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Abstract

The identification of cognates is a fundamental
process in historical linguistics, on which any
further research is based. Even though there
are several cognate databases for Romance lan-
guages, they are rather scattered, incomplete,
noisy, contain unreliable information, or have
uncertain availability. In this paper we intro-
duce a comprehensive database of Romance
cognates and borrowings based on the etymo-
logical information provided by the dictionaries
(the largest known database of this kind, in our
best knowledge). We extract pairs of cognates
between any two Romance languages by pars-
ing electronic dictionaries of Romanian, Italian,
Spanish, Portuguese and French. Based on this
resource, we propose a strong benchmark for
the automatic detection of cognates, by apply-
ing machine learning and deep learning based
methods on any two pairs of Romance lan-
guages. We find that automatic identification
of cognates is possible with accuracy averaging
around 94% for the more difficult task formula-
tions.

1 Introduction and Related Work

Cognates detection and discrimination, as both
the foundation of historical linguistics (Campbell,
1998; Mallory and Adams, 2006) and the start-
ing point in historical investigation (Mailhammer,
2015), open windows on numerous areas of social
sciences. The immediate implications of the accu-
rate identification of cognate chains can be found in
linguistic phylogeny (Atkinson et al., 2005; Alek-
seyenko et al., 2012; Dunn, 2015; Brown et al.,
2008), allowing to trace back language relatedness
(Ng et al., 2010) as well as linguistic contact (Epps,
2014), and offering important clues concerning the
geographical and chronological dimension of an-
cient communities (Heggarty, 2015; Mallory and
Adams, 2006). The cognate chains are the founda-
tion of the "comparative grammar-reconstruction"
method (Chambon, 2007; Buchi and Schweickard,

2014), and the etymological data thus obtained
can be used as a source on human prehistory, cor-
roborating the archaeological inventory (Heggarty,
2015), and providing the basis for ‘linguistic pale-
ontology’ or ‘socio-cultural reconstruction’ (Epps,
2014). An extensive perspective on cognate chains
can serve as a basis in the detection of meaning
divergence, especially when searching for common
patterns that govern the cognitive mechanisms ac-
tivated in semantic change (Dworkin, 2006). The
lexicon still offers significant clues for building a
‘universal’ cognitive network derived from mean-
ing shifts, easily observable in cognate sets, which
would be essential in developing a comprehensive
theory on cognition and neuropsychology (Gless-
gen, 2011). At the same time, an integrated view
on the cognate pairs between any two related lan-
guages would allow taking steps forward in the
study of language acquisition (Huckin and Coady,
1999), as well as in the difficult task of eliminating
false friends in automatic translation (Uban and
Dinu, 2020).

Training the machine towards an accurate de-
tection of cognates becomes a necessity in today’s
large amount of linguistic data that still hasn’t been
processed from a historical point of view (List
et al., 2017). Since the foundation of the "com-
parative grammar-reconstruction" method over two
centuries ago, linguistic phylogeny is still mainly
investigated by means of manual comparison of
cognate sets, which implies the extraction of sys-
tematic phonetic correspondences between words
in language networks, and eventually allows the
reconstruction of the protolanguage. Although suc-
cessfully used by classical linguists, this method is
highly counter-economic, which has led to a sus-
tained search for computational methods able to
assist the process. The increasing interest in au-
tomatic methods for cognate detection calls for a
directly proportional need for reliable databases of
positive examples, consisting of lists of cognate
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sets as long as possible. These lists are not easily
attainable, even if we deal with well-known lan-
guages, with well-developed electronic resources,
like the Romance languages1.

In order to obtain longer lists of cognate sets,
the definition of cognates has broadened its lim-
its, including: a) words sharing a similar form and
meaning, regardless of their etymology (Frunza
et al., 2005; Frunza and Inkpen, 2006, 2008), also
referred to as ‘true friends’ (Fourrier and Sagot,
2022; Fourrier, 2022) (e.g. Eng. famine and Fr.
famine, although the first one is borrowed from
the second); b) words etymologically related, re-
gardless of the type of relation (Hämäläinen and
Rueter, 2019) (e.g. Eng. family, borrowed from
Middle French famile, in its turn borrowed from
Lat. familia, and Rom. femeie ‘woman’, inherited
from Lat. familia); c) words that are similar in
their orthographic or phonetic form and are possi-
ble translations of each other (Kondrak et al., 2003)
(e.g. Eng. sprint and Japanese supurinto; see above,
(Frunza and Inkpen, 2006)).

Besides these interpretations, there were also
attempts to define cognates by establishing unnec-
essary limits: words that share a common origin
and have the same English translation (Wu and
Yarowsky, 2018). Following this acceptation, Ro
pleca ‘leave’ and Es llegar ‘arrive’ are not to be
identified as cognates, although they are both in-
herited from Lat. plicare ‘to fold’; such narrowing
disregards the possible benefits of a comparative
perspective on cognates in the analysis of seman-
tic divergence, one of the most understudied and
promising fields in historical linguistics.

The simplest definitions of cognates, as “words
sharing a common proto-word” (Meloni et al.,
2021) or “words that share a common etymological
origin” (Fourrier and Sagot, 2022) are likely to be
the most effective in computational linguistics, al-
though certain improvements can be made. In this
paper, we use the following definition: two words
are cognates if and only if the intersection of the
sets of their etymons is not void.

The urge for a wide (if not exhaustive) database
of the Romance lexicon derives both from inter-
nal and external needs. On the one hand, the high
number of parallel chains of cognates would allow
the Romance linguists to revisit the issue of sound
laws, which, although apparently well-known, still

1Among the more than 7000 languages of the world, barely
200 are provided with electronic resources (cf. (Bird, 2020))

raises questions about features whose correspon-
dence is not regular and, therefore, is not easily
explainable (e.g. Lat signum / signa, Ro semn, Es
seña, vs Lat sifflare, Ro sufla, Es chillar, where the
latter form is considered to be irregular, although
this phonetic evolution is not limited to an isolated
number of instances). Moreover, in certain cases
where there aren’t enough data, linguists still argue
whether a phonetic change represents the rule or,
on the contrary, it’s the apparent exceptions that
make the rule (e.g. Lat flamma > Es llama, but Lat
flore- > Es flor: at the moment, both theories are
based on an even number of examples). Addition-
ally, a complete diagram of the possible phonetic
shifts would authorize etymologists to bring back
into discussion long-standing etymological cruxes.

As for the external needs, we postulate that the
algorithms identified by training the machine on
one of the best studied language families could
be further successfully applied to other languages
which are less known or have scarce resources.

In terms of automatic approaches for cognate
detection, the last decades bring a plethora of such
methods (Rama et al., 2018; Jäger et al., 2017;
Ciobanu and Dinu, 2014b; Fourrier and Sagot,
2022; Frunza and Inkpen, 2008; Mitkov et al.,
2007). Most methods proposed in previous stud-
ies include linguistic features and different ortho-
graphic and phonetic alignment methods in com-
bination with shallow supervised machine learn-
ing models (such as SVMs) or clustering meth-
ods (Bergsma and Kondrak, 2007; Inkpen et al.,
2005; List, 2012; Koehn and Knight, 2000; Mul-
loni and Pekar, 2006; Navlea and Todirascu, 2011;
Ciobanu and Dinu, 2014b; Simard et al., 1992;
Jäger et al., 2017; St Arnaud et al., 2017). A few
studies employ deep learning for cognate detection
or related tasks. Rama (2016) use siamese con-
volutional neural networks (CNNs) with character
and phonetical features complemented with addi-
tional linguistic features in order to detect cognates
in languages across three language families, with
the majority of examples belonging to Austrone-
sian languages, with up to 85% accuracy. Miller
et al. (2020) use language models including a recur-
rent neural network architecture for lexical borrow-
ing detection. Transformers were used in (Celano,
2022) for predicting cognate reflexes. To the best
of our knowledge, no previous studies have used
transformer architectures specifically for cognate
detection. Previous results on Romance cognate
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detection in particular are reported in (Ciobanu and
Dinu, 2014b), in which cognates are automatically
distinguished from non-cognate translation pairs,
based on a smaller dataset of cognate pairs in the
Romance languages, with accuracies reaching 87%
using an SVM with alignment features.

