
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 7693–7704
December 6-10, 2023 ©2023 Association for Computational Linguistics

GLEN: Generative Retrieval via Lexical Index Learning

Sunkyung Lee∗, Minjin Choi∗, Jongwuk Lee†
Sungkyunkwan University, Republic of Korea
{sk1027, zxcvxd, jongwuklee}@skku.edu

Abstract
Generative retrieval shed light on a new
paradigm of document retrieval, aiming to di-
rectly generate the identifier of a relevant doc-
ument for a query. While it takes advantage
of bypassing the construction of auxiliary in-
dex structures, existing studies face two signif-
icant challenges: (i) the discrepancy between
the knowledge of pre-trained language models
and identifiers and (ii) the gap between train-
ing and inference that poses difficulty in learn-
ing to rank. To overcome these challenges, we
propose a novel generative retrieval method,
namely Generative retrieval via LExical iNdex
learning (GLEN). For training, GLEN effec-
tively exploits a dynamic lexical identifier using
a two-phase index learning strategy, enabling
it to learn meaningful lexical identifiers and
relevance signals between queries and docu-
ments. For inference, GLEN utilizes collision-
free inference, using identifier weights to rank
documents without additional overhead. Exper-
imental results prove that GLEN achieves state-
of-the-art or competitive performance against
existing generative retrieval methods on var-
ious benchmark datasets, e.g., NQ320k, MS
MARCO, and BEIR. The code is available at
https://github.com/skleee/GLEN.

1 Introduction

Generative retrieval has emerged as an innova-
tive approach to document retrieval (Metzler et al.,
2021). Unlike conventional retrieval methods fol-
lowing the “index-retrieve-then-rank” pipeline, it
unifies an entire search process. Specifically, it di-
rectly generates the identifier of a relevant docu-
ment for a given query. By formulating the entire
search process as a sequence-to-sequence problem,
it bypasses an auxiliary index structure and can be
optimized through end-to-end learning.

Despite these benefits, generative retrieval faces
major challenges in how to define and train docu-

∗Equal contribution
†Corresponding author

ment identifiers. As depicted in Table 1, existing
studies are categorized into two pillars: identifier
types and identifier learning strategies.
Identifier types. Some canonical works employ nu-
meric identifiers for document representation, e.g.,
hierarchical clustering using document representa-
tions (Tay et al., 2022; Wang et al., 2022) and prod-
uct quantization (Zhou et al., 2022). However, nu-
meric identifiers struggle to fully exploit the knowl-
edge of pre-trained language models (PLMs) due to
a semantic discrepancy between natural language
and numeric identifiers. Other studies pre-define
lexical identifiers using titles (Lee et al., 2023) or
URLs (Zhou et al., 2022; Ren et al., 2023). Al-
though they can narrow the semantic gap between
PLM knowledge and identifiers, such information
may be inadequate for representing documents and
does not exist depending on the dataset.
Identifier learning strategies. Depending on the
strategy of training identifiers, we refer to an iden-
tifier as being static if it does not change during
training. Meanwhile, when an identifier evolves
during training, we refer to it as being dynamic.
Static identifiers may lead to a performance bottle-
neck in generalizing for unseen documents during
training. To overcome this limitation, Sun et al.
(2023) proposed a method to dynamically learn nu-
meric identifiers. However, it is still non-trivial to
learn appropriate identifiers due to the task discrep-
ancy between training and inference; the models
focus on generating the identifier during training,
but they need to rank documents during inference.

To this end, we introduce a new generative re-
trieval method, namely Generative retrieval via
LExical iNdex learning (GLEN) using the dynamic
lexical identifier in a right-bottom cell in Table 1.
The key novelty of GLEN is (i) to define lexical
identifiers from documents using the knowledge of
PLMs, (ii) to learn them from relevance between
queries and documents, and (iii) to effectively rank
documents with the same identifier for inference.

7693

https://github.com/skleee/GLEN

Training of GLEN. It utilizes a two-phase index
learning strategy to define lexical identifiers and
to learn them dynamically. First, in the keyword-
based ID assignment phase, GLEN defines identi-
fiers from documents and learns them. To alleviate
the discrepancy between the knowledge of PLMs
and the semantics of identifiers, we depict identi-
fiers in the pre-trained vocabulary space leverag-
ing self-supervised signals by extracting key terms
from documents. The model can learn how to map
its knowledge to the unique nature of identifiers.

Then, the ranking-based ID refinement phase
is used to effectively learn dynamic identifiers.
We directly incorporate query-document relevance
in learning through the elaborate design of two
loss functions. Specifically, GLEN explicitly learns
query-document relevance using pairwise ranking
loss to capture the ranking relationships and point-
wise retrieval loss to learn the relationship between
a query and a relevant document. Thus, GLEN can
generate identifiers that better encapsulate the sub-
tle semantics of the query-document relationship.

Inference of GLEN. It employs collision-free in-
ference using an identifier weight to deal with
the document identifier collision problem, i.e., the
same identifier can be assigned to multiple docu-
ments if they are semantically similar. A simple
solution is to force a different identifier for those
documents. However, it can make the identifier too
long or potentially interfere with the semantic learn-
ing of the identifier. Instead of enforcing unique-
ness during training, we leverage the document
identifier logits during inference to rank the col-
lided documents. Notably, this simple-yet-effective
solution avoids high computational costs by using
the generation logit as the weight.

In summary, our key contributions are as follows.
(i) We propose GLEN, which learns lexical identi-
fiers in a dynamic fashion. To our knowledge, it is
the first generative retrieval method using learning-
based lexical identifiers. (ii) We devise a two-phase
index learning strategy with keyword-based ID as-
signment and ranking-based ID refinement to gener-
ate identifiers reflecting query-document relevance.
(iii) We present a collision-free inference via rank-
ing using identifier weight while effectively pre-
serving identifier semantics. (iv) We evaluate the ef-
fectiveness of GLEN on three benchmark datasets:
Natural Questions (Kwiatkowski et al., 2019), MS
MARCO Passage Ranking (Nguyen et al., 2016),
and BEIR (Thakur et al., 2021).

