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Abstract

Dialogue state tracking (DST) plays an im-
portant role in task-oriented dialogue systems.
However, collecting a large amount of turn-
by-turn annotated dialogue data is costly and
inefficient. In this paper, we propose a novel
turn-level active learning framework for DST
to actively select turns in dialogues to annotate.
Given the limited labelling budget, experimen-
tal results demonstrate the effectiveness of se-
lective annotation of dialogue turns. Addition-
ally, our approach can effectively achieve com-
parable DST performance to traditional train-
ing approaches with significantly less annotated
data, which provides a more efficient way to
annotate new dialogue data1.

1 Introduction

Dialogue state tracking (DST) constitutes an es-
sential component of task-oriented dialogue sys-
tems. The task of DST is to extract and keep track
of the user’s intentions and goals as the dialogue
progresses (Williams et al., 2013). Given the dia-
logue context, DST needs to predict all (domain-
slot, value) at each turn. Since the subsequent
system action and response rely on the predicted
values of specified domain-slots, an accurate pre-
diction of the dialogue state is vital.

Despite the importance of DST, collecting anno-
tated dialogue data for training is expensive and
time-consuming, and how to efficiently annotate di-
alogue is still challenging. It typically requires hu-
man workers to manually annotate dialogue states
(Budzianowski et al., 2018) or uses a Machines
Talking To Machines (M2M) framework to simu-
late user and system conversations (Shah et al.,
2018). Either way, every turn in the conversa-
tion needs to be annotated because existing DST
approaches are generally trained in a fully super-
vised manner, where turn-level annotations are re-

1Code and data are available at https://github.com/h
yintell/AL-DST.

quired. However, if it is possible to find the most
informative and valuable turn in a dialogue to la-
bel, which enables the training of a DST model to
achieve comparable performance, we could save
the need to annotate the entire dialogue, and could
efficiently utilize the large-scale dialogue data col-
lected through API calls.

Active Learning (AL) aims to reduce annotation
costs by choosing the most important samples to
label (Settles, 2009; Fang et al., 2017; Zhang et al.,
2022). It iteratively uses an acquisition strategy to
find samples that benefit model performance the
most. Thus, with fewer labelled data, it is possible
to achieve the same or better performance. AL
has been successfully applied to many fields in
natural language processing and computer vision
(Schumann and Rehbein, 2019; Casanova et al.,
2020; Ein-Dor et al., 2020; Hu and Neubig, 2021).
However, the adoption of AL in DST has been
studied very rarely. Xie et al. (2018) have studied
to use AL to reduce the labelling cost in DST, using
a dialogue-level strategy. They select a batch of
dialogues in each AL iteration and label the entire
dialogues (e.g., every turn of each dialogue), which
is inefficient to scale to tremendous unlabelled data.
To our knowledge, turn-level AL remains unstudied
for the task of DST.

Furthermore, existing DST approaches (Wu
et al., 2019; Heck et al., 2020; Tian et al., 2021;
Zhu et al., 2022) treat each dialogue turn as a single,
independent training instance with no difference.
In fact, in the real-world, utterances in a dialogue
have different difficulty levels (Dai et al., 2021) and
do not share equal importance in a conversation.
For example, in Fig.1, turn-1 is simple and only
contains a single domain-slot and value (i.e., hotel-
name=Avalon), while turn-2 is more complex and
generates three new domain-slots, i.e., hotel-book
day, hotel-book people, hotel-book stay. Given the
limited labelling budget, it is an obvious choice to
label turn-2 instead of turn-1 since the former is
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Turn User System

Can you tell me some info on the Avalon hotel?

The Avalon is a 4 star moderately priced guesthouse in 
the north with free internet. Would you like to book there?

Yes. Can you book it for 5 people on Saturday? 
We need rooms for 4 nights.

Dialogue State

Your taxi has been booked to take you from Avalon to 
Frankie and Bennys at 17:45. Your taxi will be a black 
Tesla and the contact number is 07715682347.

That sounds great. Thank you very much.

…
..

Will you need any thing else now?

No, thank you that will be all for me, goodbye.

Domain hotel taxi

Slot name book day book people book stay arriveby departure destination

Value Avalon None None None None None None

For what times?

I need a taxi so that it arrives by the time of my 
reservation at the restaurant.