Starting with these remarks, our main contribu-
tions are:

1. We introduce a comprehensive database of Ro-
mance cognate pairs (pairs of cognates between any
two Romance languages), by parsing the electronic
dictionaries with etymological information of Ro-
manian, Italian, Spanish, Portuguese and French
(the database will be available for research pur-
poses upon request).

2. We propose a strong benchmark for the au-
tomatic detection of cognates, by applying a set
of machine learning models (using various feature
sets and architectures) on any two pairs of Romance
languages.

The rest of the paper is organized as follows: in
Sections 2 and 3 we present the database which
we have created and offer details about the process-
ing steps involved, in Section 4 we introduce our
approach for the automatic detection of cognates.
Methodological details are discussed in Section 4.1,
and an extensive error and results analyses is pre-
sented in Section 4.2. The last section is dedicated
to final remarks.

2 Dataset

Even though there are several cognate databases for
Romance languages, they are incomplete (as the in-
ventory of Romance lexemes based on the Swadesh
list (Saenko and Starostin, 2015), cf. (Dockum
and Bowern, 2019)), noisy (because of the lack
of expert proofing, these being usually obtained
with the help of volunteers, like Wikipedia (Meloni
et al., 2021), built with automated translation meth-
ods (Dinu and Ciobanu, 2014; Wu and Yarowsky,
2022), or are of uncertain availability (cf. (List
et al., 2022)).To overcome as much as possible
these weaknesses, we have decided to build from
scratch a fully available database of Romance cog-
nates, for the main five Romance languages (Italian
- It, Spanish - Es, French - Fr, Portuguese - Pt
and Romanian - Ro), starting with the available
machine-readable reference dictionaries2, which

2Italian: Il dizionario della lingua italiana De Mauro,
dizionario.internazionale.it.
Spanish: Diccionario de la lengua española published by Real
Academia Española, lema.rae.es/drae.

contain etymological information. The process
was semi-automated, guided and verified by hu-
man experts, to ensure the quality and coverage of
the data.

Our strategy was to parse one by one all the dic-
tionaries, to extract for each language exhaustive in-
formation related to every word and its relevant ety-
mology features (namely its etymon(s), the source
language(s), the part(s) of speech), and then to ag-
gregate all this information in order to build a cog-
nate database for all five Romance languages (from
now on called RoBoCoP - Romance Borrowings
Cognates Package) (see section 2.2). Since each
of the five dictionaries had its own editorial choice
of presenting the information, the preprocessing,
the parsing and the postprocessing strategies had to
be customized for each language, which implied a
lot of expert and computational effort. The process
was very specific to each dictionary and included
a cyclical process similar to methodologies used
in web scraping - running scripts implementing
rule-based algorithms (such as regular expressions)
to separate noise from the data for each dictionary
and manual evaluation of each output with the assis-
tance of linguists in our team, followed by potential
refinement of the code to manage all exceptions.
Due to the lack of space, we cannot present in de-
tail all the challenges of building the RoBoCoP
database, but we only discuss some of the most
common difficulties. Addressing them all was a
repetitive feedback process involving linguists and
computer scientists.

2.1 Data Cleaning and Preprocessing

The preprocessing included cleaning and normal-
ization. We always preserved in our database all
accents, diacritics and any other characters that are
part of the orthography of the words and etymons.
We only normalized additional characters which
are occasionally used to indicate pronunciation for
the etymons in the source dictionaries (for exam-
ple, in Romanian, accents are never part of the
spelling of the word, but they can occur in the dic-
tionary in order to indicate the stressed syllable).
We additionally preserved the etymons exactly as
encountered in the dictionary (pre-normalized) in

Portuguese: Dicionário infopédia da Língua Portuguesa, pub-
lished by Porto Editora, www.infopedia.pt/lingua-portuguesa.
French: Trésor de la Langue Française informatisé published
by Centre National de Ressources Textuelles et Lexicales,
www.cnrtl.fr.
Romanian: Dict,ionarul Explicativ al Limbii Române pub-
lished by Academia Română, dexonline.ro.
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Word Source Raw Etymon Etymon
language

aeroplano french aéroplane aéroplane
aerosol french aérosol aérosol

afabilidad latin affabilı̆tas affabilitas
afable latin affabı̆lis affabilis

Table 1: Excerpt from Spanish etymology dictionary in
the RoBoCoP package.

a separate column in the database, in case they
can be useful for future applications. Moreover,
we used the full form of the words including pro-
nunciation indications as the input for generating
phonetic transcriptions. We only applied accent
and diacritics removal as part of the classification
experiments when extracting graphical features.

Table 1 illustrates a selection of a few example
rows from our database from the Spanish etymol-
ogy dictionary.

We also manually identified the meaning of
the abbreviations used throughout the dictionaries,
where such a list was not provided in the dictionary.
The parsing process was by far the most difficult
for French. The biggest challenge was the analyt-
ical presentation of the etymological information,
organized as a summary of the history of the word,
which resulted in a very complex parsing process.

The difficulties encountered by the machine in
the cognate identification can be classified in two
sub-types: 1) cognates whose etymon was regis-
tered under different paradigmatic forms, e.g. for
nouns, nominative rex, vs accusative regem, lead-
ing to missing cognate pairs, such as Es rey (< Lat.
rex) - Fr roi (< Lat. regem); 2) cognates whose
etymologies do not correspond from the point of
view of the diachronic or diastratic specifications,
e.g. Es local (< Lat localis) - Fr local ("emprunté
au lat. de basse époque localis", "borrowed from
Late Latin localis"): the machine did not match the
abreviations "Lat" with "Late Lat".

To overcome the first problem, we added an ad-
ditional preprocessing step of lemmatizing all the
Latin etymons using the CLTK library3 (Johnson
et al., 2021), thus recovering 13,227 cognate pairs
in total. We only applied etymon lemmatization as
part of the cognate matching algorithm, and kept
in our database the original etymon as found in
the dictionary, in case the information can further
serve for other applications. The second problem
led to the necessity of extracting and sorting the

3https://docs.cltk.org/en/latest/_module%s/cltk/
lemmatize/lat.html

source languages. Each dictionary used its own
way of abbreviating a source language, e.g. tc.,
tur., turc., turk. all refer to the Turkish language.
We manually normalized language abbreviations
across dictionaries, as well as collapsed some of
the language varieties with the help of linguists,
resulting in a fixed set of source languages that are
necessary and sufficient for identifying Romance
cognates in a linguistically justified manner (e.g.
the Languedocian and the Limousin were collapsed
as Occitan, being both dialects of this language).
We also leveraged the diachronic and diastratic in-
dications, compiling in the end a list of 259 total
identified source languages. Once we extracted
the etymologies for each word and language, we
moved to the construction of the cognate database,
standardizing and structuring the extracted informa-
tion, so it can be further accessed easily for a wide
range of experiments. We describe the construction
process in more detail in the next subsection.

