workers recruited
using CloudResearch. Each participant provided
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Tools Reptiles
Axe
Nail
Knife
Saw
Spanner
Chisel...

Cobra
Turtle
Gecko
Lizard
Toad
Caiman...

Feature Listing

Cobra

Gecko Spanner

Triadic Comparison

Concepts from 
Ruts et al. (2004)

Human
Participants

GPT-3
(text-davinci-002)

Which of the bottom two 
words is more similar 
to the word at the top?

List all the properties of 
Cobras

Cobra: has scales, 
is venomous, 
is cold-blooded...

On a scale of 1-7, how 
similar is a 
Gecko to a Cobra?

Gecko-Cobra 
Simlarity: 5

Pairwise Similarity

Tasks
Concepts

Figure 1: The three tasks used to estimate conceptual structure in both LLMs and Humans. The exact prompts used
in our experiments with Humans and LLMs are shown in Table 4

informed consent in compliance with our
Institutional IRB and was compensated for their
time.

Stimuli were each of the 435 (
(30

2

)
) possible pairs

of the 30 tool and reptile concepts introduced in
the earlier sections.

Procedure. On each trial of the experiment,
participants were presented with a question of
the form - ‘How similar are these two things?
{concept 1} and {concept 2}’ and were provided
with a Likert scale below the question with the
options — 1: Extremely dissimilar, 2: Very
dissimilar, 3: Likely dissimilar, 4: Neutral, 5:
Likely similar, 6: Very similar, 7: Extremely
similar. On each trial {concept 1} and {concept
2} were randomly sampled from the set of 435
possible pairs of concepts and each participant
completed 435 ratings trials rating each of the
possible pairs.

3.2 Results

We found that the inter-rater reliability within the
feature-listing and pairwise rating tasks were quite
high ( r = .81 and r = .98 respectively). We could
not compute a similar metric in a straightforward
manner for the triadic judgement study because
each participant was provided with a unique set
of triplets. Figure 2 top row shows hierarchical
cluster plots of the semantic embeddings from
feature lists (left), the triadic comparison task
(middle), and pairwise judgement task (right). Both
embeddings strongly differentiate the living from
nonliving items, and show comparatively little
differentiation of subtypes within each category
(though such subtypes are clearly apparent amongst
the feature-listing embeddings). To assess the
structural coherence among the three different
embedding spaces, we computed the square of

the Procrustes correlation pairwise between the
dissimilarity matrices for the 30 concepts derived
from the three tasks (Gower, 1975). This metric,
analogous to r2, indicates the extent to which
variations in pairwise distances from one matrix
are reflected in the other. The metric yielded
substantial values of 0.96, 0.84, and 0.72 when
comparing representations from the feature-listing
task to the triplet-judgement task, the feature-
listing task to the pairwise comparison task, and
the triplet task to the pairwise comparison task,
respectively. All these values were significantly
better than chance (p < 0.001), suggesting that in
each comparison, distances in one space accounted
for 96%, 84%, and 72% of the variation observed
in the other.". Thus despite differences in language,
task, and cultures, the three estimates of conceptual
structure were well-aligned, suggesting that human
conceptual representations of concrete objects are
remarkably robust. We next consider whether the
same is true of large language models.

4 Measuring Machine Conceptual
Structure

In this section, we consider whether one of the most
performant LLMs, OpenAI’s GPT 3, expresses
coherence in the structural organization of concepts
when tested using the same methods used in
the human behavioral experiments. Using the
OpenAI API, we conducted the feature listing and
verification task, triadic comparison task, and the
pairwise similarity rating task on GPT 3. Given
the recent deluge of open-source LLMs, we also
tested FLAN-T5 XXL, and FLAN-U2 on the
triadic comparison and pairwise ratings tasks to
see how they perform relative to larger closed
models. Finally for completeness we also tested
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Figure 2: Organization of conceptual representations estimated from Humans, GPT-3, and FLAN-XXL using
feature listing, triadic comparisons, and pairwise ratings. Grouping of concepts is based on hierarchical clustering
of representations. Tools are shown in cooler colors and reptiles are in warmer colors.

the similarity between embeddings extracted from
GPT 3, word2vec, and the language component of
CLIP. While word2vec embeddings are a staple of
NLP research, relatively fewer works have explored
the structure of the language models that are jointly
trained in the CLIP procedure.