Domain hotel taxi

Slot name book day book people book stay arriveby departure destination

Value Avalon Saturday 5 4 None None None

Domain hotel taxi

Slot name book day book people book stay arriveby departure destination

Value Avalon Saturday 5 2 17:45 Avalon
Frankie and 

Bennys

Domain hotel taxi

Slot name book day book people book stay arriveby departure destination

Value Avalon Saturday 5 2 17:45 Avalon
Frankie and 

Bennys

Domain hotel taxi

Slot name book day book people book stay arriveby departure destination

Value Avalon Saturday 5 2 17:45 Avalon
Frankie and 

Bennys

1

2

…
..

…
..

8

9

10

All turns are used in training Only selected turns are used in training

Figure 1: An example of DST from the MultiWOZ dataset (Budzianowski et al., 2018). Utterances at the left
and the right sides are from user and system, respectively. Orange color denotes only the selected turn is used in
the weakly-supervised training setup. Only two domains (e.g hotel, taxi) are shown due to space limitation. (best
viewed in color).

more informative2. In addition, we observe that the
complete states of the dialogue session are updated
at turn-8, while turn-9 and turn-10 simply show hu-
mans’ politeness and respect without introducing
any new domain-slots. Therefore, while the “last
turn” has been studied before (Lin et al., 2021a),
it is often not the case that only the last turn of a
dialogue session generates summary states. Using
redundant turns such as turn-9 and turn-10 for train-
ing not only requires additional labelling but also
possibly distracts the DST model since it introduces
irrelevant context information, thus hindering the
overall performance (Yang et al., 2021).

Built on these motivations, we investigate a prac-
tical yet rarely studied problem: given a large
amount of unlabelled dialogue data with a lim-
ited labelling budget, how can we annotate the raw
data more efficiently and achieve comparable DST
performance? To this end, we propose a novel
turn-level AL framework for DST that selects the
most valuable turn from each dialogue for labelling
and training. Experiments on MultiWOZ 2.0 and
2.1 show that our approach outperforms two strong
DST baselines in the weakly-supervised scenarios
and achieves comparable DST performance with

2Here, informative refers to the turn that has more valid
dialogue states.

significantly less annotated data, demonstrating
both effectiveness and data efficiency. We summa-
rize the main contributions of our work as follows:

• We propose a novel model-agnostic turn-level
Active Learning framework for dialogue state
tracking, which provides a more efficient way
to annotate new dialogue data. To our best
knowledge, this is the first attempt to apply
turn-level AL to DST.

• The superiority of our approach is twofold:
firstly, our approach strategically selects the
most valuable turn from each dialogue to
label, which largely saves annotation costs;
secondly, using significantly reduced annota-
tion data, our method achieves the same or
better DST performance under the weakly-
supervised setting.

• We investigate how turn-level AL can boost
the DST performance by analyzing the query
sizes, base DST models, and turn selection
strategies.

2 Related Work

2.1 Dialogue State Tracking
Dialogue state tracking is an essential yet chal-
lenging task in task-oriented dialogue systems
(Williams et al., 2013). Recent state-of-the-art DST
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models (Wu et al., 2019; Kim et al., 2020; Heck
et al., 2020; Ye et al., 2021; Tian et al., 2021; Lee
et al., 2021; Zhu et al., 2022; Hu et al., 2022) us-
ing different architectures and mechanisms have
achieved promising performance on complex multi-
domain datasets (Budzianowski et al., 2018; Eric
et al., 2020). However, they are generally trained
with extensive annotated data, where each dialogue
turn requires comprehensive labelling.

To mitigate the cost of dialogue annotation, some
works train DST models on existing domains and
perform few-shot learning to transfer prior knowl-
edge to new domains (Wu et al., 2019; Zhou and
Small, 2019), while others further improve transfer
learning by pre-training extensive heterogeneous
dialogue corpora using constructed tasks (Wu et al.,
2020; Peng et al., 2021; Lin et al., 2021b; Su
et al., 2022). Recently, Liang et al. (2021); Lin
et al. (2021a) propose a weakly-supervised training
setup, in which only the last turn of each dialogue is
used. Despite the promising results, we have shown
the potential drawbacks of using the last turns in
Section 1. In contrast, in this work, we consider
the differences between the turns and strategically
select the turn that benefits the DST model the most
from a dialogue for training.