Numeric Lexical

Static

DSI (2022),
Ultron-PQ (2022),

NCI (2022),
DSI-QG (2023)

GENRE (2021),
SEAL (2022),

CorpusBrain (2022),
Ultron-URL (2022),
NpDecoding (2023),

TOME (2023)

Dynamic GENRET (2023) GLEN (Ours)

Table 1: Category of existing generative retrieval models
based on (i) identifier types and (ii) identifier learning
strategies. GLEN introduces a dynamic lexical identifier.

2 Related Work

2.1 Document Retrieval
Document retrieval aims to seek relevant docu-
ments to the user query from a large document
corpus. Most existing methods have followed
the “index-retrieve-then-rank” pipeline. Traditional
sparse retrieval methods (Robertson and Walker,
1994; Formal et al., 2021; Choi et al., 2022) rely
on the inverted index utilizing term matching sig-
nals. On the other hand, dense retrieval meth-
ods (Karpukhin et al., 2020; Xiong et al., 2021;
Khattab and Zaharia, 2020) calculate the vector
similarity of dense representations via an approx-
imate nearest neighbor index. Although dense re-
trieval has shown a remarkable performance, the
model cannot be optimized end-to-end and has a
drawback in the cost of the external index structure.

2.2 Generative Retrieval
Apart from traditional retrieval, generative retrieval
uses only a unified model (Metzler et al., 2021)
that directly generates an identifier of a relevant
document for a given query. As shown in Table 1,
we categorize the existing methods according to
how they define and train identifiers.
Numeric identifier. Tay et al. (2022) proposed the
differentiable search index (DSI), firstly demon-
strating that document retrieval can be accom-
plished with a single model. It assigns numeric
identifiers in various ways, e.g., atomic, naive, and
semantic. Especially, semantic identifiers are ob-
tained by hierarchical k-means clustering over doc-
ument representations to capture the document
semantics. Wang et al. (2022) and Zhuang et al.
(2023) additionally introduced the prefix-aware
weight-adaptive decoder and data augmentation us-
ing query generation, respectively. To improve the
semantic deficiency of numeric identifiers, Zhou
et al. (2022) employed product quantization. Most

7694

Figure 1: Overview of training and inference for GLEN. For training, the keyword-based ID assignment phase is
performed, which learns identifiers via self-supervised signals, followed by the ranking-based ID refinement phase
to learn identifiers dynamically. For inference, GLEN generates identifiers for a query, and the documents are ranked
with the logits when the collision occurs. The number below the identifier token indicates the logit for each token.

recently, Sun et al. (2023) proposed an identifier
learning framework to overcome the limitations
of static identifiers. However, numeric identifiers
inherently suffer from the difficulties of leverag-
ing the knowledge of PLM due to a gap between
natural language and numeric values.
Lexical identifier. Bevilacqua et al. (2022) pro-
posed a method to consider n-grams in a document
as identifiers using the FM-Index structure. Zhou
et al. (2022) and Ren et al. (2023) utilized URLs as
a document identifier, while Chen et al. (2022), Lee
et al. (2023), and Cao et al. (2021) defined a title
as an identifier. They can leverage the knowledge
of PLMs to decode identifiers, enjoying the benefit
of pre-trained vocabulary space. However, external
information such as URLs and titles may not exist
depending on the datasets and may not adequately
represent the document. To overcome these limi-
tations, we define lexical identifiers by extracting
keywords from documents and dynamically refine
them by directly optimizing query-document rele-
vance.

3 Proposed Method

In this section, we formulate the generative docu-
ment retrieval task (Section 3.1) and present GLEN
(Section 3.2), as depicted in Figure 1. To tackle the
challenges of identifier design and training strategy,
GLEN adopts a two-phase lexical index learning
(Section 3.3). For inference, we devise a collision-
free inference using identifier logits (Section 3.4).
While maintaining its simplicity, GLEN handles
identifier collisions where semantically similar doc-
uments share the same lexical identifier.

3.1 Task Formulation
Generative retrieval aims to autoregressively gen-
erate the identifier of the relevant document for
a given query. Specifically, it involves computing
the probability P (z|q) of generating a document
identifier z for the query q.

P (z|q) =
n∏

t=1

P (zt|q, z<t), (1)

where n is the number of tokens in the identifier.
To address the key challenges of generative re-

trieval: (i) how to define identifiers and (ii) how
to train query-document relevance, we propose a
dynamic lexical identifier by defining it using key-
words and refining it through relevance.

3.2 Model Architecture
We propose a novel generative retrieval method,
Generative retrieval via LExical iNdex learning
(GLEN). Specifically, it consists of two compo-
nents: (i) An indexing model takes a document d as
input to generate a document identifier z, and (ii) a
retrieval model takes a query q as input to generate
the identifier of a relevant document.

We describe the process of deriving identifier z
from document d using the indexing model, and the
retrieval model can proceed in the same way. Both
models are initialized with the pre-trained language
model with the Transformer architecture (Vaswani
et al., 2017) and share parameters. For the index-
ing model, a document representation is defined as
follows.

dt = Dec(Enc(d),d<t),

zt = argmax
j∈{1,...,|V |}

(dt · ej), (2)

7695

where dt ∈ Rm is the final hidden representation
of the decoder at time t. An embedding vector
ej ∈ Rm is the j-th vector of the word embedding
matrix E ∈ R|V |×m where m is the dimension of
embedding vectors, and |V | is the dimension of
vocabulary space. Let Enc(·) and Dec(·) represent
the transformer encoder and decoder, respectively.
For GLEN, we define the probability of generating
an identifier z from a document d as follows.

P (z|d) =
n∏

t=1

P (zt|d,d<t),

P (zt = j|d,d<t) = Softmaxj(dt ·E⊤),

(3)

where P (zt = j|d,d<t) denotes the probability
that zt is the j-th token in the vocabulary space,
and Softmaxj(·) is the j-th element of the softmax
function output. For the original transformer de-
coder, the output of each step, i.e., z<t, is fed for
the next step. Here, we use the final hidden rep-
resentations d<t for the decoder input instead of
z<t. This method ensures that the decoder input
does not fluctuate even if the document identifier
fluctuates during training, allowing for stable train-
ing. (Empirically, we observed about 14.4% gain
in Recall@1. See Section 5.2 for details.)