After computing the similarity structure between
concepts expressed by the NLP methods outlined
above, we considered (a) how well these estimates
aligned with structures estimated from human
behaviors within each task, and (b) the structural
coherence between the embeddings estimated via
different methods from LLM behavior.

4.1 Methods
4.1.1 Feature listing simulations
To simulate the feature-generation phase of the
Leuven study, We queried GPT-3 with the prompt
"List the features of a [concept]" and recorded the
responses (see Table 3). The model was queried
with a temperature of 0.7, meaning that responses
were somewhat stochastic so that the model

produced different responses from repetitions of
the same query. For each concept We repeated
the process five times and tabulated all responses
across these runs for each item. The responses
were transcribed into features by breaking down
phrases or sentence into constituent predicates; for
instance, a response such as "a tiger is covered in
stripes" was transcribed as "has stripes." Where
phrases included modifiers, these were transcribed
separately; for instance, a phrase like "has a long
neck" was transcribed as two features, "has neck"
and "has long neck." Finally, alternate wordings
for the same property were treated as denoting a
single feature; for instance, "its claws are sharp"
and "has razor-sharp claws" would be coded as the
two features "has claws" and "has sharp claws." We
did not, however, collapse synonyms or otherwise
reduce the feature set. This exercise generated a
total of 580 unique features from the 30 items.

To simulate the feature verification phase of
the Leuven study, we then asked GPT to decide,
for each concept C and feature F , whether the
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concept possessed the feature. For instance, to
assess whether the model "thinks" that alligators
are ectothermic, we probed it with the prompt "In
one word, Yes/No: Are alligators ectothermic?"
(temperature 0). Note that this procedure requires
the LLM to answer probes for every possible
concept/feature pair–for instance, does an alligator
have wheels? Does a car have a heart? etc.
These responses were used to flesh out the
original feature-listing matrix: every cell where
the LLM affirmed that concept C had feature F
was filled with a 1, and cells where the LLM
responded "no" were filled with zeros. We refer
to the resulting matrix as the verified feature
matrix. Before the feature verification process,
the concept by feature matrix was exceedingly
sparse, containing 786 1’s (associations) and
16614 0’s (no associations). After the verification
process, the concept by feature matrix contained
7845 1’s and 9555 0’s. Finally, we computed
pairwise cosine distances between all items based
on the verified feature vectors, and used classical
multidimensional scaling to reduce these to three-
dimensional embeddings, exactly comparable to
the human study.

4.1.2 Triadic comparison simulations
To simulate triplet judgment, we used the prompt
shown in Figure 1 for each triplet, using the
exact same set of triplets employed across all
participants in the human study. We recorded
the model’s response for each triplet (see Table
2) and from these data fit a 3D embedding using
the same algorithm and settings as the human
data. The resulting embedding predicted GPT-
3 judgements for the held-out triplets at a 78 %
accuracy, comparable to that observed in the human
participants.

4.1.3 Pairwise similarity simulations
To simulate the pairwise similarity task, we used
the prompt shown in Table 4 for all the possible
pairs of concepts (435 (

(30
2

)
)).

4.2 Results

Hierarchical cluster plots for embeddings generated
from the LLM’s feature lists, triadic judgements,
and pairwise judgments are shown in the second
and third rows of Figure 2, immediately below
the corresponding plots from human data. Most
approaches reliably separate living and nonliving
things (although see the pairwise representations

for Flan-XXL to see a failure case). The verified
feature lists additionally yield within-domain
structure similar to that observed in human lists,
with all items relatively similar to one another,
and with some subcategory structure apparent
(e.g. turtle/tortoise, snake, crocodile). within-
domain structure estimated from triplet judgments,
in contrast, looks very different.

