
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7561–7583
December 6-10, 2023 ©2023 Association for Computational Linguistics

WICE: Real-World Entailment for Claims in Wikipedia

Ryo Kamoi♢ Tanya Goyal♢ Juan Diego Rodriguez♠♢ Greg Durrett♢
♢ Department of Computer Science, The University of Texas at Austin
♠ Applied Research Laboratories, The University of Texas at Austin

ryokamoi@utexas.edu

Abstract

Textual entailment models are increasingly ap-
plied in settings like fact-checking, presupposi-
tion verification in question answering, or sum-
mary evaluation. However, these represent a
significant domain shift from existing entail-
ment datasets, and models underperform as a
result. We propose WICE, a new fine-grained
textual entailment dataset built on natural claim
and evidence pairs extracted from Wikipedia.
In addition to standard claim-level entailment,
WICE provides entailment judgments over sub-
sentence units of the claim, and a minimal sub-
set of evidence sentences that support each sub-
claim. To support this, we propose an auto-
matic claim decomposition strategy using GPT-
3.5 which we show is also effective at improv-
ing entailment models’ performance on multi-
ple datasets at test time. Finally, we show that
real claims in our dataset involve challenging
verification and retrieval problems that existing
models fail to address.1

1 Introduction
Textual entailment (Dagan et al., 2005) and natu-
ral language inference (MacCartney and Manning,
2009; Bowman et al., 2015; Williams et al., 2018)
are longstanding problems in NLP that take many
forms. The SNLI dataset has a stated purpose to use
NLI “as a tool for the evaluation of domain-general
approaches to semantic representation” (Bowman
et al., 2015). However, this is far from how NLI
is used today, e.g., to validate QA system outputs
(Chen et al., 2021), evaluate generated summaries
(Falke et al., 2019; Laban et al., 2022) or under-
stand knowledge-grounded dialog (Honovich et al.,
2021; Gupta et al., 2022; Dziri et al., 2022).

There are some major gaps when applying mod-
ern entailment systems to these tasks. First is the
fact that many NLI datasets target short premises,
often single sentences, such as VitaminC (Schuster

1Our data is available at: https://github.com/
ryokamoi/wice

Subclaim 2

Entailment label:  SUPPORTED
Supporting sentence indices: 9, 11

Entailment label:  PARTIALLY-SUPPORTED
Supporting sentence indices: 11
Not-Supported Tokens: privately, Groupe

The Société de transport de Montréal (STM) 747 Shuttle Bus 
replaced the "Aerobus."

The "Aerobus" was privately operated by Groupe La Québécoise.

…The Société de 
transport de 
Montréal (STM) 747 
Shuttle Bus replaced 
the "Aerobus" that 
was privately 
operated by Groupe 
La Québécoise.[7]…

Evidence: cited article [7]Claim

Subclaim 1

…The route is the 747 Express bus, which 
finally provides a direct, non-stop link 
between downtown and Dorval Pierre 
Elliott Trudeau International Airport…It 
also replaces La Québécoise's Aérobus 
shuttle service between the bus station 
and the airport that used to run every 
half hour and cost $16…

Figure 1: WICE annotation for a claim in Wikipedia
and its cited evidence. Claims are automatically broken
into subclaims. WICE provides entailment labels and
indices of evidence sentences that support a subclaim.
Real-world claims are often partially supported (sub-
claim 2); unsupported tokens are annotated here.

et al., 2021) and WANLI (Liu et al., 2022). As
a result, existing frameworks for document-level
entailment are built upon aggregating local entail-
ment scores (Zhou et al., 2019; Laban et al., 2022)
or using a retrieval stage (Nie et al., 2019; Schuster
et al., 2022). There are a few exceptions such as
DocNLI (Yin et al., 2021), but it features a large
amount of synthetic negative data. This highlights
the second weakness: the lack of ecologically valid
negative examples. The process by which contra-
dictory cases are authored leads to spurious cor-
relations, including single-word correlations (Gu-
rurangan et al., 2018; Gardner et al., 2021), syn-
tactic heuristics (McCoy et al., 2019), or a lack of
reliance on the input (Poliak et al., 2018). Third,
these datasets lack fine-grained annotations of what
parts of a claim are supported or not.

Our work addresses these shortcomings by col-
lecting WICE (Wikipedia Citation Entailment),
a dataset for verification of real-world claims in
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Wikipedia. Given a sentence in Wikipedia and the
corresponding article(s) it cites, we annotate the
entailment label, a list of sentences in the cited arti-
cle(s) that support the claim sentence, and tokens
in the claim that are unsupported by the article(s)
(see Figure 1). We show that the claims in WICE
involve challenging verification and retrieval prob-
lems beyond the scope of current NLI datasets.

To aid the construction of WICE and pro-
vide fine-grained annotations, we introduce
Claim-Split, a method of decomposing hypothe-
ses into subclaims using few-shot prompting with
GPT-3.52 (Brown et al., 2020; Ouyang et al.,
2022), shown in Figure 2. This decomposition
resembles past frameworks derived from OpenIE
(Stanovsky et al., 2018; Ernst et al., 2021) or Pyra-
mid (Nenkova and Passonneau, 2004; Shapira et al.,
2019; Zhang and Bansal, 2021), but avoids relying
on annotated data and achieves greater flexibility
by using GPT-3.5. By operating at the subclaim
level, we simplify both our annotation process and
the final entailment prediction task for automatic
models. We also show that Claim-Split can im-
prove the entailment classification performance of
off-the-shelf models by simplifying long claims.

We evaluate a range of systems on our dataset,
including existing short-paragraph entailment mod-
els “stretched” to make a document-level entail-
ment judgment out of short-paragraph judgments
(Laban et al., 2022; Schuster et al., 2022). We show
that chunk-level processing of the long evidence
and retrieval-based approach are a strong starting
point for future systems, although current systems
still perform below human level on this dataset and
retrieval performance is poor.

2 The WICE Dataset

We aim to annotate claims that are: (1) naturally-
occurring; we extract claims from Wikipedia and
its cited documents, where the noise in citations
gives realistic negative examples, (2) in-context
with surrounding text; this mirrors real use cases
where claims occur in discourse context, and (3)
fine-grained; we break down complex claims into
multiple subclaims with Claim-Split and pro-
vide entailment judgments for both granularities.
We also provide token-level annotation for non-
supported tokens.

2GPT-3.5 was the strongest model available at the time we
collected the data.

The main altar houses a 17th-century fresco. 
The fresco is of figures interacting with the framed 13th-century 
icon of the Madonna. 
The icon of the Madonna was painted by Mario Balassi in 1638.

Segment the following sentence into individual facts: 
[in-context examples of decomposition; see Appendix] 

Original Sentence: 
The main altar houses a 17th-century fresco of figures interacting with the 
framed 13th century icon of the Madonna (1638), painted by Mario Balassi.
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Figure 2: Claim-Split automatically breaks claims
into subclaims using a LLM (GPT-3.5 in this work).

2.1 Claim-Split using LLMs

A key idea we argue for in this paper is claim de-
composition. Real world claims, such are those
in Wikipedia that constitute WICE, often consist
of multiple related pieces of information, each of
which may or may not be supported by the evi-
dence. We show an example of this in Figure 1
where the two subclaims, derived from the com-
plex claim, have different entailment labels. By
decomposing claims prior to annotation, and col-
lecting annotations at the subclaim level, we can
offer a more fine-grained view into which parts of
claims are supported by cited documents.

First, we describe our claim decomposition strat-
egy, called Claim-Split. Then, we establish the
validity of Claim-Split as a pre-annotation step
by manually verifying the generated subclaims.

Claim-Split method Our method prompts
an instruction-tuned GPT-3.5 model (text-
davinci-002) (Brown et al., 2020; Ouyang et al.,
2022) in a few-shot setting to automatically
decompose a claim c into multiple subclaims:
Claim-Split(c) = {c1, ...cm}. The prompt used
includes K example splits along with the instruc-
tion “Segment the following sentence into individ-
ual facts.” These examples are designed such that
the subclaims provide complete coverage over the
corresponding input claims (see prompt used for
WICE in Appendix D.1). Figure 2 shows an exam-
ple of decomposed claims using our approach.

Claim-Split generated subclaims correctly and
subclaims completely cover the information in
the source claim. We recruited Mechanical Turk
workers to annotate subclaims decomposed by
Claim-Split for 700 Wikipedia claims,3 for two
necessary criteria: (1) Completeness: subclaims

3We explain how claim sentences are chosen in Section 2.3.
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{c1, . . . cm} must cover all information in c, and
(2) Correctness: all subclaims ci must faithfully
present a part of the information in c.