3.3 Two-phase Lexical Index Learning

To effectively train the lexical identifier, we intro-
duce a two-phase training strategy: keyword-based
ID assignment to learn the semantics of the corpus
and the characteristics of identifiers and ranking-
based ID refinement to adjust appropriate identi-
fiers that encapsulate relevance signals.

3.3.1 Keyword-based ID Assignment

A document identifier should be concise yet infor-
mative, unlike a typical natural language sentence.
Due to its unique nature, it is challenging to learn
from scratch to assign appropriate identifiers to
documents. We bridge the generation task gap be-
tween the pre-trained language model task and the
identifier generation task by training the model to
generate representative keywords. Specifically, we
choose top-n tokens with the highest tf-idf scores
using BM25 (Robertson and Walker, 1994) as the
keyword identifier zkey for the document. This en-
sures that the model can construct the semantics
of the document from self-supervised signals ex-
tracted from the corpus and naturally learns the
nature of identifiers. The model learns it using

sequence-to-sequence cross-entropy loss.

Lkey = −
n∑

t=1

logP (z
key
t |d,d<t), (4)

where zkey
t is a token at t-th step of zkey. In addition,

we also utilize a query as an input and train to infer
keywords of its relevant documents.

3.3.2 Ranking-based ID Refinement
It is crucial to incorporate query-document rele-
vance and learn how to generate identifiers of rel-
evant documents from queries in training. To this
end, we design two losses: (i) pairwise ranking
loss for learning ranking and (ii) pointwise retrieval
loss for learning the query-identifier relationship.
Consequently, GLEN can dynamically learn how
to generate lexical identifiers from the relevance
signal.

Pairwise ranking loss. First, we introduce pair-
wise ranking loss, incorporating query-document
relevance into identifier learning. It helps the model
to represent queries as close to relevant documents
d+ and far from irrelevant documents d− ∈ N ,
where N is a set of negative documents obtained
via prefix-aware dynamic negative sampling, which
will be described later. The pairwise ranking loss
is defined as follows.

Lpair = − log
exp(rel(q, d+))

exp(rel(q, d+)) +
∑

d−∈N
exp(rel(q, d−))

.

(5)

For pairwise ranking loss, we define the relevance
score of a query q and a document d as described.

rel(q, d) =
n∑

t=1

qt · r⊤t ,

rt = Softmax(dt ·E⊤/τ) ·E,

(6)

where qt ∈ Rm is the final hidden representation
of the decoder for a query at time t. Note that
rt is used as a document representation, not dt.
In the inference phase, the query should generate
the identifier. In this regard, we exploit the identi-
fier representation rt for representing documents,
thus mitigating the gap between training and in-
ference. In addition, since argmax(·) to calculate
zt in Eq. (2) is non-differentiable, we get rt with
Softmax(·) and temperature τ .

If τ is low enough, it yields a similar effect to
argmax(·). However, when the model is not suffi-
ciently trained, rt may become collapsed regardless

7696

of the document. As such, we adopt an annealed
temperature, i.e., τ = max(10−5, exp(−t)) where
t denotes the training epochs. (See Section 5.2 for
the effectiveness of annealing).

Pointwise retrieval loss. To ensure the model can
capture the relationship between the query and the
relevant document identifier, we design a pointwise
retrieval loss as follows:

Lpoint =−
n∑

t=1

logP (z+t |q,q<t)

+ λdist · dist(wq, wd+),

wq
t = qt · e⊤zt for t ∈ {1, . . . , n},

(7)

where z+ indicates the identifier predicted from
the positive document d+, and z+t is a t-th token
of z+. ezt ∈ Rm is the word embedding vector
of zt. The first loss term is a cross-entropy loss
that maps a query q to the identifier z+ of relevant
documents. It alleviates the gap between training
and inference in that mapping from queries to iden-
tifiers is performed in the inference. The second
loss term utilizes the identifier logits wq, wd+ and
allows the model to learn the relative importance
of the identifier tokens, e.g., “Olympic” is more
important than “list” in the example of Figure 1.
Here, λdist is the hyperparameter to adjust the im-
portance between the pointwise loss terms. For
distance function dist(·), we adopt cosine distance.

The final loss is the sum of the pairwise ranking
loss and the pointwise retrieval loss:

L = Lpair + λpoint · Lpoint, (8)

where λpoint is the hyperparameter to control the im-
portance of the pointwise retrieval loss. It enables
end-to-end optimization of the retrieval task.

Prefix-aware dynamic negative sampling. To im-
prove top-ranking retrieval performance robustly,
we devise prefix-aware dynamic negative sampling
for the pairwise ranking loss (Eq. (5)). As pointed
out in Zhan et al. (2021), dynamic hard negatives,
which are sampled during training based on re-
trieval results of the model itself, can effectively
improve the ranking performance. To reflect the
nature of the autoregressive model, we obtain a
set of negative documents N based on the identi-
fier prefix. Concretely, we determine the candidate
negatives for each document in the following man-
ner. Given an identifier length of n, we first take
the documents that have the same identifier as the

target document, i.e., we fetch documents with the
same prefix for the first n tokens. If the resulting set
of documents does not reach the desired count of
Nneg, we opt for documents with the same prefix
at the first n − 1 tokens. We repeat it by reduc-
ing the length of the prefix until the set reaches
Nneg documents. Our approach iteratively samples
documents based on the prefix. However, the cost
was negligible in our experiments, and we found it
effective for ranking, as shown in Section 5.2.

3.4 Collision-free Inference
The inference process of GLEN is straightforward:
(i) we proceed over the documents for assigning
identifiers to the document offline, and (ii) infer the
identifiers of relevant documents from the query
online. We finally assign a dynamically learned
identifier to each document predicted by the model.
We also employ constrained decoding to generate
only the valid identifiers, and a ranked list of docu-
ments is obtained by beam search.