2.2 The Construction of the RoBoCoP
Database

For each of the five Romance languages (It, Es,
Fr, Pt, Ro), the database contains lists of words,
with their etymologies. Starting with these data,
we obtained new lists of cognate pairs between
any two Romance languages of the five, by the
following procedure. For any triplet <u, e, L1> in
language L1, if we find a triplet <v, e, L2> in L2

(having the same etymon e), add the triplet <u, v, e>
to the list of cognate pairs of the language pair (L1,
L2). We define two words in a pair of languages as
being cognates if and only if the intersection of the
sets of their etymons is not void. This definition
is the most general and in line with other previous
definitions used (Ciobanu and Dinu, 2014b, 2019;
Fourrier, 2022). Because RoBoCoP covers both
words with Latin origin and borrowings of different
origins, it is easy to retrieve from its content more
specific definitions. One such definition minds only
the most distant ancestor word, the Latin one. To
comply with this definition, one needs only to add
to RoBoCoP the constraint that the only source
language should be Latin and thus one removes the
more recent borrowings from other languages.

Another particular definition states that two
words are cognates if they have a common ances-
tor, regardless of the level. For example, if two
words, u from language A and v from language B
have two different etymons, e1 and e2, respectively,
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Ro It Es Pt Fr
45465 24257 16458 28180 19822

fr:35511 lat:18437 lat:11936 lat:17446 lat:12804
lat:9312 fr:1981 fr:1366 gr:2818 en:1086
it:3358 gr:1649 es:712 fr:2369 it:912

Table 2: Number of words in dictionaries for each lan-
guage (upper row), and most frequent source language
(lower row) across words in a dictionary.

and e1 and e2 have the same etymon e, then, by
transitivity (Batsuren et al., 2022), the words u and
v are cognates. For instance, this happens often
for the language pair (Ro, Pt). This definition of
cognates can also be recuperated programmatically
from the RoBoCoP database. Both these partic-
ular cognate definitions were difficult to account
for using other cognate resources, rendering com-
parison of the computational methods of cognates
identification cumbersome or even impossible. As
previously stated, for the purposes of this study, we
use the definition of cognates where two words are
cognates if and only if they share a common ety-
mon (at the first level). Nevertheless, our database
supports any of the three versions of cognate defi-
nition, becoming a valuable and attractive resource.
Aside from cognate and borrowing identification, it
allows for proto-words identification as well, which
makes RoBoCoP not only a multilingual, but also
a powerful multitasking resource. Moreover, since
the source of this database are dictionaries of Ro-
mance languages, that implicitly include all the
words currently in use, it has a wide coverage of
cognate pairs of any two Romance languages from
the five included, thus maximizing recall. Another
advantage of the database is that it minimizes the
noise and is reliable, because it was obtained in a
computer - assisted manner and manually checked,
as opposed to other Romance cognates resources
created from Wiktionary or from automated trans-
lations.

3 Quantitative Aspects of the Database

We list here some quantitative aspects of the
database. The database comprises a total of
125,598 words across all languages and 90,853 cog-
nate pairs. Table 2 shows the total number of words
per language and the top three source languages
for borrowings, for each language. The number
of cognate pairs identified for any language pair is
depicted in Table 3.

Regarding the accuracy of the extraction and

It Es Pt Fr
Ro all 6,683 9,056 8,211 8,120

lat 4,999 7,588 5,855 7,360
It all 8,627 13,343 7,361

latin 7,863 12,198 7,105
Es all 10,731 10,543

lat 9,533 10,220
Pt all 8,179

lat 7,783

Table 3: Number of cognate pairs for each language
pair: total number and pairs of Latin etymology only.

Ro It Es Pt
It 98%
Es 98% 99%
Pt 99% 99% 97%
Fr 98% 98% 98% 98%

Table 4: Estimated accuracy (based on 100 randomly
sampled cognate pairs for each language pair) for
our cognate extraction method used for building our
database based on etymology dictionaries.

cleaning algorithm, we have computed accuracy
scores based on random samples of 100 entries
in each language’s etymology dictionary in our
database, as well as for each list of cognate pairs
corresponding to all language pairs in our database.

We find the following accuracies for extracting
etymologies for each language (the average accu-
racy is 98.6%): Spanish: 100%, Romanian: 98%,
Portuguese 97%, Italian 100%, French 98%. For
cognates extraction we find the following accura-
cies for each language pair as seen in Table 4 (with
an average of 98.2%).

As reflected by the quantitative aspects provided
in this section, we created both an effective re-
source for Romance cognate pairs, and a compre-
hensive map of borrowings and etymologies for
the Romance languages. RoBoCoP is, to our best
knowledge, one of the most high-coverage, reliable
and complex databases of Romance cognates.

3.1 Comparison with other Romance
Cognates Databases

By comparison with other Romance cognates re-
sources, our database turns out to be more inclusive
and well-grounded, as well as the most comprehen-
sive, to the best of our knowledge. The database
in (Bouchard-Côté et al., 2007) only comprises
3 Romance languages, Italian, Spanish and Por-
tuguese and contains a much smaller number of
cognate pairs. By contrast, RoBoCoP also includes
French and Romanian, and defines cognates most
generally, with the possibility of recuperating any
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of the more restrictive definitions. The resource
in (Ciobanu and Dinu, 2014b, 2019) contains only
cognate pairs between Romanian and all other main
Romance languages. Also, the method used for
identifying the cognates employed an intermediary
step of Google Translation. Another database (Mel-
oni et al., 2021) that starts from the one proposed
in (Ciobanu and Dinu, 2014b) by adding only those
cognate pairs from Wiktionary that have a common
Latin ancestor. Compared to this data set, RoBo-
CoP has much more cognate pairs. The archive in
(He et al., 2022) uses the work of (Meloni et al.,
2021), but removes inexplicably the Romanian lan-
guage. Finally, the database in (List et al., 2022)
covers more languages, but with much fewer cog-
nate pairs than ours, for any language pair.

4 Automatic Cognate Detection
Experiments

During the last decades, several computational ap-
proaches to the automatic detection of cognate pairs
reported fairly good results. The main problem
when it comes to evaluating them is that, almost al-
ways, the results are not directly comparable across
studies. This is not only due to the application
of different methodologies, but, most of the time,
due to the use of different databases. We address
this issue by proposing a comprehensive, reliable
database of Romance cognates.

In the following, we will present a series of ex-
periments and results to further help the evaluation
process of automatic cognate pairs detection, pro-
viding a benchmark for future approaches.

4.1 Methodology

We frame the problem as a binary classification
problem, where cognate pairs are positive exam-
ples. Because the ultimate purpose of all the experi-
ments is to decide if a pair of words are cognates or
not, one needs for training both positive data (pairs
of cognates provided by RoBoCoP) and negative
data (pairs of non-cognate words). It is remarkable
that, to our best coverage of the literature, while
positive data was generally well documented, neg-
ative data lack explanations, with a few exceptions
(Ciobanu and Dinu, 2014b). The choice of negative
examples is essential in informing the interpreta-
tion of automatic detection results. For instance, it
is easy to decide that two obviously different words
in two languages such as Romanian apă (’water’)
and Spanish cerveza (’beer’) are not cognates, but

not so easy for more similar words such as Italian
rumare (’rumble’) and Romanian rumen (’ruddy’).