We found that 92.3% of the claims satisfy the
completeness criterion and 97.7% of the generated
subclaims satisfy the correctness criterion. Analyz-
ing the errors further, we found that one-third were
relatively trivial such as disregarding parentheses
in the original claim, and could be solved with tar-
geted prompts. Other errors were more complex
and do not have straightforward solutions; see Ap-
pendix A for more analysis. In total, only 8.6%
of the claims included one of the two types of er-
rors. These results justify our strategy of seeking
annotations at the subclaim level and show that
building systems at the subclaim level is a viable
path for further efforts.

The set of annotated claims from this experiment
constitutes the complete dev and test set of WICE
(details later in Section 2.3); therefore, we man-
ually fix the errors detected in this annotation to
provide a high quality evaluation dataset.

2.2 Tasks in WICE

Let claim c (analogous to the hypothesis in standard
NLI terminology) be a sentence in a Wikipedia ar-
ticle, and evidence E = {e1, . . . , en} (analogous
to the premise) refer to sentences from web ar-
ticle(s) cited as a reference for the claim c. Let
Claim-Split(c) = {c1, . . . , cm} be the automati-
cally decomposed subclaims from c.

The human-annotated data we collect supports
the following three tasks:

1. Entailment Classification: Given a claim c
(or subclaim cj) and evidence document E,
is the claim (or subclaim) entailed by the
document? We annotate three-way entail-
ment: {SUPPORTED, PARTIALLY-SUPPORTED,
NOT-SUPPORTED}.

2. Evidence Retrieval: Given a claim c (or sub-
claim cj) and evidence document E, which sub-
set of evidence sentences {e1, . . . , ek} ⊂ E
support or partially support c (or cj)?

3. Detecting Non-Supported Tokens: Given sub-
claim cj and evidence document E, which to-
kens {t1, . . . , tp} ⊂ cj are not supported by E?

For each of these three sub-tasks, we only col-
lect human annotations at the subclaim-level (as
shown in Figure 1). Claim-level labels are obtained

by automatically projecting subclaim annotations
using a natural set of rules described in Section 2.3.

2.3 Dataset Collection
Base Data We use the same base set of Wikipedia
claims as the SIDE dataset (Petroni et al., 2023).
For each claim, we re-retrieve the cited web ar-
ticle(s) from Common Crawl4 and segment into
sentences.5 This gives us our base set of claim-
evidence pairs (c, {e1, e2, . . . en}).
Claim-Split Next, we split each claim c into
subclaims {c1, c2, . . . cm} using Claim-Split, as
described in Section 2.1. We use few-shot prompt-
ing with six examples (Appendix D.1). Also, we
filter claims that are decomposed into either only
one or more than six subclaims.6 For the develop-
ment set, this filters 19.1% of examples.

Additional Filtering We use a NLI model
(RoBERTa-Large) trained on DocNLI (Yin et al.,
2021) to remove datapoints (c, E) for which
all subclaims cj ∈ Claim-Split(c) are classi-
fied as entailed.7 By using a relatively weaker
RoBERTa-Large model, we remove trivially en-
tailed claims but avoid making a dataset that is ad-
versarially difficult for larger models (e.g., T5-3B).

We retain 16.3% of the claims after applying all
the filtering steps above. Despite this, we observe
diverse entailment phenomena in the remaining
subset, which we analyze further in Section 2.5.

Human Annotation We recruited Mechanical
Turk workers to annotate evidence-subclaim pairs
for each of the three tasks outlined in Section 2.2.
First, we ran a qualification task with 3 examples
(chosen to include challenging annotations) and
qualified 23 workers based on it. Annotators were
paid $0.75 per HIT. Each HIT involved annotation
of all subclaims corresponding to a single claim.

We collect annotations from 5 unique workers
for each example in the development and test set,
and from 3 for the train set. We observe reason-
able inter-annotator agreement for the entailment

4https://CommonCrawl.org/.
5We re-retrieved the cited web articles because SIDE only

contains one evidence web article even when there are multiple
on the original Wikipedia page.

6We removed the claims that cannot be decomposed by
Claim-Split because we intend to focus on complex claims.
In addition, we removed the claims that are decomposed into
more than six sub-claims because typically they are not inter-
esting cases; they often just include a list of examples.

7Detail of how we split E into chunks and combine chunk-
subclaim entailment scores are in Appendix B.
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Statistic Subclaim Claim

# Datapoints – Train 3,470 1,260
Dev 949 349
Test 958 358

# Tokens 12.1 27.4
# Supporting Sents 1.9 3.1

# Subclaims / Claim − 3.0

# Evidence Sentences / Datapoint 119.5
# Tokens / Evidence Sentence 14.0

# Tokens / Claim’s Context 122.5

Table 1: Statistics of the WICE dataset.

Supported Partially Supp. Not Supp.

Claim 33.0 54.7 12.3
Subclaim 55.8 18.2 25.9

Table 2: Entailment label distribution (%) of claims and
subclaims in the development set of WICE.

classification task; Krippendorff’s α = 0.62 on the
development set. We describe how we aggregate
annotations from these workers in Appendix B.

Deriving claim labels from subclaim labels
For entailment classification, if all subclaims
are SUPPORTED or NOT-SUPPORTED, we assign
that as the claim-level label. Else, we assign
PARTIALLY-SUPPORTED. For supporting sentences,
we take the union of subclaim level supporting sen-
tences as the claim level annotation. When there
are multiple sets of supporting sentences for each
subclaim,8 we take the union of all combinations.

2.4 Dataset Statistics
Table 1 shows the overall statistics for the final
WICE dataset. On average, claims were decom-
posed into 3.0 subclaims by the Claim-Split
method. Our dataset contains approximately 5.9K
subclaim level (or 2K claim level) examples for the
entailment classification task. Each subclaim (or
claim) is supported by an average of 1.9 (or 3.1)
evidence sentences when the label is SUPPORTED or
PARTIALLY-SUPPORTED.

Table 2 shows the distribution of entailment la-
bels. Roughly 56% of the subclaims are labeled
as SUPPORTED. This percentage is much lower at
the claim level (33%) since all subclaims must be
SUPPORTED. Consequently, a majority of the claims
fall into the PARTIALLY-SUPPORTED category. In a

8There can be multiple sets of supporting sentences for
each claim/subclaim because different annotators can annotate
different sets of supporting sentences that include sufficient in-
formation to support (or partially support) the claim/subclaim.

Category FEVER VitC WICE
Subcl Claim

Compression 10 20 3.9 4
w/ contextualization 28 14 14.2 4

Paraphrase Direct 34 24 26.0 16
+ Calculation 0 30 0.0 0

+ Inference 24 8 52.8 68
+ Background Knowledge 2 0 3.1 8

Annotation Mistake 2 4 0.0 0

Table 3: Distribution (%) of verification problems es-
timated from annotation for 50 claims in each dataset
(127 subclaims in WICE). We evaluated claims labeled
as entailed in FEVER and VitaminC, and claims labeled
as supported or partially supported in WICE.

typical NLI dataset, both PARTIALLY-SUPPORTED
and NOT-SUPPORTED would simply be labeled
as neutral, which is not very useful for a sys-
tem designer attempting to verify a fact. For
PARTIALLY-SUPPORTED subclaims, 25.2% of to-
kens were identified as not supported.

2.5 Analysis of Phenomena

We compare with FEVER and VitaminC to show
that the in-the-wild claims and cited articles in
WICE constitute diverse and challenging verifi-
cation problems. We bucket verification problems
from these datasets into the following categories.
First, we define Compression to include cases
where the claim/subclaim appears almost verba-
tim in the evidence document with trivial phrasal
deletions. Relatedly, the category Compression
w/ Decontextualization includes cases in which
pronouns, VP ellipsis, or other similar effects need
to be resolved to appropriately contextualize the
claim. These are typically not challenging for
language models. We also define four cases we
broadly call Paraphrasing. Within this, Direct
cases are those where the evidence document infor-
mation has been restated in the claim, but in a way
that is relatively transparent and simple to follow
(e.g., synonym substitution). Require Calculation
includes cases that require numerical calculation or
comparison. Require Inference captures slightly
more complicated where inferences about the sit-
uation are needed. Require Background Knowl-
edge represents cases where additional background
knowledge or world knowledge is required (e.g.,
knowledge of entity aliases or the ability to recog-
nize causal relationships between events).