If an identifier is assigned to documents by learn-
ing, the documents with similar semantics may be
mapped to the same identifier, i.e., identifier colli-
sion. It incurs that documents with conflicting iden-
tifiers cannot be ranked. Existing studies (Wang
et al., 2022; Tay et al., 2022) have appended addi-
tional digits (e.g., X-X-0, X-X-1) to address this
problem, but such manually defined identifiers may
distort the subtle semantics of the identifier. On
the other hand, we do not force the identifier to be
unique for semantic learning of identifiers.

We introduce a novel solution, collision ranking
using identifier logit, to resolve the collision issue
at inference time. Specifically, we utilize a logit of
each step in generating a lexical identifier z from
query q (or document d). The relevance between
a query and a document using identifier logits is
defined as follows.

relID(q, d) = cos(wq, wd). (9)

For each query, we first rank the document identi-
fiers via P (z|q) = ∏n

t=1(qt · e⊤zt/(
∑

i qt · e⊤i). If
multiple documents share a single identifier, they
are ranked using relID(q, d). In this way, the colli-
sion problem can be avoided without unnecessary
intervention in the semantic learning of identifiers.
In particular, it has the advantage that there is only
a negligible additional cost for ranking since the
weights of the document identifiers wq, wd are al-
ready used to compute P (z|d), P (z|q).

7697

4 Experimental Setup

4.1 Datasets
Natural Questions (NQ320k) (Kwiatkowski et al.,
2019) consists of 320k query-document relevant
pairs, 100k documents, and 7,830 test queries,
which has been actively used in existing gener-
ative retrieval methods (Tay et al., 2022; Wang
et al., 2022). We also follow the setup in Sun
et al. (2023), splitting the test set into two sub-
sets: seen test and unseen test. seen test consists
of queries where the annotated target documents
are included in the train set, while unseen test con-
sists of queries where no labeled documents are
included in the train set. MS MARCO passage
ranking (MS MARCO) (Nguyen et al., 2016) is
a large-scale benchmark dataset with 8.8M pas-
sages collected from Bing’s results and 1M real-
world queries. We use the official development
set consisting of 6,980 queries with a full corpus,
i.e., 8.8M passages, following Ren et al. (2023).
BEIR (Thakur et al., 2021) is a benchmark dataset
for zero-shot evaluation on diverse text retrieval
tasks. Following Sun et al. (2023), we assess on
Arguana (Arg) (Wachsmuth et al., 2018) and NF-
Corpus (NFC) (Boteva et al., 2016). For train data,
we follow published train data constructed by Wang
et al. (2022) for NQ320k for a fair comparison. For
MS MARCO, we use the MS MARCO training
set, which consists of 500k queries and randomly
split 1,000 queries for validation. For the generated
query of the MS MARCO, we used the published
predicted queries 1.

4.2 Metrics
We report Recall and MRR for NQ320k following
existing works (Sun et al., 2023). MRR@10 and
nDCG@10 is the official metric of MS MARCO
Passage Ranking and BEIR, respectively.

4.3 Baselines
We compare GLEN with three types of base-
line models, including two sparse retrieval mod-
els (BM25 (Robertson and Walker, 1994) and
DocT5Query (Nogueira and Lin, 2020)), four
dense retrieval models (DPR (Karpukhin et al.,
2020), ANCE (Xiong et al., 2021), Sentence-T5 (Ni
et al., 2022a), and GTR (Ni et al., 2022b)), and
six generative retrieval models. For generative re-
trieval methods, we categorize them following the

1https://github.com/castorini/docTTTTTquery

Table 1. (i) Static numeric identifier. DSI (Tay
et al., 2022) uses a sequence-to-sequence model
to generate numeric identifiers built by hierarchi-
cal k-means clustering. DSI-QG (Zhuang et al.,
2023) and NCI (Wang et al., 2022) are built upon
DSI while adopting augmented data via query
generation and prefix-aware weight-adaptive de-
coder, respectively. (ii) Static lexical identifier.
GENRE (Cao et al., 2021) utilizes a title as an iden-
tifier. SEAL (Bevilacqua et al., 2022) generates
arbitrary n-grams to retrieve relevant documents,
utilizing the FM-Index structure. TOME (Ren et al.,
2023) performs retrieval by generating the docu-
ment URLs via a two-stage generation architecture.
(iii) Dynamic numeric identifier. GENRET (Sun
et al., 2023) learns how to assign numeric iden-
tifiers based on a discrete auto-encoding scheme.
(iv) Dynamic lexical identifier. To our knowledge,
GLEN is the first work to employ the dynamic
lexical identifier. For details of sparse and dense
retrieval models, see Section A.1.

4.4 Implementation Details

We initialized GLEN with T5-base (Raffel et al.,
2020). The batch size is set to 128, and the model
is optimized for up to 3M steps and 30K steps
using the Adam optimizer with learning rates 2e-
4 and 5e-5 for keyword-based ID assignment and
ranking-based ID refinement, respectively. We use
beam search with constrained decoding and a beam
size of 100 for inference. For two-phase lexical
index learning, we set the length of document id
n = 3, n = 7 after tuning among {2, 3, 5, 7,
10} for NQ320k and MARCO, respectively. λpoint
and λdist are set to 0.5 and 0.5 after tuning in {0,
0.25, 0.5, 1, 2, 4}, respectively. For τ , we set it
to 1e-5 with temperature annealing. We set the
number of negative documents per query Nneg to 8
after tuning in {0, 1, 2, 4, 8} and adopted in-batch
negatives, where all passages for other queries in
the same batch are considered negative. Further
details for model architecture and training hyper-
parameters can be found in Section A.1.