These qualitative observations are borne out
by the squared Procrustes correlations between
different embedding spaces, shown in Figure
3. Similarities expressed in the space estimated
from LLM verified feature lists capture 89% of
the variance in distances estimated from human
feature lists, 78% of the variance in those
estimated from human triplet judgments, and 89%
of the variance estimated from human pairwise
similarities. Similarities expressed in the space
estimated from LLM triplet judgments account for
82% of the variance in distances estimated from
human feature lists, 80% of the variance in those
estimated from human triplet judgments, and 69%
of the variance estimated from human pairwise
similarities. Finally similarities expressed in the
space estimated from LLM Pairwise comparisons
account for 32% of the variance in distances
estimated from human feature lists, 14% of the
variance in those estimated from human triplet
judgments, and 51% of the variance estimated
from human pairwise similarities. Similarities
estimated from LLM pairwise comparisons, in
contrast to those estimated from LLM feature lists
and LLM triplets, account for less than half the
variance in embeddings generated from human
judgment. More interestingly, they account for
less than half the variance in the embeddings
generated from the LLM verified feature lists
and LLM triplet judgements. Unlike the human
embeddings, conceptual structures estimated from
different behaviors in the very same model do not
cohere very well with each other.

Figure 4 also shows the squared Procrustes
correlations for semantic embeddings generated
via several other approaches including (a) the
raw (unverified) feature lists produced by GPT-3,
(b) the word embedding vectors extracted from
GPT-3’s internal hidden unit activation patterns,
(c) word embeddings from the popular word2vec
approach, and (d) embeddings extracted from a
CLIP model trained to connect images with their
natural language descriptions. None of these
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approaches accord with human-based embeddings
as well as do the embeddings estimated from the
LLM verified-feature lists, nor are the various
structures particularly coherent with one another.
No pair of LLM-estimated embeddings shows
the degree of coherence observed between the
estimates derived from human judgments.

In general, while LLMs vary in their degree
of human alignment with respect to conceptual
structure depending on the probing technique, the
critical finding is that they are not coherent within-
themselves across probing techniques. While

there might be ways to optimize human-machine
conceptual alignment using in-context learning
(Brown et al., 2020b; Chan et al., 2022) or
specialized prompting strategies (Wei et al., 2022)
to the extent that the community wants to deploy
LLMs to interact with humans in natural language
and use them as cognitive models, it is crucial to
characterize how stable the models’ concepts are
without the use of specialized prompting.

5 Conclusion

In this study, we compared the conceptual
structures of humans and LLMs using three
cognitive tasks: a semantic feature-listing task, a
triplet similarity judgement task, and a pairwise
rating task. Our results showed that the conceptual
representations generated from human judgments,
despite being estimated from quite different tasks,
in different languages, across different cultures,
were remarkably coherent: similarities captured
in one space accounted for 96% of the variance
in the other. This suggests that the conceptual
structures underlying human semantic cognition
are remarkably robust to differences in language,
cultural background, and the nature of the task at
hand.

In contrast, embeddings obtained from analo-
gous behaviors in LLMs differed depending upon
on the task. While embeddings estimated from
verified feature lists aligned moderately well with
those estimated from human feature norms, those
estimated from triplet judgments or from the raw
(unverified) feature lists did not, nor did the two
embedding spaces from the LLM cohere well with
each other. Embedding spaces extracted directly
from model hidden representations or from other
common neural network techniques did not fare
better: in most comparisons, distances captured
by one model-derived embedding space accounted
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for, at best, half the variance in any other. The
sole exception was the space estimated from LLM-
verified feature vectors, which cohered modestly
well with embeddings taken directly from the GPT-
3 embeddings obtained using the triplet task (72%
of the variance) and the hidden layer (66% of
variance)5.

While recent advances in prompting techniques
including chain-of-thought prompting (Wei et al.,
2022), self-consistence (Wang et al., 2022), and
tree-of-thoughts (Yao et al., 2023) have been shown
to improve performance in tasks with veridical
solutions such as mathematical reasoning and
knowledge retrieval, we highlight here through
both direct and indirect tasks that the underlying
conceptual structure learned by LLMs is brittle.
We implemented chain-of-thought reasoning for
some models and found that this led to LLM
model representations being more aligned with
human conceptual structure (Fig 6). However,
the conceptual coherence within a model only
increased for only some of the models but
still nothing comparable to human conceptual
robustness.