2.2 Active Learning

Active Learning uses an acquisition strategy to
select data to minimize the labelling cost while
maximizing the model performance (Settles, 2009).
While AL has been successfully used in many
fields, such as image segmentation (Casanova et al.,
2020), named entity recognition (Shen et al., 2017),
text classification (Schumann and Rehbein, 2019),
and machine translation (Zeng et al., 2019; Hu and
Neubig, 2021), rare work has attempted to apply
AL to DST. Moreover, recently proposed AL acqui-
sition methods are, unfortunately, not applicable to
turn-level DST since they are designed for specific
tasks or models. For instance, BADGE (Ash et al.,
2019) calculates gradient embeddings for each data
point in the unlabelled pool and uses clustering to
sample a batch, whereas we treat each turn within
a dialogue as a minimum data unit and only select
a single turn from each dialogue; therefore, the
diversity-based methods are not applicable to our
scenario. ALPS (Yuan et al., 2020) uses the masked
language model loss of BERT (Devlin et al., 2019)
to measure uncertainty in the downstream text clas-
sification task, while CAL (Margatina et al., 2021)

selects contrastive samples with the maximum dis-
agreeing predictive likelihood. Both are designed
for classification tasks, so these strategies are not
directly applicable. Therefore, studying an AL ac-
quisition strategy that is suitable for DST is still an
open question.

3 Preliminaries

We formalize the notations and terminologies used
in the paper as follows.

Active Learning (AL) AL aims to strategically
select informative unlabelled data to annotate while
maximizing a model’s training performance (Set-
tles, 2009). This paper focuses on pool-based active
learning, where an unlabelled data pool is available.
Suppose that we have a modelM, a small seed set
of labelled data L and a large pool of unlabelled
data U . A typical iteration of AL contains three
steps: (1) train the modelM using L; (2) apply an
acquisition function A to select k instances from
U and ask an oracle to annotate them; and (3) add
the newly labelled data into L.

Dialogue State Tracking (DST) Given a dia-
logue D = {(X1, B1) , . . . , (XT , BT )} that con-
tains T turns, Xt denotes the dialogue turn con-
sisting of the user utterance and system response
at turn t, while Bt is the corresponding dialogue
state. The dialogue state at turn t is defined as
Bt = {(dj , sj , vj) , 1 ≤ j ≤ J}, where dj and sj
denote domain (e.g. attraction) and slot (e.g. area)
respectively, vj is the corresponding value (e.g.
south) of the domain-slot, and J is the total number
of predefined domain-slot pairs. Given the dialogue
context up to turn t, i.e. Ht = {X1, . . . , Xt}, the
objective of DST is to predict the value for each
domain-slot in dialogue state Bt.

Labelling Suppose that we have selected a turn
t from the dialogue D (1 ≤ t ≤ T ) to label. An
oracle (e.g. human annotator) reads the dialogue
history from X1 to Xt and labels the current di-
alogue state Bt. We use the gold training set to
simulate a human annotator in our experiments.

Full vs. Weakly-supervised Training Generally,
the training dataset for DST is built in the way that
each turn in a dialogue (concatenated with all pre-
vious turns) forms an individual training instance.
That is, the input of a single training instance for
turn t is defined as Mt = X1 ⊕ X2 ⊕ · · · ⊕ Xt,
where ⊕ denotes the concatenation of sequences,
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and the output is the corresponding dialogue state
Bt. By providing the entire dialogue utterances
from the first turn to turn t to the model, the in-
formation from the earlier turns is kept in the di-
alogue history. Let DD be the set of training in-
stances created for the dialogue D and t is the
selected turn. Given the example in Fig.1, for full
supervision, all turns are used for training (i.e.,
DD = {(M1, B1) , . . . , (MT , BT )}), whereas in
weakly-supervised training, only the selected turn
is used (i.e., DD = {(Mt, Bt)}).

4 Active Learning for Dialogue State
Tracking

In this section, we first define our turn-level AL-
based DST framework, followed by the turn selec-
tion strategies.

4.1 Turn-Level AL for DST

Framework. Our turn-level AL-based DST con-
sists of two parts. First, we use AL to model the
differences between turns in a dialogue and find the
turn that is the most beneficial to label. The pseudo-
code of this step is shown in Algo. 1. Second, after
acquiring all labelled turns, we train a DST model
as normal and predict the dialogue states for all
turns in the test set for evaluation, as described in
Section 3. In this paper, we assume the training
set is unlabelled and follow the cold-start setting
(Algo. 1 Line 4), where the initial labelled data
pool L = ∅. We leave the warm-start study for
future work.