5 Experimental Results

5.1 Main Results

Evaluation on NQ320k. Table 2 presents the re-
trieval performance on the NQ320k. The key obser-
vations are as follows: (i) GLEN shows outperform-
ing performance among sparse and dense baselines
and competitive performance with generative re-

7698

https://github.com/castorini/docTTTTTquery

Model NQ320k (7,830) Seen test (6,075) Unseen test (1,755)
R@1 R@10 MRR@100 R@1 R@10 MRR@100 R@1 R@10 MRR@100

Sparse & dense retrieval

BM25 (1994) 29.7 60.3 40.2 29.1 59.8 39.5 32.3 61.9 42.7
DocT5Query (2020) 38.0 69.3 48.9 35.1 68.3 46.7 48.5 72.9 57.0

DPR (2020) 50.2 77.7 59.9 50.2 78.7 60.2 50.0 74.2 58.8
ANCE (2021) 50.2 78.5 60.2 49.7 79.2 60.1 52.0 75.9 60.5

SentenceT5 (2022a) 53.6 83.0 64.1 53.4 83.9 63.8 56.5 79.5 64.9
GTR-base (2022b) 56.0 84.4 66.2 54.4 84.7 65.3 61.9 83.2 69.6

Generative retrieval

GENRE (2021) 55.2 67.3 59.9 69.5 83.7 75.0 6.0 10.4 7.8
DSI (2022) 55.2 67.4 59.6 69.7 83.6 74.7 1.3 7.2 3.5

SEAL (2022) 59.9 81.2 67.7 - - - - - -
DSI-QG (2023) 63.1 80.7 69.5 68.0 85.0 74.3 45.9 65.8 52.8

NCI (2022) 66.4 85.7 73.6 69.8 88.5 76.8 54.5 75.9 62.4
GENRET (2023) 68.1 88.8 75.9 70.2 90.3 77.7 62.5 83.6 70.4

TOME (2023) 66.6 - - - - - - - -

GLEN (Ours) 69.1 86.0 75.4 72.5 88.9 78.5 57.6 75.9 63.9

Table 2: Performance comparison for the proposed method and baseline models for NQ320k. The best generative
retrieval model is marked bold, and the second best model is underlined. The number in parentheses indicates the
number of queries. We refer to the results of baselines reported by Sun et al. (2023) and Ren et al. (2023). Results
not available are denoted as ‘–’.

Model MS MARCO Dev (6,980)
MRR@10

Sparse & dense retrieval

BM25 (1994) 18.4
DocT5Query (2020) 27.2
GTR-base (2022b) 34.8

Generative retrieval

DSI (2022) 3.1
DSI-QG (2023) 11.8

NCI (2022) 17.4

GLEN (Ours) 20.1

Table 3: Performance comparison for the proposed
method and baseline models for MS MARCO passage
dev. The best generative retrieval model is marked bold,
and the second best model is underlined. We refer to the
results of baselines reported by Pradeep et al. (2023).

trieval methods. Specifically, GLEN outperforms
the best competitive generative retrieval model by
+1.5% and +3.3% on Recall@1 in the NQ320k
full and seen test set, respectively. (ii) While GLEN
performs second best among generative models on
unseen tests, it surpasses other models in seen tests,
indicating that the ranking-based ID refinement
effectively optimizes the identifiers. (iii) The gen-
erative retrieval methods with dynamic identifiers
exhibit higher performance than those with static
identifiers. It confirms their ability to capture the
intricate semantics of documents and queries via
end-to-end optimization.

Model BEIR (nDCG@10)
Average Arg NFC

Sparse retrieval

BM25 (1994) 32.0 31.5 32.5
DocT5Query (2020) 33.9 34.9 32.8

Generative retrieval

DSI (2022) 6.5 1.8 11.1
NCI (2022) 2.6 0.9 4.3

GENRET (2023) 12.1 12.1 12.1

GLEN (Ours) 16.8 17.6 15.9

Table 4: Zero-shot performance for the proposed method
and baseline models for the BEIR dataset. The best gen-
erative retrieval model is marked bold, and the second
best model is underlined. Average means the average
accuracy over two datasets. We refer to the results of
baselines reported by Sun et al. (2023).

Evaluation on MS MARCO. Table 3 shows the
retrieval performance on the MS MARCO Passage
Ranking set. GLEN yields a clear improvement
over the best competitive generative retrieval meth-
ods and BM25 (Robertson and Walker, 1994) by
15.6% and 9.3% in MRR@10, respectively. Exist-
ing generative retrieval methods still struggle to
memorize the knowledge of the corpus and thus
often fail to work in large-scale corpora (Pradeep
et al., 2023). In contrast, GLEN successfully works
on large-scale corpora owing to learning identifiers
via directly learning the relevance of queries and
documents.

7699

Dataset
(Metric)

Query subset
(# queries)

Collision
ranking

Random
ranking

NQ320k All (7,830) 69.1 68.6
(R@1) Collision (441) 41.5 31.9

MARCO All (6,980) 20.1 18.7
(MRR@10) Collision (2,170) 17.5 12.9

Table 5: Performance comparison of GLEN with differ-
ent solutions for collision in inference. Random ranking
denotes a randomly ranked result for colliding docu-
ments. We report an average of 10k runs.

1000 2000 3000 4000
Training steps

67

67.5

68

68.5

69

R
@

1

1000 2000 3000 4000
Training steps

73.5

74

74.5

75

75.5

M
R

R
@

10
0

(a) Recall@1 (b) MRR@100

Figure 2: Performance comparison of GLEN depending
on the negative sampling strategy by training step for
ranking-based ID refinement phase on NQ320k.

Zero-shot evaluation on BEIR. We thoroughly
investigate the generalization capability of GLEN
via the zero-shot performance on the BEIR (Thakur
et al., 2021) dataset after training on NQ320k, re-
ported in Table 4. GLEN shows the best average
accuracy in generative retrieval methods, surpass-
ing the best competitive generative model by 38.8%
on average. We also observe that the dynamic iden-
tifiers (i.e., GLEN and GENRET) consistently out-
perform static identifiers, showing that they are
more effective at capturing the complex semantics
of documents and can be generalized in a zero-shot
setting.