Together these results suggest an important
difference between human cognition and current
LLM models. Neuro-computational models of
human semantic memory suggest that behavior
across many different tasks is undergirded by
a common conceptual "core" that is relatively
insulated from variations arising from different
contexts or tasks (Rogers et al., 2004; Jackson
et al., 2021). In contrast, representations of
word meanings in large language models depend
essentially upon the broader linguistic context.
Indeed, in transformer architectures like GPT-
3, each word vector is computed as a weighted
average of vectors from surrounding text, so it
is unclear whether any word possesses meaning
outside or independent of context. Because
this is so, the latent structures organizing its
overt behaviors may vary considerably depending
upon the particular way the model’s behavior
is probed. That is, the LLM may not have a
coherent conceptual "core" driving its behaviors,
and for this reason, may organize its internal
representations quite differently with changes to
the task instruction or prompt. Context-sensitivity
of this kind is precisely what grants such models
their notable ability to simulate natural-seeming
language, but this same capacity may render them

ill-suited for understanding human conceptual
representation.

6 Limitations

While there are benefits to studying the coherence
of a constrained set of concepts, as we have
done here, human semantic knowledge is vast and
diverse and covers many domains beyond tools
and reptiles. While it was reasonable to conduct
our experiments on 30 concepts split across these
domains both due to resource limitations and to
limit the concept categories to those that are largely
familiar to most people, a larger scale study on
larger concept sets (Hebart et al., 2022; Devereux
et al., 2014; McRae et al., 2005) might reveal
a different degree of coherence in conceptual
structure across probing methods in LLMs.

When conducting LLM simulations, we didn’t
employ any prompting technique like tree-of-
thought(Yao et al., 2023), self-consistency(Wang
et al., 2022), etc.. While we think that the
purpose of this work is to highlight the fragility
of the conceptual ‘core’ of models as measured by
incoherent representations across tasks, it remains
possible that representations might cohere to a
greater extent using these techniques and might
align closer with human representations.

Finally, Human semantic knowledge is the
product of several sources of information including
visual, tactile, and auditory properties of the
concept. While LLMs can implicitly acquire
knowledge about these modalities via the corpora
they are trained on, they are nevertheless bereft of
much of the knowledge that humans are exposed
to that might help them organize concepts into a
more coherent structure. In this view, difference in
the degree in conceptual coherence between LLMs
and humans should not be surprising.

7 Code

Here’s the link to the repository containing the code
and data we used to run our experiments.
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A Appendix

Table 1: Concepts used in the experiment

Concepts Categories
15*Reptiles Turtle

Alligator
Lizard

Tortoise
Cobra
Snake

Blindworm
Gecko

Boa python
Toad

Crocodile
Chameleon

Caiman
Salamander

Dinosaur
15*Tools Hammer

Screwdriver
Grinding disc

Vacuum cleaner
Spanner

Lawn mower
Axe
Saw

Knife
Nail

Chisel
Shovel
Anvil
Oilcan

Paint brush

Head Option 1 Option 2 FLAN-T5-XXL FLAN-UL2 davinci-002 davinci-003
Shovel Alligator Spanner Alligator Alligator Spanner Spanner
Anvil Caiman Tortoise Tortoise Caiman Caiman Caiman
Nail Boa python Snake Snake Snake Boa Python Boa python
Paint brush Chisel Toad Chisel Toad Chisel Chisel
Shovel Caiman Crocodile Crocodile Dangerous Crocodile Crocodile