We manually annotate 50 claims randomly se-
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Model Train Data Claim Subclaim
F1 Acc F1 Acc

Majority Label – 49.6 33.0 71.6 55.8

Sentence-level
RoBERTa-Large SNLI1 47.3† 31.0† 73.3† 66.8†

RoBERTa-Large MNLI1 46.5† 35.8† 71.9† 57.9†

ALBERT-xLarge VitaminC2 49.8† 58.9† 74.1† 67.8†

ALBERT-xLarge VitC+MNLI2 52.7† 61.5† 77.0† 73.0†

T5-3B VitC+MNLI 48.3† 61.7† 77.1† 73.4†

T5-3B ANLI 48.0† 41.9† 77.6† 71.8†

Chunk-level
T5-3B DocNLI 56.4† 62.8† 79.7† 74.9†

T5-Large ANLI 61.8 70.7† 80.7 78.3
T5-3B ANLI 64.3 75.1 83.4 79.6

Human – 83.3 92.0 94.4 94.4

Table 4: Off-the-shelf binary entailment classification
performance of existing NLI models on WICE using
the MAX strategy to combine local entailment scores.
1: Dataset-model configurations from Laban et al.
(2022) and 2: from Schuster et al. (2021). Similar to
Honovich et al. (2021), we observe the best performance
using T5 models trained on ANLI, although there re-
mains a gap between these and human performance. †:
Worse than T5-3B trained on ANLI (chunk-level) with
p-value < 0.05 according to a paired bootstrap test.

lected from the development sets with these cate-
gories for the three datasets.9 In WICE, we anno-
tated 127 subclaims in 50 claims. Table 3 shows
the estimated distribution. We can see that natural
claims in WICE involve difficult entailment clas-
sification problems often requiring some kind
of inference even at the subclaim level. In con-
trast, relatively few claims in VitaminC involve
inference, but mostly require narrower types of
reasoning such as calculation.

3 Experiments on WICE

We have three main questions for our dataset.
(1) How well do existing NLI models perform off-
the-shelf when using the “stretching” paradigm?
(2) Does fine-tuning on our dataset improve accu-
racy? (3) Would being able to retrieve the relevant
supporting sentences improve accuracy further?

3.1 Entailment Classification on WICE

We benchmark the performance of NLI models on
WICE in both off-the-shelf and fine-tuned settings.

9If more than one category applies, we assign the most
“difficult” category (latest in our list). Examples are given in
Table 13 in the appendix.

Stretching NLI for document-level entailment
WICE’s evidence articles are generally much
longer than the input length limits of NLI mod-
els. Therefore, we adopt the “stretching” technique
from prior work (Laban et al., 2022; Schuster et al.,
2022) for all our entailment models.

We divide the evidence document E into mul-
tiple partitions PE . These can be individual sen-
tences (ei) or chunks (contiguous ei’s). We re-
strict maximum chunk size to 256 tokens. For
each subclaim/claim and partition pair, we use
the NLI model to get a “local” entailment score:
sc(ci, p) = P (y = entailed | ci, p). Then, as
the first method of the “stretching” technique, we
derive a document-level score by taking the maxi-
mum local score: sc(ci, E) = maxp∈PE

[sc(ci, p)].
We call this the MAX entailment strategy.

Off-the-shelf models We report the perfor-
mance of RoBERTa-Large (Liu et al., 2019),
ALBERT-xLarge (Lan et al., 2020), T5-Large and
T5-3B (Raffel et al., 2020) fine-tuned on SNLI
(Bowman et al., 2015), MNLI (Williams et al.,
2018), DocNLI (Yin et al., 2021) or ANLI (Nie
et al., 2020). We choose model-dataset pairs that
have been used in prior work and have released
weights, but default to T5-3B for our new settings.

The PARTIALLY- and NOT-SUPPORTED labels in
WICE correspond to the neutral (and sometimes
contradiction) category in SNLI, MNLI, and ANLI.
On the other hand, DocNLI only includes binary
categories (entailed or not entailed). To evaluate
models trained on these datasets on WICE, we
consider a binary classification task: SUPPORTED or
not. We use the predicted probability for entailment
as the predicted score for the SUPPORTED class.

We evaluate GPT-3.5 and GPT-4 in Section 3.4
on the oracle retrieval dataset (explained later); the
stretching approach requires invoking the model
for every (document chunk, subclaim) pair, which
becomes very expensive to test with large models.

Models fine-tuned on WICE WICE consists
of entailment labels corresponding to entire evi-
dence documents and also supporting sentences
for SUPPORTED and PARTIALLY-SUPPORTED cases.
To train models that can be stretched as described
above, we derive sentence- and chunk-level entail-
ment labels from these WICE annotations (details
are in Appendix E.2). Although we evaluate the
performance on the binary classification task, we
fine-tune models on the three-way classification
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Unit Train Data Claim Subclaim
F1 Acc F1 Acc

sent ANLI+WiCE 58.0† 62.8† 81.2† 77.3†

chunk WiCE 65.3† 77.1 85.1† 82.7†

chunk ANLI+WiCE 72.1 79.1 87.3 85.0

– Human 83.3 92.0 94.4 94.4

Table 5: Binary entailment classification on WICE with
fine-tuned T5-3B models. Further fine-tuning on ANLI-
tuned models improves performance and chunk-level
outperforms sentence-level. †: Significantly worse than
T5-3B fine-tuned on ANLI+WICE (chunk-level) with
p-value < 0.05 according to a paired bootstrap test.

labels in WICE.

Human Performance We manually annotate 50
randomly selected test claims and report that as
human performance. Similar to crowd annotation,
we annotated at the subclaim level and aggregated
them to obtain claim-level judgments.

Results Table 4 outlines off-the-shelf perfor-
mance on WICE for the binary entailment clas-
sification task. It shows that predicting scores at
the chunk-level works better than sentence-level
using the MAX strategy. Overall, T5-3B trained on
ANLI performs best, though it is still substantially
lower than human performance (64.3 vs 83.3 F1
at the claim-level). This shows that the realistic
claims and document-level setting of WICE differs
substantially from previous NLI datasets.

For fine-tuning, we evaluate two settings: only
fine-tuning on WICE or further fine-tuning a T5-3B
model already fine-tuned on ANLI. Results are in
Table 5. It shows that the chunk-level T5-3B model
fine-tuned on WICE after ANLI achieves the best
performance at both granularity levels. Although it
improves over off-the-shelf results in Table 4, it is
still substantially lower than human performance.
This suggests that WICE is challenging even for
fine-tuned models.

3.2 Evidence Retrieval on WICE
First, we benchmark the performance of sentence-
level NLI models fine-tuned on WICE on the re-
trieval task: given claim/subclaim c, retrieve all
supporting sentences from evidence E. Then, we
evaluate if a retrieve-then-predict pipeline can im-
prove the performance of entailment classification.

Retrieval using NLI models Our strategy is as
follows: derive a score for each evidence sen-
tence and claim/subclaim pair. We use p(entailed)

Train Data Claim Subclaim
F1 P R F1 P R

BM25 15.7† 9.0† 98.6 13.2† 7.8† 96.7

ANLI 24.8† 27.1† 39.2† 41.9† 39.5† 55.5†

WiCE 49.0† 48.4† 67.0† 49.3† 46.3† 67.6†

ANLI+WICE 62.0† 61.0† 76.9† 58.5 54.7 79.6

w/ evidence context
WICE 67.4 65.0 81.7 58.6 54.9 75.7

ANLI+WICE 64.8† 62.5 77.8† 56.6 49.0 86.4

Human 90.9¶ 92.2¶ 92.6¶ 91.6 93.2 92.5

Table 6: Performance of T5-3B on the evidence re-
trieval task of WICE. †: Worse than T5-3B finetuned
on WICE (w/ context) with p-value < 0.05 in a paired
bootstrap test. Human performance is on 50 random
claims. ¶: For claim level human performance, we take
the union set of retrieved sentences at subclaim level.

for prior NLI datasets and p(SUPPORTED) + 0.5×
p(PARTIALLY-SUPPORTED) for WICE as retrieval
scores.10 Evidence sentences with scores larger
than a threshold τ are predicted as supporting sen-
tences.

However, we saw in Table 5 that sentence-
level NLI models perform significantly worse than
chunk-level models on classification, suggesting
that a single sentence without context is insuffi-
cient for entailment evaluation. Therefore, we also
train another sentence-level variant that includes
additional evidence context (128 tokens) as input,
in a format of “claim <SEP> evidence-context
<SEP> evidence-sentence”.11

Metric We evaluate supported or partially-
supported claims and subclaims, which include
at least one gold supporting sentence. As there
can be multiple gold sets of supporting sentences
for each claim/subclaim in WICE,12 we report the
maximum F1 score over the gold sets for each
claim/subclaim: maxi F1(Ŝτ , Si) where Ŝτ is the
predicted set and Si is the i-th gold set. We choose
the threshold τ that gives the best F1 score (calcu-

10The intuition behind this formula is that we want to pre-
fer the sentences that receive high scores for the supported
category, while also accepting partially supporting sentences.

11We did not observe performance improvement by includ-
ing context for claims. This is likely because the evidence in
our dataset already relates to the entity or event in the claim.
Therefore, decontextualization is less critical here, but would
likely be crucial if retrieving supporting documents.