For dynamic identifiers, GLEN outperforms
GENRET in a zero-shot evaluation. The difference
in performance stems from two primary distinc-
tions: (i) identifier types and (ii) solutions to iden-
tifier collisions. GLEN can assign a generalized
identifier to a new document by leveraging knowl-
edge from the PLM, while GENRET may have dif-
ficulty allocating numeric identifiers to new docu-
ments. Besides, the same identifier can be assigned
to semantically similar documents, especially if
the documents are out-of-domain. It often happens
since models are not trained to differentiate be-
tween them. To rank these same identifier docu-
ments, GLEN introduces collision-free inference
to break the tie, while GENRET cannot distinguish
between them and places them randomly.

Model NQ320k (7,830)
R@1 R@10 MRR@100

GLEN 69.1 86.0 75.4

w/o keyword 48.0 77.2 58.3
w/o annealing 67.6 85.2 74.2

decoder input z<t 60.4 83.7 69.1

w/o pairwise loss 67.3 84.7 73.8
w/o pointwise loss 68.3 85.8 74.8
random negatives 68.3 85.5 74.7

Table 6: Ablation study of GLEN. Note that keyword
means keyword-based ID assignment, and annealing
means temperature annealing for τ in Eq. (6).

5.2 In-depth Analysis

Effect of collision-free inference. As shown in
Table 5, we validate the effectiveness of the colli-
sion ranking by comparing it with random ranking,
which randomizes the ranking of colliding doc-
uments. For a thorough comparison, we further
constructed a subset (i.e., collision) by collecting
queries where at least one labeled document is col-
liding documents. For NQ320k and MS MARCO
datasets, we found that collision ranking improves
performance by 30.2% and 35.5%, respectively,
over random ranking for the collision query subset.
MS MARCO dataset has a higher ratio of collision
queries due to its larger corpora than NQ320k (e.g.,
8.8M vs. 109K). It verifies that colliding documents
are effectively ranked without additional cost using
identifier weight, while the semantics of identifiers
are well preserved.

Effect of prefix-aware dynamic negative. Figure
2 depicts the effect of prefix-aware dynamic neg-
ative sampling along the training step. The prefix-
aware dynamic negative exhibits the most effec-
tive performance for robust ranking, showing 1.0%
and 1.2% gains in R@1 over the random negative
and BM25 negative sampling, respectively. Further-
more, prefix-aware negatives delivered a 1.2% per-
formance improvement in R@1, compared to not
using hard negatives. It highlights that the nature
of an autoregressive model is effectively reflected
via the prefix, and dynamically sampled negatives
are conducive to learning.

Ablation study. Table 6 presents the effective-
ness of various strategies in GLEN on NQ320k.
(i) The proposed keyword-based ID assignment
phase remarkably improves accuracy by 44.0% in
R@1. Notably, it successfully allows the model
to learn the unique nature of identifiers based on
self-supervised signals, thus enabling it to leverage

7700

Query how would you represent g0 in the cell cycle of a neuron

Relevance Original title GLEN ID NCI ID Keyword ID

✓ G0 phase (#1) phase-phase-cell (#14) 22-17-10-4 phase-cells-nutri
✗ G2 phase (#2) phase-phase-cell (#2) 21-28-3-0 phase-phase-cell
✗ Cell cycle checkpoint (#3) point-check-cell (#9) 1-27-21-1 point-check-cell
✗ Neuron (#57) neurons-nervous-neuro (#1) 1-27-2-1 neurons-nervous-neuro
✗ Neurotransmission (#62) neuro-trans-apt (#3) 1-27-2-2 neuro-trans-apt

Table 7: A retrieval example of GLEN and NCI on NQ320k. The number in parentheses denotes the rank of a
document for each model. Keyword ID is the extracted identifier used at the keyword-based ID assignment phase of
GLEN. Note that the tokenization process for GLEN ID and Keyword ID is simplified.

the knowledge of PLM. (ii) The temperature an-
nealing for an identifier representation (in Eq. 6)
contributes to stable training, yielding a 2.2% gain
in R@1. (iii) Replacing decoder input d<t to z<t,
the accuracy drops by 12.6%, suggesting that d<t

for decoder input enhances stable training. (iv) The
proposed pairwise ranking loss and the pointwise
retrieval loss contribute to the accuracy compared
to adopting a single loss by up to 2.6% in R@1.

Case study. Table 7 exhibits a case study focusing
on an identifier to elucidate how generative retrieval
is performed. We take one query from NQ320k and
show the retrieval results from GLEN and NCI. Our
observations are as follows: (i) GLEN can assign
the same identifier to documents with similar se-
mantics (e.g., “G0 phase” and “G2 phase”), but it
effectively ranks them via collision-free inference.
It indicates that GLEN successfully learns the sub-
tle semantics of document-identifier relationships.
(ii) GLEN refines identifiers through the refinement
phase, changing from a keyword ID “phase-cells-
nutri” to GLEN ID “phase-phase-cell”. (iii) Static
numeric identifiers in NCI fail to reflect the seman-
tics of the documents. Although some documents
are semantically similar (e.g., “G0 phase” and “G2
phase”), they have completely different identifiers.

6 Conclusion

In this paper, we proposed a novel lexical index
learning method, namely Generative retrieval via
LExical iNdex learning (GLEN). To effectively
tackle the critical challenges of generative retrieval,
we adopt a dynamic lexical identifier learning
framework that can mitigate (i) the discrepancy
between the knowledge of pre-trained language
models and identifiers and (ii) the discrepancy be-
tween training and inference. GLEN successfully
enjoys the benefits of a dynamic lexical document
identifier via a delicately devised two-phase index
learning scheme and collision-free inference. To

our knowledge, it is the first work introducing a dy-
namic lexical identifier for generative retrieval. Ex-
perimental results demonstrate that GLEN achieves
state-of-the-art or competitive performance among
generative retrieval methods.