Table 2: Example responses to triplet judgement task by different models.
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Concepts Prompt Features
Alligator List all features of an Alligator. have tail, can stay underwater, have tough skin ...
Anvil List all features of an Anvil. have wings, have hammer, have hole ...
Axe List all features of an Axe. have blade, can be used for chopping wood, are a tool ...
Blindworm List all features of a Blindworm. have no legs, can smell with tongue, are small ...
Boa python List all features of a Boa python. have pits, can be green, are dimorphic ...
Caiman List all features of a Caiman. have short body,can swim, are reptile ...
Chameleon List all features of a Chameleon. have tongue, can change color, are a good swimmer ...
Chisel List all features of a Chisel. have a blade, can cut material, are hand held ...
Cobra List all features of a Cobra. have long body, can inject venom, are carnivorous ...
Crocodile List all features of a Crocodile. have teeth, can breathe air, are a swimmer ...
Dinosaur List all features of a Dinosaur. have claws, can lay eggs, are reptiles ...
Gecko List all features of a Gecko. have tail, can stick to surfaces, are nocturnal ...
Grinding disk List all features of a Grinding disk. have diameter, can be used for grinding. are abrasive ...
Hammer List all features of a Hammer. have handle, can be used for pounding nails, are a tool ...
Knife List all features of a Knife. have blade , can cut things, are sharp ...
Lawn Mower List all features of a Lawn Mower. have engine, can mulch, are powered by gas ...
Lizard List all features of a Lizard. have legs,can climb, are carnivores ...
Nail List all features of a Nail. have covering, have point, are metal ...
Oil can List all features of an Oil can. have a spout, can pour, are used to hold oil ...
Paint brush List all features of a Paint brush. have handle, can be used for painting, are a tool ...
Salamander List all features of a Salamander. have tail, can be a variety of colors, are an amphibian ...
Saw List all features of a Saw. have handle, can be used to cut lumber, are a tool ...
Screwdriver List all features of a Screwdriver. have a handle, have a tip, have a cap ...
Shovel List all features of a Shovel. have point, have blade, have handle ...
Snake List all features of a Snake. have long body, can be dangerous to humans, are carnivorous ...
Spanner List all features of a Spanner. have different tips, can grip a bolt, are a tool ...
Toad List all features of a Toad. have glands, can jump, are good jumpers ...
Tortoise List all features of a Tortoise. have shell, can live long, are cold blooded ...
Turtle List all features of a Turtle. have shell, can swim, are reptiles ...
Vacuum List all features of a Vacuum. have nozzle, can suck up dirt, have filter ...

Table 3: Examples of features produced by GPT-3.
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Figure 5: A correlation matrix showing square of the Procrustes correlations between semantic representations
estimated from different models across different tasks.
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Figure 6: A correlation matrix showing square of the Procrustes correlations between semantic representations
estimated from different models across different tasks using only Chain of Thought prompting.
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Humans LLMs
Feature generation This bundle contains up to 10 sheets

with a word written on top of the
page. We would like you to write
down preferably 10 features underneath
the word. Try to give different sorts
of features, such as, for example,
physical or perceptual features (what
it looks like, how it smells, how it
tastes, ...), functional features (what it
is used for, when and where it is used,
...), background information (where it
comes from, some historical facts, ...),
etc. ((De Deyne et al., 2008))

List all the properties of {concept1}

Feature verification The participants were instructed to
judge, for every feature-exemplar pair,
whether the feature characterizes the
exemplar, and to write down a 1 or a 0
in the corresponding matrix entry. (De
Deyne et al., 2008)

In one word, Yes/No : Are {concept1}
{property1} (or) In one word, Yes/No :
Do {concept1} have {property1}/

Triplet task Which of the bottom two words is more
similar to the word at the top?

Answer using only one word - {con-
cept1} or {concept2} and not {anchor}.
Which is more similar in meaning to
{anchor}?"

Pairwise similarity On a scale of 1-7, how similar is a
{concept1} to a {concept2}?

Answer with only one number from
1 to 7, considering 1 as ’extremely
dissimilar’, 2 as ’very dissimilar’, 3 as
’likely dissimilar’, 4 as ’neutral’, 5 as
’likely similar’, 6 as ’very similar’, and
7 as ’extremely similar’: How similar is
{concept1} and {concept2}?

Table 4: Prompts used across the three tasks for humans and LLMs
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