12Different annotators may select different sets of support-
ing sentences that contain equally sufficient information to
support (or partially support) a claim. WICE includes all of
them as gold sets of supporting sentences.
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Setting Claim Subclaim
F1 Acc F1 Acc

MAX best (Table 5) 72.1 79.1 87.3 85.0

top-k 71.1 79.3 86.6‡ 84.2‡

top-k (w/ context) 72.9 79.9 88.4 87.0
oracle 78.0 84.4 88.7 87.7

Human 83.3 92.0 94.4 94.4

Table 7: Binary entailment classification performance
of the retrieve-then-predict pipeline using chunk-level
T5-3B on WICE. ‡: Worse than top-k (w/ context) with
p-value < 0.05 according to paired bootstrap test.

lated as above) on the development set.13

Results: Including context from evidence sen-
tences improves retrieval performance. Table 6
reports the performance of the baseline BM25, best
off-the-shelf model from Table 4 (T5-3B on ANLI),
and fine-tuned entailment models. Performance of
models fine-tuned with evidence context on WICE
is shown in the bottom half of the table. We find
that these latter category of models perform best,
with the best performance reported by the T5-3B
model fine-tuned on WICE.14

3.3 Entailment Classification using Retrieval

Here, we use retrieve-then-predict rather than the
MAX “stretching” strategy from Section 3.1.

Setup We retrieve the top-k (= 7, in our exper-
iments15) sentences using the sentence-level re-
trieval scores in Section 3.2.16 These sentences are
concatenated to construct a new premise/evidence;
this is used by the chunk-level NLI model to make
a document-level judgment: sc(ci, E) = P (y =
entailed | ci, ei,1 . . . ei,k), where ei,1 . . . ei,k are
the top-k retrieved sentences. This strategy is simi-
lar to Nie et al. (2019).

Results We report the performance of the chunk-
level T5-3B model fine-tuned on ANLI+WICE in
Table 7. It shows that the retrieve-then-predict strat-

13When no supporting sentence is retrieved for a
claim/subclaim, we define the precision, recall, and F1 for
this case as zero.

14In the ANLI+WICE setting, we pre-trained the model on
ANLI, which does not have the evidence context, and further
trained it on WICE, which has the evidence context. This
mismatch may be a reason for the drop in performance.

1598% of claims in the development set have equal to or
less than 7 gold supporting sentences.

16For retrieval, we use T5-3B finetuned on ANLI+WICE
w/o evidence context and T5-3B finetuned on WICE w/ evi-
dence context, which are the best models in each setting.

Model Claim Subclaim
F1 Acc F1 Acc

T5-3B (ANLI) 61.8 74.0 83.9 85.0
T5-3B (ANLI+WICE) 77.8 88.0 88.7 89.0

GPT-3.5 39.3 32.0 73.3 73.3
GPT-4 61.0 77.0 91.1 92.0

Human 83.3 92.0 94.4 94.4

Table 8: Binary entailment classification performance
of the GPT models (few-shot) on WICE with the oracle
retrieval (100 claims/subclaims).

egy using the retrieval model without evidence con-
text does not work well. However, adding context
improves performance significantly. This mirrors
our evidence retrieval results from Table 6. As
an upper bound, we report results in the oracle
setting, i.e., if a gold set of supporting sentences
is provided as input to the NLI model.17 We see
substantially improved performance in the oracle
setting (71.1 vs 78.0 in oracle). The large gaps
suggest that better retrieval can improve the
entailment classification performance.

3.4 Entailment Classification by GPT

Table 8 shows the entailment classification perfor-
mance of GPT-3.5 (Brown et al., 2020; Ouyang
et al., 2022) and GPT-4 (OpenAI, 2023) on WICE
with oracle retrieval, which uses the gold set of
supporting sentences.18 We use a few-shot prompt
with three examples (Appendix H). We see that
GPT-4 is stronger at entailment classification than
our best fine-tuned subclaim-level model, but claim-
level classification, which is expected to be more
complex, is still challenging for simple few-shot
prompting even with the oracle retrieval.

Although we evaluate the GPT models with
oracle retrieval, we believe that future work can
explore how to scale GPT-4 to work over long-
document entailment settings (e.g., tradeoffs of us-
ing stretching vs. feeding in contexts up to the max-
imum size allowed by GPT-4) and reduce its cost so
it can be practically deployed for fact verification
in real workflows.

17To avoid biases caused by the input length, we add or
remove sentences in the oracle setting to make input evidences
up to but no longer than 256 tokens. For the non-supported
cases with no gold set of supporting sentences, we default to
the MAX setting from Section 3.1. Refer to Appendix G for
details of the oracle retrieval.

18We use first 100 claims/subclaims from the oracle retrieval
dataset because the GPT-4 evaluation is costly.
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Figure 3: Entailment classification using Claim-Split.
We decompose a claim into subclaims, predict subclaim-
level entailment scores, then aggregate these to get the
score for the claim.

4 Is Claim-Split useful for entailment
classification?

We introduced Claim-Split as a method to
provide fine-grained annotation by decomposing
claims into simpler subclaims, and we used it with
human verification to ensure the quality of our
dataset. However, human evaluation in Section 2.1
shows that Claim-Split makes mistakes less than
10% of the time, indicating its robustness. In this
section, we aim to demonstrate the potential impact
of Claim-Split beyond the dataset construction
and its applicability to diverse domains. Specifi-
cally, we test the hypothesis that Claim-Split
makes entailment classification easier and im-
proves the performance of NLI models. To show
this, we evaluate a strategy of entailment prediction
by aggregating the subclaim level entailment score
on four datasets.

Setup Given a claim-evidence (c, e) pair and
target entailment label y, we compare the perfor-
mance of two configurations that use identical en-
tailment models for prediction:

1. Standard: As is the typical mode of inference
with these models, we directly predict the entail-
ment label for the original claim c. The experi-
ments in Section 3 are also in this setting.

2. w/ Claim-Split: We first predict subclaim-
level entailment scores for each subclaim cj ∈
Claim-Split(c). These are combined into a
claim-level entailment score using harmonic
mean.19 Figure 3 describes this configuration.

19Although more intuitive, we found that aggregating using
min is quite sensitive to mistakes made by the entailment
models or the Claim-Split method. Harmonic mean was a
good balance between min and arithmetic mean.

Fine-tuned T5-3B models on WICE

Test Data Train Data Standard w/ Claim-Split

WICE only WICE 82.0 88.0∗

+ ANLI 88.2 89.7

Off-the-shelf models trained on ANLI

Test Data Model Standard w/ Claim-Split

WICE T5-Large 79.2 83.3∗

T5-3B 80.2 83.2

VitaminC
(long)

T5-Large 80.2 87.2∗

T5-3B 90.6 92.8∗

PAWS
(long)

T5-Large 83.7 86.1∗

T5-3B 89.5 88.8

FRANK
(XSum)

T5-Large 86.7 89.7
T5-3B 93.2 93.7

Table 9: Comparison of AUROC scores for claim-level
entailment classification task using the standard and “w/
Claim-Split” method. Table 15 includes results in
F1 and accuracy. ∗: improvement from the standard
method is statistically significantly with p-value < 0.05
according to paired bootstrap test.

Test Data In addition to WICE, we report re-
sults on the test sets of three datasets from Hon-
ovich et al. (2022): VitaminC (fact-verification)
(Schuster et al., 2021), PAWS (paraphrase) (Zhang
et al., 2019), and FRANK-XSum (summariza-
tion) (Pagnoni et al., 2021). We evaluate the
500 longest claims in VitaminC and PAWS, using
length as a proxy for complexity that Claim-Split
is designed for.20 To decompose claims using
Claim-Split, we use a unique prompt for each
dataset that includes 2-4 dataset-specific examples
(Appendix D.1).

Models We evaluate the performance of T5 mod-
els fine-tuned on ANLI21 for off-the-shelf settings
and on WICE for fine-tune settings. For WICE,
we use the MAX setting as described in Section 3.1.
Note that we use the same trained models when
comparing standard and w/ Claim-Split settings.

Results We report the AUROC metric for the en-
tailment classification task in Table 9. For most
model-dataset pairs, “w/ Claim-Split” method
outperforms the standard method of using off-the-
shelf models. For the smaller T5-Large model,
we observe statistically significant improvements

20This increases the mean length of VitaminC from 15.5 to
37.5, and PAWS from 21.0 to 30.1. For FRANK, we use the
XSum subset to restrict our analysis to one sentence claims.