Limitations

This work proposes a new generative retrieval ap-
proach, GLEN, that dynamically learns lexical
identifiers. Though we verified the performance
of GLEN on a large corpus, it still exhibits a
performance gap with longstanding conventional
retrieval methods (e.g., ColBERTv2 (Santhanam
et al., 2022), LexMAE (Shen et al., 2023)), which
still hold state-of-the-art performance. This implies
that generative retrieval still faces limitations in
learning large-scale corpus. It may require using
large models or designing new training schemes,
leaving many research problems to be explored. In
addition, we experimentally verified the proposed
model in a zero-shot setting. We showed that it
outperforms the generative retrieval method but
still performs less than sparse retrieval. It suggests
that generative retrieval still suffers from limited
generalization compared to well-designed dense or
sparse retrieval models.

Ethics Statement

This work complies with the ethics of ACL. The sci-
entific artifacts we used are available for research
with permissive licenses. The use of the artifacts in
this paper adheres to their intended use.

Acknowledgments

This work was supported by Institute of Informa-
tion & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. 2019-0-00421, No. 2022-0-
00680, and RS-2023-00219919).

7701

References
Michele Bevilacqua, Giuseppe Ottaviano, Patrick S. H.

Lewis, Scott Yih, Sebastian Riedel, and Fabio Petroni.
2022. Autoregressive search engines: Generating
substrings as document identifiers. In NeurIPS.

Vera Boteva, Demian Gholipour Ghalandari, Artem
Sokolov, and Stefan Riezler. 2016. A full-text learn-
ing to rank dataset for medical information retrieval.
In ECIR, pages 716–722.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
In ICLR.

Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu,
Yixing Fan, and Xueqi Cheng. 2022. Corpusbrain:
Pre-train a generative retrieval model for knowledge-
intensive language tasks. In CIKM, pages 191–200.

Eunseong Choi, Sunkyung Lee, Minjin Choi, Hyeseon
Ko, Young-In Song, and Jongwuk Lee. 2022. Spade:
Improving sparse representations using a dual doc-
ument encoder for first-stage retrieval. In CIKM,
pages 272–282.

Thibault Formal, Benjamin Piwowarski, and Stéphane
Clinchant. 2021. SPLADE: sparse lexical and expan-
sion model for first stage ranking. In SIGIR, pages
2288–2292.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2023. Tevatron: An efficient and flexible toolkit for
neural retrieval. In SIGIR, pages 3120–3124.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan.
2021. Scaling deep contrastive learning batch size
under memory limited setup. In RepL4NLP@ACL-
IJCNLP, pages 316–321.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In EMNLP, pages
6769–6781.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over BERT. In SIGIR, pages 39–48.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452–
466.

Hyunji Lee, JaeYoung Kim, Hoyeon Chang, Hanseok
Oh, Sohee Yang, Vladimir Karpukhin, Yi Lu, and
Minjoon Seo. 2023. Nonparametric decoding for
generative retrieval. In Findings of the ACL, pages
12642–12661.

Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork.
2021. Rethinking search: making domain experts out
of dilettantes. SIGIR Forum, 55(1):13:1–13:27.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In NeurIPS.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant,
Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei Yang.
2022a. Sentence-t5: Scalable sentence encoders from
pre-trained text-to-text models. In Findings of the
ACL, pages 1864–1874.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei
Yang. 2022b. Large dual encoders are generalizable
retrievers. In EMNLP, pages 9844–9855.

Rodrigo Nogueira and Jimmy Lin. 2020. From
doc2query to doctttttquery. Online preprint.

Ronak Pradeep, Kai Hui, Jai Gupta, Ádám Dániel
Lelkes, Honglei Zhuang, Jimmy Lin, Donald Met-
zler, and Vinh Q. Tran. 2023. How does generative
retrieval scale to millions of passages? CoRR.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-
Rong Wen, and Haifeng Wang. 2023. TOME: A
two-stage approach for model-based retrieval. In
ACL, pages 6102–6114.

Stephen E. Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SIGIR,
pages 232–241.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2022.
Colbertv2: Effective and efficient retrieval via
lightweight late interaction. In NAACL, pages 3715–
3734.

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Xiao-
long Huang, Binxing Jiao, Linjun Yang, and Daxin
Jiang. 2023. Lexmae: Lexicon-bottlenecked pretrain-
ing for large-scale retrieval. In ICLR.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang
Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen,
Dawei Yin, Maarten de Rijke, and Zhaochun Ren.
2023. Learning to tokenize for generative retrieval.
CoRR.

Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara
Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao,
Jai Prakash Gupta, Tal Schuster, William W. Cohen,
and Donald Metzler. 2022. Transformer memory as
a differentiable search index. In NeurIPS.

7702

http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/cd88d62a2063fdaf7ce6f9068fb15dcd-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-30671-1_58
https://doi.org/10.1007/978-3-319-30671-1_58
https://openreview.net/forum?id=5k8F6UU39V
https://doi.org/10.1145/3511808.3557271
https://doi.org/10.1145/3511808.3557271
https://doi.org/10.1145/3511808.3557271
https://doi.org/10.1145/3511808.3557456
https://doi.org/10.1145/3511808.3557456
https://doi.org/10.1145/3511808.3557456
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.1145/3539618.3591805
https://doi.org/10.18653/v1/2021.repl4nlp-1.31
https://doi.org/10.18653/v1/2021.repl4nlp-1.31
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.18653/v1/2023.findings-acl.801
https://doi.org/10.1145/3476415.3476428
https://doi.org/10.1145/3476415.3476428
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://doi.org/10.18653/v1/2022.findings-acl.146
https://doi.org/10.18653/v1/2022.findings-acl.146
https://aclanthology.org/2022.emnlp-main.669
https://aclanthology.org/2022.emnlp-main.669
https://doi.org/10.48550/arXiv.2305.11841
https://doi.org/10.48550/arXiv.2305.11841
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2023.acl-long.336
https://doi.org/10.18653/v1/2023.acl-long.336
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://openreview.net/forum?id=SHD0Dc1M5r
https://openreview.net/forum?id=SHD0Dc1M5r
https://doi.org/10.48550/arXiv.2304.04171
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In NeurIPS Datasets
and Benchmarks.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998–6008.