Active Learning Loop. In each iteration, we first
randomly sample k dialogues from the unlabelled
pool U . Then, we apply a turn acquisition function
A and the intermediate DST model trained from
the last iteration to each dialogue D to select an
unlabelled turn (Algo. 1 Line 10). It is notewor-
thy that we consider each turn within a dialogue
as a minimum data unit to perform query selec-
tion. This is significantly different from Xie et al.
(2018), where they select a few dialogues from the
unlabelled pool and label all turns as the training
instances. Orthogonal to Xie et al. (2018)’s work, it
is possible to combine our turn-level strategy with
dialogue-level AL. However, we leave it as future
work because the AL strategies to select dialogues
and turns could be different to achieve the best per-
formance. In this work, we focus on investigating
the effectiveness of AL strategies for turn selection.

To avoid overfitting, we re-initialize the base
DST model and re-train it on the current accumu-
lated labelled dataL. After R iterations, we acquire
the final training set L.

Algorithm 1 Turn-level AL for DST
Require: Initial DST model M, unlabelled dia-

logue pool U , labelled data pool L, number of
queried dialogues per iteration k, acquisition
function A, total iterations R

1: if L ≠ ∅ then
2: M0 ← TrainM on L ▷ Warm-start
3: else
4: M0 ←M ▷ Cold-start
5: end if
6: for iterations r = 1 : R do
7: Xr = ∅
8: Ur ← Random sample k dialogues from U
9: for dialogue D ∈ Ur do

10: X ← A(Mr−1, D) ▷ Select a turn
11: Xr = Xr ∪ {X}
12: end for
13: Lr ← Oracle labels Xr

14: L = L ∪ Lr
15: U = U \ Ur
16: Mr ← Re-initialize and re-trainM on L
17: end for
18: return L ▷ The final training set

4.2 Turn Selection Strategies
As mentioned in Section 2.2, recently proposed
AL acquisition strategies are not applicable to DST.
Therefore, we adapt the common uncertainty-based
acquisition strategies to select a turn from a dia-
logue:

Random Sampling (RS) We randomly select a
turn from a given dialogue. Despite its simplicity,
RS acts as a strong baseline in literature (Settles,
2009; Xie et al., 2018; Ein-Dor et al., 2020).

X = Random(M1, . . . ,MT ) (1)

where T is the total number of turns in the dialogue.

Maximum Entropy (ME) (Lewis and Gale,
1994) Entropy measures the prediction uncertainty
of the dialogue state in a dialogue turn. In partic-
ular, we calculate the entropy of each turn in the
dialogue and select the highest one. To do that, we
use the base DST model to predict the value of the
jth domain-slot at turn t, which gives us the value
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prediction distribution Pj
t . We then calculate the

entropy of the predicted value using Pj
t (Eq.2):

ejt = −
V∑

i=1

pj
t [i] logp

j
t [i] (2)

et =
J∑

j=1

ejt (3)

X = argmax(e1, . . . , eT ) (4)

where V is all possible tokens in the vocabulary.
We then sum the entropy of all domain-slots as the
turn-level entropy (Eq.3) and select the maximum
dialogue turn (Eq.4).

Least Confidence (LC) LC typically selects in-
stances where the most likely label has the low-
est predicted probability (Culotta and McCallum,
2005). In DST, we use the sum of the predic-
tion scores for all J domain-slots to measure the
model’s confidence when evaluating a dialogue
turn, and select the turn with the minimum confi-
dence:

ct =
J∑

j=1

cjt (5)

X = argmin(c1, . . . , cT ) (6)

where cjt = max(logitsjt ) denotes the maximum
prediction score of the jth domain-slot at turn t and
logitsjt is the predictive distribution.

5 Experiments

5.1 Setup

Datasets. We evaluate the weakly-supervised
DST performance on the MultiWOZ 2.0
(Budzianowski et al., 2018) and MultiWOZ 2.1
(Eric et al., 2020) datasets3 as they are widely
adopted in DST. We use the same preprocessing
as Lin et al. (2021a) and Su et al. (2022), and
focus on five domains (i.e. restaurant, train, hotel,
taxi, attraction). The statistics of the datasets are
summarized in Appendix A.

3We also tried to use the SGD dataset (Rastogi et al.,
2020). However, the PPTOD model is already pre-trained
on this dataset, making it unsuitable for downstream evalua-
tion. KAGE-GPT2 requires the predefined ontology to build a
graph neural network, but SGD does not provide all possible
values for non-categorical slots (See Section 8).