21Honovich et al. (2022) show that T5-11B trained on ANLI
worked best for many off-the-shelf settings, but we found that
we could achieve competitive performance with T5-3B.
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using Claim-Split for three datasets. This is in-
tuitive as reducing the complexity of the problem
likely benefits models with lower capability. Our
results show that despite the introduction of noise
(discussed in Section 2.1), Claim-Split is effec-
tive at simplifying the entailment classification
task and improving performance. We expect that
the use of better prompts and aggregation methods
would lead to further improvement.

5 Discussion: Outstanding Challenges

Explainable entailment. Our end goal is an ex-
plainable document-level entailment system that is
able to localize non-factuality within claims, as our
subclaims and token-level annotation allow. This
requires surfacing the right evidence, which we
show remains a hard problem.

Unsupported token detection. Although, we did
not conduct experiments on this, we believe that
localization of errors is an important problem and
difficult to address with existing methods (Kamoi
et al., 2023). This problem should be further stud-
ied in context of decomposition techniques like
Claim-Split.

Better understanding of contextualization. Fi-
nally, we believe that the nature of contextualiza-
tion remains a major unsolved problem. While
decontextualizing claims is an appealing possibil-
ity (Choi et al., 2021), we found that not all claims
were easy to succinctly decontextualize. For exam-
ple, The fresco is of figures... in Figure 2 theoreti-
cally requires specifying quite a lot of information
to understand exactly what fresco is being referred
to, which removes some of the benefits of subclaim
splitting. Our view is that subclaims-in-context is a
natural unit to explore, but further work is needed
to substantiate this experimentally.

6 Related Work

Short-paragraph entailment The majority of
NLI datasets have short premises and hypothe-
ses, i.e., single-sentence (Bowman et al., 2015;
Williams et al., 2018; Liu et al., 2022) or short
paragraphs (Nie et al., 2020, ANLI), and involve
less multi-step reasoning. There are a few excep-
tions; however, ContractNLI (Koreeda and Man-
ning, 2021) is restricted to a single domain (con-
tracts), and DocNLI (Yin et al., 2021) uses syn-
thetic negative data (e.g., word replacement).

Fact-verification datasets A separate line of
datasets designed for multi-hop reasoning comes
from fact verification (Thorne et al., 2018; Schuster
et al., 2021). However, in practice, claims in these
datasets rarely require multiple evidence sentences
(Thorne et al., 2018, FEVER) or are skewed to-
wards statements about quantities (Schuster et al.,
2021, VitaminC). In recent work, Petroni et al.
(2023) looked at the attribution task in the con-
text of Wikipedia citations, but only at the coarse
level of finding a better supporting document.

Hypothesis Decomposition In summarization,
the Pyramid method (Nenkova and Passonneau,
2004) and its recent automated variants (Shapira
et al., 2019; Zhang and Bansal, 2021; Liu et al.,
2023) decompose a summary into semantic con-
tent units, but is primarily aimed at understanding
what content is covered rather than the reliabil-
ity of that content. More recent frameworks have
looked at breaking statements down into propo-
sitions (Stanovsky et al., 2018; Ernst et al., 2021;
Chen et al., 2022, 2023); our approach is similar but
does not rely on supervised judgments and is not re-
stricted to token extraction. Also, purely extractive
methods are not suitable for use with off-the-shelf
entailment models compared to Claim-Split.

Work on factuality in summarization has looked
at entailment of sub-sentence units like depen-
dency arcs (Goyal and Durrett, 2020, 2021) or us-
ing question-answer pairs to isolate specific pieces
of information (Wang et al., 2020; Durmus et al.,
2020; Scialom et al., 2021). However, these and
related frameworks like QA-SRL (He et al., 2015)
are too fine-grained for our annotation scheme.

7 Conclusion

We collect WICE, a new NLI dataset constructed
from Wikipedia. By comparing sentences in
Wikipedia against cited evidence documents, we
find a rich set of real-world entailment phenomena
distinct from those in prior NLI datasets. We also
show that decomposing complex claims into sub-
claims can be a valuable pre-processing step for
both annotation and entailment prediction.

Limitations

Scope and Diversity of the Dataset Although
we propose WICE to evaluate and improve models
for evaluating real-world entailment, this dataset
only includes claims in English Wikipedia articles
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and evidence in the cited websites. We observe that
WICE includes diverse claims and evidence, but
there are many types of real-world claims that are
very different from claims in WICE in both style
and content, such as political claims and social
media posts.

Furthermore, almost all recent language models
are pre-trained on Wikipedia articles. As a result,
our dataset cannot evaluate truly zero-shot perfor-
mance, given that models have been exposed to this
text before. However, note that pretraining does
not necessarily enable a model to know whether
this fact on Wikipedia is supported by this partic-
ular document; we believe that many unsupported
claims in our dataset are true, just not supported by
the particular evidence documents. The fact that
all models in our experiments are pre-trained on
Wikipedia, yet they do not all perform uniformly
well, supports this point. Developing datasets that
are based on brand-new texts is a promising di-
rection for future work, in order to evaluate the
performance in a truly zero-shot condition.

Baseline Models The experiments in this paper
are mainly conducted on T5-3B, which is smaller
than recent large language models (LLMs). Al-
though we evaluate GPT-3.5 and GPT-4 on the ora-
cle retrieval dataset in Section 3.4, we do not evalu-
ate LLMs on the full-pipeline experiments (retrieve
supporting sentences from evidence articles for en-
tailment classification, or feed the whole evidence
articles to the models). Nevertheless, our dataset
can provide a realistic testbed for experiments eval-
uating the ability of LLMs on long documents.

Context for Claims Although many existing
NLI datasets target short and independent claims
and evidence, claims and evidence in the WICE
dataset are in-context with the surrounding text.
We experimentally show that the context for ev-
idence sentences would be useful for supporting
sentence retrieval. However, our experiments do
not show that providing the context of claims im-
proves the entailment evaluation performance on
the WICE dataset, in spite of our observation that
some claims require anaphora resolution. We hy-
pothesize that this observation can be attributed to
the nature of our dataset, where only relevant, cited
evidence documents are used. Context would be
much more important if in a case like Figure 2, we
were attempting to substantiate these claims based
on evidence documents discussing different altars

or different frescoes. These mismatches would
likely be more prevalent if we used automatic re-
trieval to find relevant documents. Instead, the
linked documents from Wikipedia that perform the
basis of our dataset are implicitly about the same
entities as in the claims, so our models do not need
to understand the context as thoroughly to evalu-
ate the entailment relationships. Further work can
explore broadening our findings to open-domain
settings, including an open-domain version of our
dataset.
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A Human Evaluation of Claim-Split

In Section 2.1, we evaluated the subclaims obtained
using Claim-Split for completeness and correct-
ness criteria. Figure 9 shows the instructions pro-
vided to the crowd annotators for this task. It in-
cludes three examples, one correct split of claims
into subclaims, one example where the subclaims
fail the completeness criterion and one where they
fail the correctness criterion.

Given these instructions, each HIT asks anno-
tators to verify 4 claims (and their corresponding
subclaims from Claim-Split). For each tuple of
context, claim, and decomposed subclaims, we ask
the following questions: (1) Do all decomposed
sentences correctly convey the information in the
original sentence? [Yes/No]. (2) If you selected
No: Which decomposed texts include mistakes?
[Free Text]. (3) Decomposed sentences cover ALL
information in the original sentence. [Yes/No]. (4)
If you selected No: What information is missing?
[Free Text]. We include (2) and (4) to improve and
check the annotation quality, but we do not use the
answers for these questions in the analysis.

Characterization of Claim-Split errors We
manually characterized the Claim-Split errors in
30 dev examples of WICE. These statistics are
shown in Table 10.

Some of the mistakes are relatively simple and
we expect that better prompts (few-shot examples)
can fix them. For example, we observe that 30%
of the mistakes are caused by removing the first
or intermediate clauses. In the following example,
“Before they established themselves in the upper

Error Category %

Completeness

Missing Intermediate Clause 16.7
Missing Details 13.3

Missing First Clause 10.0
Mistake in Parsing 10.0

Remove Parentheses 6.7
Missing “And” 6.7

Completeness
and/or Correctness Over-splitting 13.3

Table 10: Error analysis of Claim-Split on WICE. We
annotated 30 mistakes in the development set. Each
example can be assigned more than one category or left
uncategorized (33.0%).

echelon of women’s tennis” is missing in the de-
composed sentences.

Original Sentence:
Before they established themselves in the up-
per echelon of women’s tennis, Dominique Van
Roost was the only player in Belgian history to
be ranked in the top ten of the ATP or WTA rank-
ings, a mark she did not achieve until 1998 after
Clijsters and Henin turned professional.

Decomposed Sentences:

• Dominique Van Roost was the only player in
Belgian history to be ranked in the top ten of
the ATP or WTA rankings.

• Dominique Van Roost achieved this mark in
1998.

• Clijsters and Henin turned professional before
Van Roost achieved this mark.