Negative examples. To address this issue, we
propose two methods of negative example genera-
tion which we consider in all experiments.

Random negative sampling. In the simpler set-
ting, we generate a negative cognate pair selection
that contains pairs of words randomly extracted
from non-cognate pairs.

Levenshtein-based negative sampling. We in-
clude a second method where we select as nega-
tive examples graphically similar word pairs which
do not have common etymology, by conditioning
the words in the pair to have a Levenshtein dis-
tance (Levenshtein, 1965) smaller than the average
Levenshtein distance across cognate sets for that
language pair. The Appendix illustrates in more de-
tail the distribution of Levenshtein distances across
cognate pairs. Thus, the average Levenshtein dis-
tances for negative pairs are smaller than those of
positive pairs, ensuring that distinguishing between
them is not trivial based on their form. In both
settings, we sample words forming negative pairs
from word lists in our dictionaries across the en-
tire vocabulary (including inherited and borrowed
words, as well as words formed internally). We also
include in our database our selection of negative
examples in order to facilitate reproductibility.

Experimental settings. For all language pairs,
we generate datasets balanced in positive and nega-
tive examples. We use a 80% : 20% split to gener-
ate train and test sets, which are initially shuffled.
For validation we use 3-fold cross validation on
the training data for all experiments, unless explic-
itly stated otherwise. We perform a separate set of
experiments where we limit positive examples to
words with Latin etymology. Negative examples
are sampled from non-cognates in a similar way,
maintaining the balance between classes.

Features. All the experiments are performed us-
ing both the graphic form of the words and the pho-
netic one. To obtain the latter, we employed the eS-
peak library4, a resource used also by other similar
studies (Meloni et al., 2021). For some of our exper-
iments we include feature extraction consisting of
computing alignments on the word pairs, emulating
methods used by historical linguists. Ciobanu and
Dinu (2019) showed that extracting features from
the alignment returned by the Needleman-Wunsch

4https://github.com/espeak-ng/espeak-ng
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Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat - - - 93.8 93.9 94.8 90.6 90.7 92.1 91.8 91.1 92.7 90.5 89.6 91.9
All - - - 92.4 93.6 94.6 90.4 89.8 91.2 91.6 90.5 92.5 90.1 89.2 91.2

It Lat 98.5 98.0 98.6 - - - 93.9 94.0 95.1 94.2 94.1 95.6 93.4 93.2 95.0
All 98.8 97.9 98.7 - - - 93.9 94.3 95.2 94.3 93.7 95.2 93.0 92.2 94.2

Es Lat 98.5 97.8 98.7 98.5 98.3 99.0 - - - 91.3 91.2 92.2 93.3 93.0 95.0
All 98.3 97.5 98.5 98.8 98.3 99.0 - - - 91.7 90.7 93.1 93.5 93.0 95.1

Pt Lat 98.7 97.8 98.8 99.0 98.7 99.2 98.2 97.9 98.7 - - - 93.8 92.9 95.2
All 97.9 97.9 98.5 98.8 98.4 98.9 98.1 97.6 98.9 - - - 92.7 93.7 95.1

Fr Lat 98.5 98.0 98.9 98.9 98.4 99.1 98.5 98.3 99.1 98.1 97.6 98.7 - - -
All 98.5 97.9 98.7 98.7 98.2 98.8 98.3 98.0 98.9 98.2 98.2 98.8 - - -

Table 5: Classification accuracy on the test set using the ensemble model. For each language pair, the results for
all cognate pairs as well as for pure cognate pairs only (Latin etymon) are displayed on two consecutive rows; the
results using graphic-only (Gr), and phonetic-only (Ph) features, and the best ensemble (En) with combined features
are shown on three consecutive columns. The results using the Levenshtein-based negative sampling are shown
above the main diagonal, while the results using random negative sampling are shown below the main diagonal.

algorithm (Needleman and Wunsch, 1970) on the
graphic representations of the words achieved good
results when used for training machine learning
models for cognates classification. We implement
the same approach for extracting n-grams around
mismatches from the alignment (caused by inser-
tion, deletion, or substitution). Furthermore, for
a given value of n, we consider all such i-grams
with the length i ≤ n. For example, given the
French-Romanian pair (dieu, zeu), we obtain
the alignment ($dieu$, $z-eu$), where $
marks the beginning and ending of the alignments
and - represents a deletion/insertion. For n = 2,
the extracted features would be d>z, i>-, $d>$z,
di>z-, and ie>-e. These features are then vec-
torized using a binary bag of words. Unlike previ-
ous work, we also experimented with the alignment
of phonetic representations.

Ensemble Model. Our first set of experiments
involves training various machine learning algo-
rithms on the alignment features computed for ei-
ther the graphic or the phonetic representations.
For the graphic representations we preprocess the
words by removing accents. We experiment with
various algorithms: Support Vector Machine, Naive
Bayes, XGBoost classifier (Chen and Guestrin,
2016). These models are trained on either the
graphic or the phonetic alignments using various
hyper-parameters and their performance is assessed
using cross validation. For each language pair, we
select the best five performing algorithms and train
a stacking ensemble classifier. In order to guarantee
the presence of both graphic and phonetic features
in the final ensembles we make sure to never se-
lect more than three models that were trained on

graphic, or phonetic features, respectively. We also
evaluate ensembles trained using only graphic and
only phonetic base models, respectively, to assess
if any category of features outperforms the other,
or if their combination is more favorable.

Convolutional Neural Network. For the deep
learning experiments, we encode the graphic or
the phonetic representation of the words as simple
sequences of characters and train deep neural net-
works to extract features and provide predictions.
These models are "alignment-agnostic", in order
to see if they can outperform the handcrafted fea-
tures. The first architecture we employ is a siamese
convolutional architecture, combining two CNNs
where each arm models one of the words in the pair.
Each word is treated as a character sequence, where
characters are encoded as learned dense vectors us-
ing an embedding layer. The character vocabulary
is constructed separately for each language pair, ac-
cented characters are kept separately. The outputs
of the two CNNs are then concatenated and passed
to the final dense layer to produce a prediction.

Transformer. The second model employs a
Transformer architecture (Vaswani et al., 2017).
Either the graphic or the phonetic representation of
a word is split into individual characters (without
any normalization). For a given pair of words, the
character sequences are concatenated with a special
[SEP] token placed between them and a [CLS]
token placed before the first sequence. The tokens
are then positionally embedded and fed through
a multi-layered Transformer encoder. The output
generated by the last encoder layer for the [CLS]
token is used for classification and passed through
a feed-forward layer. For this method we hold the
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Figure 1: Test accuracy scores for all models and features, measured on full dataset and on pure cognates (Latin
etymology), using close Levenshtein distance for negative example selection. Deep learning results computed as
average across 5 runs.

last eighth of the training samples for validation.
The validation dataset is also used for selecting the
best model at each training epoch. For both deep
learning approaches, we train independent mod-
els for each language pair, separately on graphical
and phonetic representations of the words. Ex-
tensive details on the hyper-parameters and the
training techniques employed are presented in the
Appendix.

Metrics. Since datasets are balanced, we use ac-
curacy as our main metric for model selection as
well as for interpreting results, and additionally
measure and report precision and recall. Detailed
results are included in the Appendix.