Henning Wachsmuth, Shahbaz Syed, and Benno Stein.
2018. Retrieval of the best counterargument without
prior topic knowledge. In ACL, pages 241–251.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming
Miao, Shibin Wu, Qi Chen, Yuqing Xia, Chengmin
Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A
neural corpus indexer for document retrieval. In
NeurIPS.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In ICLR.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense re-
trieval model training with hard negatives. In SIGIR,
pages 1503–1512.

Yujia Zhou, Jing Yao, Zhicheng Dou, Ledell Wu, Peitian
Zhang, and Ji-Rong Wen. 2022. Ultron: An ulti-
mate retriever on corpus with a model-based indexer.
CoRR.

Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei,
Ming Gong, Guido Zuccon, and Daxin Jiang. 2023.
Bridging the gap between indexing and retrieval for
differentiable search index with query generation. In
Gen-IR@SIGIR.

A Appendix

A.1 Additional Experimental Setup

A.1.1 Datasets
Natural Questions (NQ320k) (Kwiatkowski et al.,
2019) is curated from Natural Questions. The
dataset consists of a Wikipedia article and a query
in the form of a natural language question. MS
MARCO passage ranking (Nguyen et al., 2016) is
a dataset released by Microsoft in 2016 for reading
comprehension and adapted in 2018 for retrieval.
For validation of MS MARCO, we randomly split
1,000 queries and use a corpus consisting of ran-
domly sampled 100 passages from BM25 (Robert-
son and Walker, 1994) top 1000 passages for each
query, i.e., |D| ≈ 100,000. BEIR (Thakur et al.,

2021) is an evaluation benchmark dataset of 18 pub-
licly available datasets from diverse text retrieval
tasks and domains, which is widely used for eval-
uating the generalization capabilities of models.
The task of Arguana and NFCorpus is argument
retrieval and bio-medical information retrieval, re-
spectively.

A.1.2 Metrics
To measure the effectiveness, we use widely ac-
cepted metrics for information retrieval, including
recall, mean reciprocal rank (MRR), and normal-
ized discounted cumulative gain (nDCG), mean
average precision (MAP) with retrieval size K.

Recall is defined as
∑N

i=1 reli
k , where i is the po-

sition in the list, k is the number of relevant doc-
uments and reli ∈ {0, 1} indicates whether the
i-th document is relevant to the query or not. MRR
is defined as 1

|Q|
∑|Q|

i=1
1

ranki
, where ranki refers

to the rank position of the first relevant document
for the i-th query. nDCG considers the order of re-
trieved documents in the list. DCG@K is defined as∑K

i=1
2reli−1
log2(i+1) where reli is the graded relevance

of the result at position i. nDCG is the ratio of DCG
to the maximum possible DCG for the query, which
occurs when the retrieved documents are presented
in decreasing order of relevance.

A.1.3 Model architecture
GLEN is based on the transformer-based encoder-
decoder architecture. The number of transformer
layers is 12, the hidden size is 768, the feed-forward
layer size is 3072, and the number of self-attention
heads is 12 for the encoder and decoder. We imple-
mented GLEN using PyTorch based on the Teva-
tron library 2 (Gao et al., 2023) and adopted the
gradient cache (Gao et al., 2021) to accommodate
large batch size with limited hardware memory.

A.1.4 Baselines
BM25 (Robertson and Walker, 1994) is the tradi-
tional sparse retrieval model using lexical match-
ing. DocT5Query (Nogueira and Lin, 2020) ex-
tends the document terms by generating relevant
queries from the documents using T5 (Raffel et al.,
2020). DPR (Karpukhin et al., 2020) is a bi-encoder
model trained with in-batch negatives, which re-
trieves the documents via a nearest neighbor search.
ANCE (Xiong et al., 2021)is a bi-encoder model
trained with asynchronously selected hard training
negatives. Sentence-T5 (Ni et al., 2022a) is similar

2http://tevatron.ai/

7703

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/65b9eea6e1cc6bb9f0cd2a47751a186f-Abstract-round2.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://aclanthology.org/P18-1023/
https://aclanthology.org/P18-1023/
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.48550/arXiv.2208.09257
https://doi.org/10.48550/arXiv.2208.09257
https://doi.org/10.48550/arXiv.2206.10128
https://doi.org/10.48550/arXiv.2206.10128
http://tevatron.ai/

Datasets NQ320k MS MARCO

Metrics R@1 R@10 MRR@100 MRR@10

w/o refinement 66.9 84.9 73.6 6.5
w/ refinement 69.1 86.0 75.4 20.1

Table 8: Ablation study of GLEN on the ranking-based
ID refinement phase.

to DPR but utilizes T5 (Raffel et al., 2020) as a
backbone. GTR (Ni et al., 2022b) is a scaled-up
bi-encoder model with a fixed-size bottleneck layer
based on Sentence-T5, which is a state-of-the-art
dense retrieval model. For BM25, we followed the
official guide3 for reproducing. For NQ320k and
BEIR, we refer to the results reported by Sun et al.
(2023) and Ren et al. (2023). For MS MARCO, we
refer to the results from Pradeep et al. (2023). The
results of NCI are obtained based on the publicly
released checkpoint by Wang et al. (2022).

A.1.5 Reproducibility
The weight decay is 1e-4. We set the max sequence
length for a query to 32, the max sequence length
for a document to 156, and the dropout rate to 0.1.
We conducted all experiments on a desktop with 4
NVidia RTX V100, 512 GB memory, and a single
Intel Xeon Gold 6226.

A.2 Effect of Ranking-based ID Refinement
Table 8 reports the effect of the ranking-based ID
refinement phase of GLEN on NQ320k and MS
MARCO. We observed that the refinement phase
led to a performance gain of 3.3% for NQ320K and
209.4% for MS MARCO, respectively. This un-
derscores the significance of the refinement phase,
which trains on both pairwise ranking loss and
pointwise retrieval loss as a key component in dy-
namic identifier learning. Also, it is shown that the
ranking-based ID refinement phase is effective, es-
pecially for the large-corpus set (i.e., MS MARCO).
This is due to the fact that learning the mapping
relations between documents and predefined iden-
tifiers becomes more challenging as the number of
documents increases.

3http://pyserini.io/

7704

http://pyserini.io/