Another relatively simple mistake is removing
parentheses (6.7%). In the following example, de-
composed sentences ignore “(Center for Predictive
Engineering and Computational Sciences)” in the
original sentence.

Original Sentence:
In 2009 he was appointed deputy director of the
PECOS center (Center for Predictive Engineer-
ing and Computational Sciences) at the Univer-
sity of Texas.

Decomposed Sentences:

• In 2009 he was appointed deputy director of the
PECOS center.

• The PECOS center is at the University of Texas.

We expect the above mistakes and “Missing And”
mistakes, which ignore some words or clauses con-
nected by “and”, could be solved by changing the
prompt to include examples featuring these for-
mats.

However, we also find errors that would be dif-
ficult to solve. For example, in the following ex-
ample, the fact that Howard lives with his wife
Cerys is missing although a decomposed sentence
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Howard’s wife Cerys is a doctor mentions his wife.
Claim-Split with our prompt sometimes make
mistakes when multiple decomposed sentences
should be generated for a specific span in the origi-
nal sentence; for his wife Cerys, decomposed sen-
tences about two facts Howard lives with his wife
Cerys and Howard’s wife Cerys is a doctor should
be generated.

Original Sentence:
Howard lives in Camden, London with his wife
Cerys, a doctor, and their dog, a Jack Russell
Terrier named Archie.

Decomposed Sentences:

• Howard lives in Camden, London.
• Howard’s wife Cerys is a doctor.
• Howard and Cerys have a dog named Archie.
• Archie is a Jack Russell Terrier.

Another challenging type of mistake is caused by
over-splitting. In the following example, as a result
of decomposition, the information of “after” is lost.
In this case, a candidate of correct decomposition is
not to decompose the latter two sentences as “Shine
Limited was set up by former BSkyB executive Elis-
abeth Murdoch after she quit as broadcaster”.

Original Sentence:
The production company that was selected was
Shine Limited, which was set up by former
BSkyB executive Elisabeth Murdoch after she
quit as broadcaster.

Decomposed Sentences:

• The production company that was selected was
Shine Limited.

• Shine Limited was set up by former BSkyB
executive Elisabeth Murdoch.

• Elisabeth Murdoch quit as broadcaster.

We note that we have manually fixed these mis-
takes in the dev and test set of the WICE dataset.

B Additional Data Collection Details

Base Dataset As mentioned in Section 2.3, we
use the same articles-claims pairs from Wikipedia
as the SIDE dataset (Petroni et al., 2023) but do
not use their annotations or any other aspects of
their pipeline. We re-retrieve the citations from
Wikipedia directly because SIDE only contains one
supporting evidence even when there are multiple
in the raw data. For our dataset, we use the Au-
gust 2019 version for both Wikipedia and Common
Crawl. We automatically parse the cited articles’
HTML to extract the article text. This process is
often quite noisy and may include extraneous sen-
tences like “Click for more” that are not part of the

main article body; however, we included them in
WICE because real-world entailment classification
often requires dealing with noisy data.

Note that for claim sentences with multiple cita-
tions, we only include claims with 1 or 2 citations
positioned at the end of the sentence. Cases with
larger numbers of citations are infrequent (approxi-
mately 8.1%) and typically represented either lists
or multiple articles all in support of the same base
fact.

Additional Filtering In Section 2.3, we outlined
additional filtering using a RoBERTa-Large model
to filter out trivially entailed claims, i.e., those for
which all subclaims are predicted as entailed. Here,
we provide more details of our process.

We use a pre-trained model fine-tuned on the
DocNLI dataset provided by the authors of the
dataset.23 To deal with the long WICE evidences,
we split the documents into chunks of less than 256
tokens each. We predict entailment scores for each
chunk-subclaim pair using the NLI model. For
aggregation across chunks, we classify a subclaim
as entailed if it is classified as entailed by at least
one chunk.

Task Interface Figure 4 shows our annotation
interface. The left panel shows the evidence articles
which are split into sentences and numbered. The
right panel shows the claim along with its preceding
context. In the bottom half of the right panel, the
sublclaims derived using Claim-Split are shown;
all annotation is performed for these.

Each HIT includes annotation of one claim, i.e.,
2-6 subclaims. The median work time for each HIT
was about 5 minutes ($9/h).24 For each subclaim,
the annotators first select the entailment classifi-
cation label and, if applicable, the supporting sen-
tences. If they select “Partially Supported / Not
Supported” in the first step, the annotation inter-
face for non-supported tokens is shown to them (see
Figure 5). For these cases, we consider a subclaim
as NOT-SUPPORTED if the annotator highlights all
subclaim tokens, else PARTIALLY-SUPPORTED. The
“Confirm” button allows annotators to move to the
next subclaim.

We build our annotation interface based on the
FALTE annotation tool (Goyal et al., 2022).

23https://github.com/salesforce/DocNLI
24We aimed for $15/hr but workers took longer than we

expected on the task. Annotators viewed our task favorably
and completed it promptly, but we will strive to calibrate our
pay estimates better in the future.
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Figure 4: Annotation interface for WICE annotation.

Figure 5: Annotation interface for highlighting non-
supported tokens.

Filtering Steps We perform filtering at different
stages of our dataset collection process, e.g., while
retrieval of evidence articles from Common Crawl,
cleaning the base dataset or during filtering using
the NLI model. Table 11 shows the number of data
points removed at each step of the filtering process
for the development set.

Aggregation of subclaim level labels from
different workers For entailment classifica-
tion, we take a majority vote between worker
labels. If no majority exists but 2 anno-
tators each select PARTIALLY-SUPPORTED and
NOT-SUPPORTED for the dev or test set, we choose
PARTIALLY-SUPPORTED as the final label. In all
other scenarios, we remove the subclaim (and the
corresponding claim c) from our dataset as these
cases tend to be quite subjective. This filters out
12.5% of the claims in the development set.

For supporting evidence sentences, we retain
individual sets of supporting sentences by all work-
ers who chose the majority entailment label (the

Filtering Step %removed #post-filtering

Before Filtering 4, 545

Missing Wikipedia pages 7.1 4, 222
Bullet points 7.5 3, 905

Cite not at sentence end 17.1 3, 238
Prev cite not at sentence end 13.4 2, 805

#Citations >= 3 8.1 2, 577
Missing in Common Crawl 24.3 1, 951

HTML postprocessing failed 14.9 1, 661
#subclaims = 1 or > 6 19.1 1, 343

RoBERTa-large classified
all subclaims as entailed 45.0 739

Table 11: Statistics of the filtering of the development
set. The original size is 4, 545 and the final size is 739.
Note that we did not annotate all these data and the
number of claims in development set is 349.

label selected in the above step). We prefer this
over union as there can be multiple different sets
of sentences with identical information (e.g., the
date can sometimes be ascertained from several
different sentences). We found that this subset of
workers chose the exact same set of supported sen-
tences for 56.1% of SUPPORTED cases and 34.4% of
PARTIALLY-SUPPORTED cases, which shows high
inter-annotator agreement.

To aggregate unsupported tokens in subclaims,
we take a token-level union of all workers who
chose PARTIALLY-SUPPORTED as the entailment
label. For this task, we remove data points
if any annotator disagrees with the final set
of tokens by more than three tokens (25.3%
PARTIALLY-SUPPORTED subclaims in the develop-
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Full WiCE

Figure 6: Distribution of the number of supporting sentences for each claim and subclaim in the development set of
WICE. The figures shows this distribution for PARTIALLY-SUPPORTED, SUPPORTED and the combined set.

Train Dev Test

# Partially Supp. subclaims 374 124 105
# Tokens / subclaim 12.8 13.0 14.4

Table 12: Statistics of WICE for non-supported token
annotation. These annotations are for partially sup-
ported subclaims with high inter-annotator agreement.
Each subclaim in the development set includes 3.3 non-
supported tokens (25.2% of tokens) on average.

ment set).

C Additional Dataset Statistics and
Analysis

Supporting Sentences Figure 6 shows the dis-
tribution of the number of supporting sentences f
PARTIALLY-SUPPORTED, SUPPORTED and the com-
bined set in WICE. Supported and partially sup-
ported subclaims have almost the same number of
supporting sentences annotated (1.9 on average),
but supported claims have more supporting sen-
tences annotated compared to partially supported
claims (averages are 3.4 and 2.9).

Non-Supported Tokens After filtering out data
points with low inter-annotator agreement on the
annotation for non-supported tokens, there are 374
partially supported subclaims in the training data
with an average of 12.8 tokens per subclaim in (Ta-
ble 12). Partially supported subclaims have 3.3 non-
supported tokens (25.2% of tokens in subclaims)
on average in the development set.