4.2 Results and Error Analysis

The best results are obtained using the ensemble
models with alignment features across all experi-
mental settings, while the transformer-based model
generally comes second (Figure 1). Table 5 shows
results for the best performing model (the ensemble
model) in all settings. This comparison shows that
although no alignment method is superior in every
scenario, the combination of both graphic and pho-
netic features in the ensemble model surpasses the
ensembles that were limited to only one kind of
features. For any pair of two languages, the cog-
nate detection in random lexical pairs with our best
model was accurate in a proportion of 98%-99%,
with the lowest accuracy 98.5 for Es-Ro, and the
highest of 99.07 for Es-It. When using Levenshtein-
based negative sampling, we obtain a minimum of

91.24 for Es-Ro, and a maximum of 95.24 for It-Es.
This confirms that identifying cognate pairs out of a
selection containing clearly different words can be
almost trivial for machine learning models. In Fig-
ure 1 we separately illustrate results obtained using
all models and features and the second, more strict
setting for generating negative pairs (Levenshtein-
based sampling), which leads to more interesting
variations.

We notice that, in both situations, Romanian pro-
vides the lowest values when compared with any
other Romance language, while at the opposite end
of the spectrum we find Italian. The interpretation
of these results leads to a global perspective on the
degree of similarity between languages, which was
theoretically discussed in (Dinu and Dinu, 2005;
Ciobanu and Dinu, 2014a), and is now able to fa-
vor a deeper insight into the phonetic structure of
Romance languages measured in relation to Latin
and in comparison with each other. While a usual
suspect for poor results for low-resource languages
such as Romanian is a scarcity of training data, in
our case this can not be the case, since our dataset
covers all cognates in the vocabulary exhaustively,
so detection performance can not be improved sim-
ply by augmenting the training data. When taking
into account only the cognates originating in Latin,
we obtained, in most cases, even better results than
for the full set: the lowest accuracy for randomly
selected lexical pairs with the ensemble model was
98.65 for It-Ro, while the highest was 99.2 for Pt-It;
when using Levenshtein-based negative sampling,
the lowest accuracy was 91.9 for Fr-Ro, and the
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Ro It Es Pt Fr
Ro e$>-$, re>–, ar>a- o$>-$, r$>-$, ar>a- r$>-$, ar>a-, o$>-$ e$>-$, r$>-$, er>a-
It e$>-$, re>–, ar>a- -$>e$, r->re, n->ne -$>e$, r->re, –>ne e$>-$, re>r-, ne>n-
Es o$>-$, ar>a-, r$>-$ -$>e$, r->re, n->ne e$>-$, on>o-, n$>-$ ci>ti, se>–, ar>er
Pt r$>-$, ar>a-, ca>ti -$>e$, r->re, –>ne e$>-$, on>o-, n$>-$ ao>io, o->on, ca>ti
Fr e$>-$, r$>-$, er>a- e$>-$, re>r-, ne>n- ci>ti, se>–, ar>er ao>io, o->on, ca>ti

Table 6: Top 3 informative graphic alignment bigrams according to χ2 feature selection, based on the full training
dataset (above the main diagonal), and the training dataset containing only cognates of Latin origin (below the main
diagonal). Bigrams are separated by commas, > marks where the bigram for the first word in the pair ends and
where the bigram for the second word begins, − marks an insertion/deletion computed by the alignment algorithm.

highest 95.6 for Pt-It. This increasing accuracy
is supported by a higher degree of regularity in
the phonetic evolution from Latin to the Romance
languages, which also leads to a better correspon-
dence between any two Romance languages. It is
thus obvious that the machine was able to better
learn and recognize the phonetic correspondences
between words inherited or borrowed from Latin,
which were not applicable to borrowings from other
Indo-European languages (such as English) or non-
Indo-European idioms (such as Turkish or Arabic).

There are some cases where the identification of
a pair of words as cognates was reported as an error,
despite their obvious genetic relation. For example,
Es cognitivo and Ro cognitiv are not registered as
cognates in our database because they appear in
dictionaries with different etymologies: the Span-
ish word is considered as an internal creation (a
derivative from Es cognición), while the Romanian
lexeme is a borrowing from Fr cognitif. The au-
tomatic selection of such word pairs as cognates
calls into question the supposed status of internal
creation of lexemes such as Es cognitivo, given the
limited possibilities of derivation with the suffix
-ivo (in this case) in Spanish (cf. (Española, 2010)),
as well as the significant influence of the French
language on Spanish.

We additionally extract relevant features by se-
lecting the top character bigrams according to their
weights in the ensemble models. It is especially in-
teresting to compare these features with the criteria
generally used by historical linguists for identify-
ing cognates. We find, for example, that of the
top ranked orthographic cues, none occurs at the
beginning of the word, while many of them occur
at the end of the word. Table 6 contains a list of
top relevant features.

5 Conclusions and Future Work

We introduced a comprehensive database (in
graphic and phonetic form) and framework for

the automatic analysis and detection of Romance
cognates (the largest database of this kind, in our
best knowledge, with 125,598 words across all lan-
guages and 90,583 cognate pairs).

Our framework is the result of collaboration
between computer scientists and linguists and in-
cludes: a linguistically informed and computation-
ally usable definition of cognate words, a method-
ology for extracting cognate pairs automatically
in a robust way, a comprehensive dataset of word
etymologies for Romance languages based on ety-
mological information given by dictionaries, and a
comprehensive database of cognate pairs, as well as
benchmark results for automatic cognate detection,
based on a series of machine learning experiments
(using a variety of features and models: graphical
and phonetical features, including prior feature en-
gineering to obtain word alignment information,
or alignment-agnostic, and several types of model
architectures) for automatically detecting cognates.

For the most difficult task (cognate detection for
Levenshtein-based negative sampling) we obtained
an average accuracy around 94%.

In future work we intend to distinguish virtual
cognates in the database and to complement experi-
ments with discrimination between virtual and true
cognates. Furthermore, we aim to investigate the
discrimination between cognates and borrowings,
also adding semantic features, as well as more pho-
netic features for each pair of Romance languages.

Ethics Statement

There are no ethical issues that could result from
the publication of our work. Our experiments com-
ply with all license agreements of the data sources
used. We make the contents of our package avail-
able for research purposes upon request.

Limitations

There are a few limitations to our cognate extrac-
tion methodology that could be improved upon in

7618



future work. First, distinguishing between oral and
written Latin can further refine the types of etymo-
logical relations between words of Latin origin. In
isolated cases, the normalization of Latin etymons
has led to incorrect cognate pairs.

Furthermore, according to a wider definition of
cognates, cognates extraction could be extended
to include deeper relatedness levels. In our exper-
iments reported in this paper, in the case of Latin
etymologies, we consider all cognate pairs which
have a common Latin ancestor (directly derived
from Latin). An extended version of our cognate
database can be obtained based on our published
dictionaries with etymological information and list
of source languages, using the following extended
definition: For any pair of Romance languages, we
consider all cognate pairs which have a common
ancestor at any level. For example, the Ro-Pt pair
<u,v> was obtained from the pair <x,y>, because x
and y have a second level common ancestor z, and,
consequently, we consider <u,v> a cognate pair.

Another clear limitation is that our database only
covers the main Romance languages, and does not
yet include other Romance varieties nor any other
language families. In terms of cognate detection re-
sults, we expect that detecting cognate pairs across
language families could be more challenging, and
that our results are an overestimation of that (con-
firmed by the improved results on pairs of Latin
origin).