Word Overlap Figure 7 shows the word overlap
between claims and evidence (the recall of claim
bigrams that are also in the evidence) for WICE,
VitaminC, and FEVER. Although VitaminC manu-
ally created claims so that this overlap is lower, we
observe that the real claims in WICE have compet-
itively low claim-evidence overlap. Furthermore,
examples corresponding to different entailment la-
bels have similar word overlaps, especially at the

(a) WICE (Claim) (b) WICE (Sub Claim)

(c) VitaminC real (d) FEVER

Figure 7: Word overlap (recall of bigrams) between
claims and evidence.

subclaim level. This suggests that WICE does not
suffer from spurious biases.

Analysis of Phenomenon In Section 2.5, we cat-
egorized entailment relationships between claims
and evidence into several categories. We provide
examples for each category in Table 13. Note that
the FEVER example, a character is a person, rep-
resents a typical type of the inferences required in
this dataset, which are simple hypernymy.

Additionally, we also characterize distribution
of semantic roles that form each claim. We use a
taxonomy drawn from Davidsonian event seman-
tics (Truswell, 2019) and semantic roles to char-
acterize what each claim is about: this consists
of events, properties (attributes describing partici-
pants in an event; these include name, occupation,
nationality, quantity, ordinal), location, time, rea-
son (why something happened), manner, and ev-
identials. Each claim may carry multiple labels,
and subclaims consist of not necessarily disjoint
subsets of these categories, e.g., “Jones buttered
his toast slowly” (event, manner) and “Jones but-
tered his toast in the bathroom” (event, location).
Table 14 shows this distribution.
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Verification Category Dataset Claim Evidence

Compression WICE Brian Wilkins had been using
the beach since 1938.

... And cutting the ribbon will be Brian Wilkins, 82,
who has been using the beach since 1938 and been
an enthusiastic supporter of the campaign to get it back
open. ...

Compression
w/ contextualization WICE

His actions were on Decem-
ber 26, 1944, in the vicinity
of Sommocolonia, Italy.

... First Lieutenant John R. Fox distinguished himself
by extraordinary heroism at the risk of his own life on
26 December 1944 in the Serchio River Valley Sector,
in the vicinity of Sommocolonia, Italy. ...

Paraphrase - Direct WICE
The Chicago Board of Trade
is the largest and most diverse
derivatives market globally.

Chicago has one of the world’s largest and most diversi-
fied economies, with more than four million employees
and generating an annual gross regional product (GRP)
of over $609 billion.

Paraphrase
- Require Calculation VitC

Cases of COVID-19 have
been confirmed in more than
185 countries.

As of 22 March, more than 336,000 cases of COVID-19
have been reported in over 189 countries and territories,
resulting in more than 14,400 deaths and 96,000 recov-
eries.

Paraphrase
- Require Inference

WICE Young faced Kedzie again in
a five-round title rematch.

... Two of MMA’s top 135-pound female fighters will
collide in a five-round title fight at Jackson’s MMA
Series 4 on April 9th in Albuquerque, New Mexico. ...
Both fighters recently took part in the ill-fated Ul-
timate Women Challenge reality show competition
last year, though results from the fights that took
place during filming have yet to be released. ...

FEVER Wilhelmina Slater is a person.
Wilhelmina Vivian Slater ( born Wanda Slater ) is a
fictional character in the American dramedy series Ugly
Betty.

Paraphrase - Require
Background Knowledge WICE United defeated Arsenal 5–4. Vic Groves went close to an equaliser but the ‘Busby

Babes’ held out for a famous 5-4 victory.

Table 13: Examples for categories of entailment classification problems in Table 3.

What is being asserted? %

Event 52.9
Time 3.6
Location 10.7
Manner 6.4
Reason 7.9
Property Name 6.4

Occupation 5.7
Quantity 12.9
Ordinal 3.6

Other 10.0

Others 2.9

Table 14: Estimated distribution of subclaims types in
WICE. Each subclaim may have multiple properties.

D Claim-Split

This section provides further details and results of
Claim-Split.

D.1 Claim-Split Prompts

We used the following prompt template with six
examples:

Segment the following sentence into
individual facts:

Sentence: <example claim>
Facts:
- <example subclaim>
- <example subclaim>
- ...

Sentence: <input claim>
Facts:

For the experiments in Section 4 on VitaminC,
PAWS, and FRANK, we use the following instruc-
tion with three or four examples to generate sub-
claims that are suitable for the off-the-shelf evalua-
tion by entailment classification models:

Please decompose the following sentence
into decontextualized sentences while
ensuring all information is retained and
the wording is as unchanged as possible
(please return the original sentence if
it cannot be decomposed):
...

Full prompts with few-shot examples are pro-
vided in our GitHub repository.

D.2 Claim-Split Aggregation Performance
Table 15 shows additional results for Claim-Split
aggregation experiments in Section 4. We observe
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Dataset Model Train Data F1 Accuracy AUROC
Original Claim-Split Original Claim-Split Original Claim-Split

WICE

T5-large ANLI 61.8 64.5 70.7 70.1 79.2 83.3∗

T5-3B ANLI 64.3 64.1 75.1 71.5 80.2 83.2
T5-3B DocNLI 56.4 62.4∗ 62.8 70.7∗ 72.5 77.5∗

T5-3B WiCE 65.3 72.7∗ 77.1 82.4∗ 82.0 88.0∗

T5-3B ANLI+WiCE 72.1 71.4 79.1 80.7 88.2 89.7

VitC T5-large ANLI 79.2 81.0 78.0 81.4∗ 86.7 90.4∗

(long) T5-3B ANLI 86.0 85.2 85.8 85.6 91.6 92.6

PAWS T5-large ANLI 70.6 73.2 72.8 79.6∗ 81.7 87.2∗

(long) T5-3B ANLI 74.1 75.2 77.2 79.0 86.2 89.4∗

FRANK T5-large ANLI 40.0 32.2 95.7 86.1 86.6 86.0
(XSum) T5-3B ANLI 38.0 46.6∗ 87.9 92.1∗ 91.1 91.4

Table 15: Claim-level entailment classification performance by aggregating scores for the subclaims generated
by Claim-Split. Claim-Split improves entailment classification performance, especially on smaller T5-large
models. ∗: p-value < 0.05 in paired bootstrap test.

improvement in almost all models and metrics.
This result suggests that Claim-Split effectively
reduces the complexity of the claims.

E Implementation Details

We use PyTorch (Paszke et al., 2019) and Hug-
ging Face Transformers (Wolf et al., 2020) libraries
in our implementation. We use a machine with
NVIDIA Quadro RTX 8000.

E.1 Baseline Models

When available, we use NLI models provided by
prior works and available on the HuggingFace
Hub25 for experiments in Section 3.1. The model
names are provided in Table 16.

We fine-tune T5 models on VitaminC + MNLI
using the dataset provided by Schuster et al. (2021).
For fine-tuning on ANLI and DocNLI, we use the
datasets provided by the authors.26

For evaluating the BM25 performance in Table 6,
we use the rank_bm25 library.27

E.2 Training Data of WICE

The WICE dataset provides entailment labels
y for each evidence-claim/subclaim pair, i.e.,
(E, c, y). However, due to the size of the docu-
ment, we need to partition it into multiple partitions
{p1, p2, ...pm} (either individual sentences or con-
catenation of sentences of at most 256 tokens) and
train on these partition-claim/subclaim pairs. To
do this, we need entailment labels for each of these

25https://huggingface.co/models
26ANLI: https://github.com/facebookresearch/

anli, DocNLI: https://github.com/salesforce/DocNLI
27https://github.com/dorianbrown/rank_bm25

partitions, i.e., (pi, c, ypi). Here, we describe how
we derive these gold labels ypi using the supporting
sentences annotation included in WICE.

For (pi, c), if the partition pi does not include
any supporting sentence of c, we label ypi =
NOT-SUPPORTED. If the partition includes all sup-
porting sentences for c and the original entail-
ment label in WICE is SUPPORTED, we label ypi
as SUPPORTED. For all other cases, we set ypi as
PARTIALLY-SUPPORTED.

E.3 Fine-tuning T5 Models

Input Format The input format to our T5 mod-
els is “entailment: claim [SEP] evidence”.
The T5 models are trained to generate the follow-
ing single-character tokens corresponding to entail-
ment labels: e (entailed or supported), p (partially
supported), n (not supported or neutral), and c (con-
tradiction). For example, fine-tuning on WICE
uses e, p, and n. As the model places a probability
distribution over the whole vocabulary, we normal-
ize over our target set of labels to get classification
probabilities.

Hyperparameters We fine-tuned T5 (T5-large
and T5-3B) for 25K steps with a learning rate of
10−4 and batch size of 32. We compute the accu-
racy on the development set after every 1, 000 steps
and save the best model checkpoint. We use a max-
imum input length of 512 tokens during training,
but feed all input tokens during inference.