In terms of cognate detection experiments, we
acknowledge there are different architectures and
feature sets to be used for cognate detection which
could improve results in the case of deep learning
models, and we invite other researchers to propose
new methods and test them on our database. An
explainability analysis of the deep models could
also be interesting to understand to what extent
they are capable of identifying "alignment" patterns
based only on word forms. A classifier trained
on all language pairs together could also reveal
interesting commonalities across language pairs, as
well as potentially obtain better results due to this.
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A Appendix. Additional Results

A.1 Classification Experiments. Experimental
Settings

A.1.1 Ensemble Models
In order to select the best base models to be put
into the ensemble various machine learning models
were trained using the scikit-learn Python library
and 3-fold cross validated on the training dataset.
The list of models and their parameters is the fol-
lowing (note that if not specified, all other hyper-
parameters are set to the defaults set in the 1.2.0
version of the library):

• Support Vector Machine (SVC): kernel =
rbf , C ∈ {0.1, 1, 10}

• Linear Support Vector Machine
(LinearSVC): C ∈ {0.1, 1, 10}

• Multinomial Naive Bayes

• XGBoost classifier (xgboost library version
1.7.3)

We evaluate each such model using either graphic
or phonetic features, and using various values for
the size of considered alignment n-grams (n ∈
{1, 2, 3}).

For each language pair and selection setting
for the negative examples, we select the best per-
forming five model configurations and train a
StackingClassifier on the whole training
set. This is our final ensemble model for this ap-
proach.

Training, cross-validation, and testing for all ex-
periments had a combined running time of ≈ 2h.
Infrastructure use was CPU: “Ryzen 5 3600X”, 3.8
GHz, 6 cores.

A.1.2 Transformer Models
Architecture. The model was created based
on the TransformerEncoder implementation
from the torch Python library (version 1.13.1) and
it has the following structure:

• embedding size: 200

• hidden state size: 200

• number of attention heads: 8

• number of layers: 4

• dropout layer after positional encoding, prob-
ability: 0.2

• trainable parameters: ≈ 980, 202

• Computational budget: training, validation,
and testing for all experiments had a combined
running time of ≈ 5h for all 5 runs.

• Computational infrastructure:

– CPU: “Ryzen 5 3600X”, 3.8 GHz, 6
cores

– GPU: Nvidia RTX 2060 Super, 1470
MHz, 8 Gb VRAM

Training Details. In order to prevent overfitting
we evaluate the model after each epoch on the val-
idation set and if after the last epoch there was
no increase with respect to the best previously en-
countered loss we reduce the learning rate of the
optimizer with a coefficient γ. After a number of
consecutive epochs without improvement we stop
the training (see "patience" parameter). The param-
eters for training are the following:

• number of epochs: 50

• batch size: 64

• loss function: cross entropy loss

• optimizer: Adam

• initial learning rate: 0.001

• γ: 0.6

• patience: 5 epochs

A.1.3 Siamese CNN Model
The model was developed using the Tensorflow
(v.2.11.0) and Keras (v2.11.0) frameworks for
deep learning.

• Trainable parameters: 17, 473

• Computational infrastructure: Haswell
2.4GHz Intel Core i7-4700HQ, 4 cores

• Computational budget: ≈ 30mins/model
training and evaluation on CPU; ≈ 40h/all
experiments per run.

Optimal Hyperparameters
Optimal hyperparameters were found by manual

tuning for cross-validation accuracy optimization.

• embedding dimension: 16,

• filters: 160,
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Figure 2: Architecture of siamese CNN model

• kernel size: 3,

• dropout: 0.1,

• l2 dense: 0.00011,

• l2 embeddings: 0.0000001,

• optimizer: adam,

• loss function: cross entropy loss,

• learning rate decay: 0.0001,

• learning rate: 0.005,

• early stopping patience: 5,

• max word length: 30,

• batch size: 160,

• epochs: 40

A.1.4 Tools
• Phonetic transcription done using the py-

espeak-ng Python wrapper (version 0.1.8) for
eSpeak

A.2 Database. Aditional results
A.3 Classification Experiments Additional

Results
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Figure 3: Distribution of Levenshtein distances for true
pairs of cognates in our database.
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Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat 93.4 94.5 95.4 91.0 91.0 92.6 90.1 91.4 92.1 90.7 90.1 92.3
All 92.0 93.2 94.6 88.3 88.5 90.5 90.9 90.8 92.6 88.3 89.7 91.6

It Lat 98.2 98.4 98.5 94.7 94.7 95.7 94.7 94.3 95.7 93.9 93.6 95.2
All 98.9 98.4 99.1 92.9 93.5 94.3 93.9 93.8 94.7 93.2 92.4 94.3

Es Lat 98.7 98.4 99.0 98.7 98.6 99.1 91.6 91.3 92.6 93.8 93.7 95.9
All 98.3 98.1 98.7 98.8 98.2 99.0 90.6 90.5 92.0 92.3 93.4 94.9

Pt Lat 98.9 98.2 99.2 99.3 98.6 99.4 98.3 98.0 98.8 94.4 94.1 95.8
All 98.0 98.0 99.0 99.1 98.4 99.0 98.0 97.5 98.7 92.7 94.8 95.8

Fr Lat 98.6 98.0 98.9 99.0 98.3 99.2 98.5 98.4 99.2 98.4 97.9 98.9
All 98.9 98.2 99.1 98.8 98.5 98.8 98.0 98.3 99.1 98.4 98.5 99.3

Table 7: Classification precision on the test set using the ensemble models, trained either exclusively using graphic
classifiers (Gr), or phonetic classifiers (Ph) , or a combination of both (En). Scores above the main diagonal
correspond to the Levenshtein distance-based negative samples selection, while scores below the main diagonal
correspond to the random selection.

Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat 94.2 93.0 94.0 90.4 90.8 91.9 93.6 90.5 93.2 90.8 89.6 91.8
All 92.5 93.8 94.4 93.1 91.2 91.9 92.3 89.8 92.2 92.4 88.6 90.8

It Lat 98.9 97.7 98.8 93.3 93.6 94.8 93.9 94.1 95.6 93.3 92.9 94.9
All 98.6 97.4 98.4 94.8 95.1 96.0 94.7 93.5 95.6 92.7 92.0 94.0

Es Lat 98.4 97.3 98.6 98.5 98.2 98.9 91.3 91.3 92.0 93.3 92.8 94.3
All 98.4 97.0 98.4 98.8 98.5 99.0 92.8 90.5 94.2 94.6 92.3 95.2

Pt Lat 98.6 97.3 98.5 98.8 98.9 99.2 98.2 97.9 98.6 93.3 91.8 94.7
All 97.9 97.7 98.1 98.6 98.5 98.9 98.3 97.8 99.0 92.8 92.5 94.5

Fr Lat 98.6 98.1 99.1 98.8 98.7 99.0 98.7 98.4 99.2 97.9 97.4 98.7
All 98.2 97.6 98.5 98.8 97.8 98.8 98.6 97.6 98.7 98.0 98.0 98.3

Table 8: Classification recall on the test set using the ensemble models, trained either exclusively using graphic
classifiers (Gr), or phonetic classifiers (Ph) , or a combination of both (En). Scores above the main diagonal
correspond to the Levenshtein distance-based negative samples selection, while scores below the main diagonal
correspond to the random selection.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 90.0 89.2 87.8 87.1 87.2 87.2 87.5 86.6
All 89.5 88.5 86.5 86.0 86.7 85.8 85.3 83.9

It Lat 94.2 93.1 89.4 89.1 89.7 88.9 90.2 87.4
All 93.8 93.0 90.3 88.8 89.7 88.9 89.0 87.3

Es Lat 93.2 92.0 94.3 93.3 84.7 84.2 88.5 88.4
All 94.1 92.5 94.0 92.9 84.3 83.2 88.6 87.5

Pt Lat 93.5 92.5 95.2 94.4 92.9 91.4 89.5 88.8
All 93.7 92.9 95.2 93.7 93.0 90.9 88.7 88.6

Fr Lat 94.4 93.3 94.7 94.3 93.8 91.9 92.7 92.9
All 94.7 93.0 94.7 93.8 94.0 91.5 93.5 92.5

Table 9: Classification accuracy on the test set using the Transformer-based models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over 5 independent experiments using different seeds for the random engine.
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Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 89.0 87.2 87.7 86.6 85.7 85.1 87.9 86.1
All 88.0 86.9 84.6 84.4 85.9 84.8 85.1 85.1

It Lat 93.2 92.1 91.3 89.4 88.2 86.8 89.9 88.2
All 93.9 91.4 89.7 89.1 87.4 86.6 89.0 88.7

Es Lat 92.6 90.2 94.4 92.2 83.7 85.2 88.8 87.8
All 93.0 90.7 91.9 91.5 82.5 83.7 86.4 85.0

Pt Lat 93.0 90.6 93.7 92.9 91.8 89.4 89.1 88.6
All 92.3 91.4 93.6 91.3 91.8 89.8 88.9 87.8

Fr Lat 93.9 93.1 92.8 93.3 92.3 90.3 91.4 91.4
All 93.4 91.8 93.9 91.9 92.2 88.9 92.5 90.9

Table 10: Classification precision on the test set using the Transformer-based models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over 5 independent experiments using different seeds for the random engine.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 91.0 91.4 88.2 88.3 88.6 89.6 87.5 87.9
All 90.9 89.9 88.9 88.0 87.3 86.8 85.4 82.1

It Lat 95.0 94.0 87.6 89.3 92.0 92.0 90.8 86.8
All 93.3 94.6 90.4 87.7 92.5 91.7 88.9 85.2

Es Lat 94.2 94.5 94.5 94.9 86.6 83.2 88.9 90.0
All 95.3 94.5 96.2 94.2 86.2 81.6 91.0 90.2

Pt Lat 93.8 94.4 97.0 96.4 94.5 94.0 90.3 89.5
All 95.2 94.5 96.9 96.3 94.0 91.9 88.2 89.6

Fr Lat 95.3 93.7 97.1 95.7 96.0 94.4 94.6 94.9
All 96.2 94.3 95.4 96.0 95.8 94.3 94.7 94.3

Table 11: Classification recall on the test set using the Transformer-based models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over 5 independent experiments using different seeds for the random engine.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 86.9 86.0 87.2 83.9 85.3 83.9 84.1 82.8
All 83.8 81.1 86.0 78.8 82.7 80.6 83.9 82.4

It Lat 89.0 84.9 84.5 83.8 84.4 83.4 87.1 85.2
All 86.9 82.3 81.8 81.2 84.0 82.4 85.5 83.7

Es Lat 87.3 80.2 85.2 83.2 81.5 80.5 84.8 81.7
All 85.6 76.0 82.3 81.8 79.5 78.1 83.9 78.9

Pt Lat 88.9 83.3 85.2 82.2 84.4 79.4 86.9 85.0
All 85.9 81.5 83.7 81.3 82.7 78.9 85.5 84.2

Fr Lat 81.6 79.4 85.9 83.6 87.2 77.4 85.7 82.6
All 82.4 82.0 83.7 82.3 86.8 76.7 83.1 83.0

Table 12: Classification accuracy on the test set using the Siamese CNN models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over 5 independent experiments using different seeds for the random engine.
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Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 85.6 84.6 88.9 82.8 83.0 82.3 85.4 83.0
All 83.3 79.4 84.8 77.2 81.0 78.1 85.0 82.8

It Lat 86.7 83.6 82.6 81.3 85.0 82.6 87.4 83.9
All 85.4 80.5 78.2 77.7 85.0 83.6 86.1 83.5

Es Lat 89.8 80.0 83.1 81.6 80.1 79.0 86.2 84.0
All 83.5 75.5 80.8 79.1 78.9 77.3 83.5 77.3

Pt Lat 89.6 80.9 88.5 81.0 85.3 76.7 88.2 86.5
All 86.2 79.6 83.1 83.5 82.5 77.9 85.9 86.0

Fr Lat 84.7 80.3 83.5 81.2 88.3 76.0 84.0 79.5
All 79.1 80.2 80.1 79.4 86.5 74.3 81.2 81.7

Table 13: Classification precision on the test set using the Siamese CNN models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over independent experiments using different seeds for the random engine.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 88.5 87.7 85.4 86.7 88.1 85.3 83.3 83.8
All 84.1 82.9 87.3 81.7 85.3 84.7 82.2 81.8

It Lat 91.6 86.1 88.2 88.7 84.6 85.5 87.1 88.0
All 88.2 84.4 87.1 86.4 82.1 80.3 84.5 83.9

Es Lat 84.6 81.3 89.0 86.5 84.7 84.1 83.9 80.2
All 88.3 76.2 83.4 85.1 79.9 78.3 83.5 80.2

Pt Lat 87.3 86.1 81.4 84.6 83.6 85.0 86.0 83.5
All 85.0 84.4 84.0 77.3 82.2 79.9 85.0 82.0

Fr Lat 77.9 78.8 90.0 88.1 86.6 82.0 88.6 88.7
All 87.7 85.6 89.1 86.7 86.4 79.8 86.0 85.0

Table 14: Classification recall on the test set using the Siamese CNN models, trained either using graphic
representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the Levenshtein
distance-based negative samples selection, while scores below the main diagonal correspond to the random selection.
Scores are averaged over independent experiments using different seeds for the random engine.

Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat 93.0 93.2 94.0 90.1 89.9 91.0 90.4 90.5 92.3 90.2 89.1 91.3
All 92.5 92.6 94.3 90.3 88.6 90.3 89.7 89.7 91.2 89.6 87.8 90.6

It Lat 98.6 97.9 98.6 92.9 92.6 94.1 93.4 93.3 94.7 91.5 92.2 94.0
All 98.6 98.1 98.7 93.2 93.1 94.0 93.8 93.4 95.0 92.4 92.1 93.9

Es Lat 98.2 97.4 98.2 98.2 98.1 98.6 90.4 89.6 91.6 92.2 91.8 93.9
All 97.9 97.4 98.3 98.3 97.8 98.7 91.0 88.8 91.3 92.4 91.8 93.9

Pt Lat 97.8 96.9 98.3 98.6 98.0 98.8 97.6 97.0 98.2 92.0 92.4 94.2
All 98.1 97.8 98.6 98.5 98.3 98.9 97.6 97.2 98.3 92.1 91.8 93.5

Fr Lat 98.2 97.7 98.5 98.5 98.1 98.8 97.6 97.3 98.4 97.7 97.7 98.4
All 98.2 97.8 98.7 98.5 98.3 98.9 97.9 97.5 98.5 97.8 97.9 98.4