Training with input size 512 is not suitable for
DocNLI, which includes many premises longer
than 512 tokens. We use the input size of 512 fol-
lowing Yin et al. (2021). Although this is the best
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Model Train Data Model Name

RoBERTa-large SNLI boychaboy/SNLI_roberta-large
RoBERTa-large MNLI roberta-large-mnli
ALBERT-xlarge VitaminC tals/albert-xlarge-vitaminc
ALBERT-xlarge VitaminC+MNLI tals/albert-xlarge-vitaminc-mnli

Table 16: Publicly available models in Hugging Face Hub used in our experiments in Section 3. VitaminC models
are provided by Schuster et al. (2021). These models are also used in experiments in Laban et al. (2022).

Figure 8: Relation between the size of train set and
performance on the entailment classification task of
WICE on T5-3B.

setting in their experiments, this is a possible reason
for the lower performance of the model finetuned
on DocNLI compared to the ANLI model.

F Effect of Training Data Size on
Entailment Classification Performance

Figure 8 shows the performance of T5-3B fine-
tuned on different amounts of training data from
WICE. This result suggests that the performance of
fine-tuning on WICE is saturating with this train-
ing procedure and models we used in this paper,
or that much larger amounts of training data are
needed to improve the performance.

G Oracle Retrieval Dataset

WICE is a dataset that is designed for evaluating
entailment classification on long evidence articles,
so it requires supporting sentence retrieval as a
first step for language models that cannot evaluate
very long inputs. To solely evaluate the entailment
classification capability of language models, we
make the oracle retrieval dataset, which is designed
to simulate the situation in which we have an ideal
retrieval model. This dataset provides a gold set of
supporting sentences as input to NLI models. The
oracle retrieval dataset is used in experiments in
Section 3.3 and 3.4.

The oracle retrieval dataset consists of oracle
chunks that include all sentences in a gold set of

supporting sentences.28 We note that there can be
multiple oracle chunks for each claim/subclaim be-
cause different annotators can annotate different
sets of supporting sentences, which include suffi-
cient information to support (or partially support)
the claim/subclaim.

To avoid biases caused by the number of sup-
porting sentences (e.g. supported claims may have
a larger number of supporting sentences than
partially-supported claims), we add randomly se-
lected sentences from the evidence article to the
oracle chunks. Specifically, we add randomly se-
lected sentences until the size of the chunks reaches
256 tokens (the chunks are equal to or shorter than
256 tokens).

For non-supported cases, which do not have any
gold supporting sentences, we provide chunks as
in the MAX setting in Section 3.1. The chunks in
this setting also include at most 256 tokens in most
cases.29

Finally, to avoid biases caused by the number
of oracle chunks, we randomly select three ora-
cle chunks for each claim/subclaim. A straightfor-
ward way of performing entailment classification
on the oracle retrieval dataset is to evaluate the
entailment score for every oracle chunk for each
claim/subclaim and take the maximum entailment
score. Therefore, claims/subclaims with a large
number of oracle chunks are likely to receive higher
entailment scores. To avoid this bias, we make ev-
ery claim/subclaim in the oracle retrieval dataset
has the same number of oracle chunks.

H Entailment Classification by GPT

We provide details of the entailment classification
experiment on GPT-3.5 and GPT-4 in Section 3.4.

28When the oracle chunk becomes longer than 256 tokens
only with the gold supporting sentences, we remove gold
supporting sentences to make the chunk shorter than or equal
to 256 tokens.

29We do not split sentences into sub-sentences when we
make chunks. Therefore, when an evidence article includes a
sentence longer than 256 tokens, we include the sentence in
the chunk as is.
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Models We use gpt-3.5-turbo-0613 and
gpt-4-0613 for this experiment.30

Dataset We use the first 100 claims/subclaims of
the oracle retrieval dataset (Appendix G) for this
experiment.

Prompts We provide the prompt used in this ex-
periment below. We use XML as an output format
as in (Das et al., 2023) to make post-processing
easy. Our prompt includes three examples from the
development set of WICE, but we omitted two ex-
amples and evidence sentences in the first example.
Our GitHub repository includes the full prompt.

Your task is to evaluate if a claim is supported by
a provided evidence article snippet.

You need to present your explanation first, and
then choose your conclusion from the options
[supported, partially_supported, not_supported].

We provide several examples. Your response must
be in the same format as the XML in the exam-
ples.

Examples:
<input>
<claim>On August 22, 2017, Richard Amardi
was selected to play for the Canadian Senior
Men’s National Team to compete in the FIBA
AmeriCup 2017 in Argentina.</claim>
<evidence>
<sentence_39>Values, Vision and Mis-
sions</sentence_39>
<sentence_40># SENIOR MEN’S NATIONAL
TEAM ANNOUNCES FIBA AMERICUP 2017
ROSTER</sentence_40>

(Evidence Sentences are Omitted)

</evidence>
</input>
<!– Your explanation and answer should be writ-
ten below –>
<output>
<explanation>Sentence 41 says that the final ros-
ter for the Senior Men’s National Team set to
compete at the FIBA AmeriCup 2017 in Ar-
gentina was announced on August 22, 2017. Sen-
tence 77 shows that Richard Amardi is on the
list.</explanation>
<answer>supported</answer>
</output>

(Two examples are omitted)

Here is your task:

<input>
<claim>{claim}</claim>
<evidence>
{evidence}
</evidence>
</input>
<!– Your explanation and answer should be writ-
ten below –>

30https://platform.openai.com/docs/models

I Datasheet for WICE

In this section, we provide a datasheet (Gebru et al.,
2021) for the WICE dataset.

I.1 Motivation for Datasheet Creation
The information regarding the individuals or orga-
nizations who created or funded the dataset will be
included in the camera-ready version.

For what purpose was the dataset created?
There are some major challenges when applying
modern entailment models to measure real-world
attribution and factuality consistency. Specifically,
existing natural language inference (NLI) models
and datasets target relatively short claims and evi-
dence, negative examples are often artificially cre-
ated, and fine-grained labels have not been studied
well. We create the WICE dataset to address these
limitations in the existing NLI datasets.

I.2 Dataset Composition
What are the instances? Each instance in WICE
is a group of subclaims derived from a claim (a
sentence in a Wikipedia article) and evidence (cited
websites).

Is there a label or target associated with each
instance? The annotation for each subclaim in-
cludes the entailment label (supported, partially-
supported, or not-supported), supporting sentences
(a subset of evidence sentences that support or par-
tially support the subclaim), and non-supported to-
kens (tokens in the subclaim that are not supported
by the evidence).

How many instances are there? WICE includes
1, 260, 349, and 358 claims in the train, develop-
ment, and test data, which are decomposed into
3, 470, 949, and 958 subclaims. Detailed dataset
statistics are provided in Table 1.

Does the dataset contain all possible instances
or is it a sample of instances from a larger set?
The claims in WICE are a sub-set of sentences in
Wikipedia articles. The sentences are randomly se-
lected from those used in the SIDE dataset (Petroni
et al., 2023).

Is the dataset self-contained? Yes, all resources
are included in our release.

I.3 Data Collection Process
How was the data associated with each instance
acquired? We acquired claims from Wikipedia
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and evidence from Common Crawl (the August
2019 version).

Who was involved in the data collection process
and how were they compensated? The labels
(the entailment classification, supporting sentences,
and non-supported tokens) are annotated by work-
ers recruited using Mechanical Turk. Each instance
is annotated by five workers. Annotators were paid
$0.75 per claim annotation.

Over what timeframe was the data collected?
Claims and evidence are collected from the Au-
gust 2019 version of Wikipedia and Common
Crawl. The annotation by workers was conducted
in November and December 2022.

I.4 Data Preprocessing
What preprocessing / cleaning was done? We
automatically parse the cited articles’ HTML to
extract the article text. In addition, we decom-
pose claims (sentences in Wikipedia) by using
Claim-Split (Section 2.3). Details of the filter-
ing process are described in Appendix B.

What software was used to preprocess the data?
We use Beautiful Soup 4 to extract sentences from
the HTML of the retrieved articles. We use GPT-
3.5 (Brown et al., 2020; Ouyang et al., 2022) to
decompose claims into subclaims. Specifically,
we use the text-davinci-002 model through the
OpenAI API in November 2022.

I.5 Dataset Distribution
How will the dataset be distributed? The
WICE dataset is available in a GitHub repository.31

Who will be supporting and maintaining the
dataset? This dataset will be maintained by the
authors of this paper.

31https://github.com/ryokamoi/wice

7582

https://github.com/ryokamoi/wice


Figure 9: Instructions given to crowd annotators to evaluate the correctness and completeness of subclaims generated
using the Claim-Split method.
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