Table 15: Mean classification accuracy of the 3-fold cross validation experiment for ensemble models, trained
either exclusively using graphic classifiers (Gr), or phonetic classifiers (Ph) , or a combination of both (En). Scores
above the main diagonal correspond to the Levenshtein distance-based negative samples selection, while scores
below the main diagonal correspond to the random selection.
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Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat 92.9 93.8 95.2 90.4 89.6 92.0 88.8 91.3 92.5 90.4 89.8 91.6
All 92.5 92.9 94.3 89.0 88.4 90.6 89.8 90.2 91.6 87.8 88.6 90.8

It Lat 98.7 97.9 98.7 93.3 93.0 94.5 94.2 93.8 95.0 93.2 93.4 94.8
All 98.7 98.3 98.8 93.0 93.0 93.8 94.1 93.7 95.2 92.4 93.0 94.3

Es Lat 98.3 97.6 98.2 98.3 98.1 98.7 91.0 89.9 92.0 92.4 93.0 94.4
All 98.1 97.9 98.5 98.3 97.8 98.7 89.7 88.8 91.1 91.5 92.8 94.2

Pt Lat 98.1 97.1 98.3 98.7 98.2 98.9 97.7 97.2 98.4 92.6 93.6 95.0
All 98.1 98.0 98.7 98.6 98.4 99.0 97.7 97.5 98.4 91.7 93.3 94.4

Fr Lat 98.4 98.1 98.7 98.6 98.4 99.0 97.8 97.6 98.7 97.7 97.8 98.7
All 98.3 98.1 98.8 98.8 98.5 99.1 98.1 97.8 98.7 97.9 98.2 98.6

Table 16: Mean classification precision of the 3-fold cross validation experiment for ensemble models, trained
either exclusively using graphic classifiers (Gr), or phonetic classifiers (Ph) , or a combination of both (En). Scores
above the main diagonal correspond to the Levenshtein distance-based negative samples selection, while scores
below the main diagonal correspond to the random selection.

Ro It Es Pt Fr
Gr Ph En Gr Ph En Gr Ph En Gr Ph En Gr Ph En

Ro Lat 93.1 92.7 92.7 89.6 90.2 89.8 92.7 89.7 92.3 89.9 88.1 90.9
All 92.5 92.4 94.3 92.0 89.0 90.0 89.5 89.1 90.8 92.1 86.9 90.4

It Lat 98.5 97.9 98.5 92.3 92.0 93.6 92.4 92.7 94.3 89.5 90.8 93.2
All 98.6 97.9 98.5 93.5 93.3 94.4 93.5 93.0 94.7 92.5 91.0 93.5

Es Lat 98.0 97.1 98.1 98.0 98.0 98.5 89.5 89.1 91.2 92.0 90.3 93.2
All 97.7 97.0 98.0 98.3 97.8 98.7 92.6 88.9 91.7 93.6 90.8 93.5

Pt Lat 97.5 96.8 98.2 98.4 97.9 98.7 97.4 96.8 98.1 91.3 91.0 93.2
All 98.1 97.5 98.6 98.5 98.1 98.8 97.5 97.0 98.2 92.5 90.0 92.4

Fr Lat 97.9 97.2 98.2 98.4 97.9 98.6 97.3 96.8 98.1 97.6 97.5 98.2
All 98.1 97.4 98.5 98.3 98.2 98.7 97.7 97.2 98.3 97.7 97.6 98.3

Table 17: Mean classification recall of the 3-fold cross validation experiment for ensemble models, trained either
exclusively using graphic classifiers (Gr), or phonetic classifiers (Ph) , or a combination of both (En). Scores above
the main diagonal correspond to the Levenshtein distance-based negative samples selection, while scores below the
main diagonal correspond to the random selection.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 89.9 88.9 86.5 86.2 87.6 86.9 87.3 85.4
All 89.6 89.2 87.6 85.6 86.2 86.1 84.7 83.1

It Lat 94.9 93.6 89.7 89.8 89.6 89.3 90.3 88.8
All 94.6 93.5 90.2 89.2 90.2 89.1 88.3 86.7

Es Lat 93.7 91.4 94.1 93.0 86.3 85.1 89.0 88.9
All 94.8 93.1 94.1 93.0 85.4 85.1 88.3 86.8

Pt Lat 92.2 91.1 94.4 93.8 92.8 91.8 89.5 87.0
All 93.9 92.5 94.9 93.5 92.4 90.5 88.3 87.3

Fr Lat 94.2 93.3 94.7 93.7 93.9 92.8 93.1 93.1
All 95.2 93.7 95.3 93.9 94.1 92.5 93.8 92.8

Table 18: Classification accuracy on the validation set using the Transformer-based models, trained either using
graphic representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the
Levenshtein distance-based negative samples selection, while scores below the main diagonal correspond to the
random selection. Scores are averaged over 5 independent experiments using different seeds for the random engine.
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Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 89.9 87.9 86.0 85.2 87.4 86.7 87.7 84.7
All 87.8 87.5 86.3 85.1 85.5 85.0 82.8 82.7

It Lat 94.8 93.2 90.2 89.5 87.1 86.5 88.9 88.7
All 93.7 91.0 90.2 89.6 88.0 86.8 86.9 86.7

Es Lat 92.2 89.7 93.3 91.0 84.9 85.9 88.3 87.2
All 93.4 91.3 93.1 91.9 84.7 86.5 86.9 85.6

Pt Lat 92.2 90.0 92.5 92.2 92.1 90.2 88.4 85.5
All 92.1 90.4 93.7 91.4 91.6 89.7 87.5 84.8

Fr Lat 92.4 92.3 93.0 91.5 92.5 90.9 91.6 91.7
All 93.5 92.7 94.4 92.1 93.2 91.5 92.5 90.7

Table 19: Classification precision on the validation set using the Transformer-based models, trained either using
graphic representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the
Levenshtein distance-based negative samples selection, while scores below the main diagonal correspond to the
random selection. Scores are averaged over 5 independent experiments using different seeds for the random engine.

Ro It Es Pt Fr
Gr Ph Gr Ph Gr Ph Gr Ph Gr Ph

Ro Lat 90.6 91.0 87.1 87.6 88.2 87.6 86.5 86.0
All 91.2 90.6 88.9 85.9 86.0 86.5 86.4 82.4

It Lat 95.4 94.6 88.8 89.8 92.8 93.0 91.2 88.0
All 95.4 96.2 90.4 88.9 93.2 92.3 89.1 85.4

Es Lat 95.5 93.5 94.9 95.3 87.9 83.6 90.2 91.5
All 96.2 95.2 95.4 94.5 87.3 83.9 90.7 89.0

Pt Lat 92.5 92.6 96.6 95.7 93.6 93.5 91.0 89.0
All 95.6 94.5 96.3 96.0 93.6 92.0 88.3 89.7

Fr Lat 96.2 94.5 96.3 95.8 95.7 95.3 94.8 94.8
All 97.0 94.6 96.0 95.4 95.4 94.0 94.8 94.8

Table 20: Classification recall on the validation set using the Transformer-based models, trained either using
graphic representations (Gr), or phonetic representations (Ph). Scores above the main diagonal correspond to the
Levenshtein distance-based negative samples selection, while scores below the main diagonal correspond to the
random selection. Scores are averaged over 5 independent experiments using different seeds for the random engine.
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