Base DST Model. We use KAGE-GPT2 (Lin
et al., 2021a) as the base DST model to imple-
ment all experiments. KAGE-GPT2 is a gen-
erative model that incorporates a Graph Atten-
tion Network to explicitly learn the relationships
between domain-slots before predicting slot val-
ues. It shows strong performance in both full
and weakly-supervised scenarios on MultiWOZ
2.0 (Budzianowski et al., 2018). To show that the
effectiveness of our AL framework is not tied to
specific base models, we also experiment with an
end-to-end task-oriented dialogue model PPTOD
(Su et al., 2022). PPTOD pre-trained on large dia-
logue corpora gains competitive results on DST in
the low-resource settings. The model training and
implementation details are in Appendix B.

5.2 Evaluation Metrics
We use Joint Goal Accuracy (JGA) to evaluate
DST performance, which is the ratio of correct dia-
logue turns. It is a strict metric since a turn is con-
sidered as correct if and only if all the slot values
are correctly predicted. Following the community
convention, although it is not a distinguishable met-
ric (Kim et al., 2022), we also report Slot Accuracy
(SA), which compares the predicted value with the
ground truth for each domain-slot at each dialogue
turn. Additionally, we define a new evaluation
metric, Reading Cost (RC), which measures the
number of turns a human annotator needs to read
to label a dialogue turn. As shown in Fig.1, to label
the dialogue state Bt at turn t, a human annotator
needs to read through the dialogue conversations
from X1 to Xt to understand all the domain-slot
values that are mentioned in the dialogue history:

RC =

∑|L|
i=1

t
TDi

|L| (7)

where |L| denotes the total number of annotated
dialogues and TDi is the number of turns of the
dialogue Di. If all last turns are selected, then
RC = 1, in which case the annotator reads all turns
in all dialogues to label, resulting high cost. Note
that we take JGA and RC as primary evaluation
metrics.

5.3 Baselines
Our main goal is to use AL to actively select the
most valuable turn from each dialogue for training,
therefore reducing the cost of labelling the entire
dialogues. We evaluate the effectiveness of our
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Training Data Model MultiWOZ 2.0 MultiWOZ 2.1
JGA ↑ SA ↑ RC ↓ JGA ↑ SA ↑ RC ↓

Without Active Learning

Full Data (100%) PPTODbase 53.37±0.46 97.26±0.02 100 57.10±0.51 97.94±0.02 100
KAGE-GPT2 54.86±0.12 97.47±0.02 100 52.13±0.89 97.18±0.02 100

Last Turn (14.4%) PPTODbase-LastTurn 43.83±1.55 96.87±0.06 100 45.94±0.72 97.11±0.04 100
KAGE-GPT2-LastTurn 50.43±0.23 97.14±0.01 100 49.12±0.13 97.05±0.02 100

With Active Learning (k = 2000)

CUDS (∼14%)∗ PPTODbase+CUDS 43.06±0.04 96.01±0.02 100 43.57±1.16 96.16±0.01 100
KAGE-GPT2+CUDS 47.06±1.43 96.14±0.07 100 47.56±1.07 96.33 100

Selected Turn (14.4%) (Ours)

PPTODbase+RS 43.71±0.81 96.64±0.08 58.73±28.7 46.96±0.18 96.56±0.06 58.55±28.5

PPTODbase+LC 45.79±0.35 97.06±0.04 85.21±19.7 47.37±0.32 96.97±0.05 81.95±24.6

PPTODbase+ME 46.92±0.79 97.12±0.05 57.37±32.9 48.21±1.00 97.33±0.12 67.68±30.1

KAGE-GPT2+RS 50.37±0.52 97.11±0.06 58.58±28.7 46.98±0.64 96.81±0.07 58.48±28.5

KAGE-GPT2+LC 50.56±0.07 97.10±0.01 70.51±30.3 48.13±0.20 96.94±0.01 79.41±24.0

KAGE-GPT2+ME 51.34±0.05 97.16±0.05 62.58±28.5 50.02±1.10 97.13±0.10 71.02±26.7

Table 1: The mean and standard deviation of joint goal accuracy (%), slot accuracy (%) and reading cost (%) after
the final AL iteration on the test sets. ∗: we re-implement using Xie et al. (2018)’s method. RS, LC and ME are
active turn selection methods mentioned in Section 4.2. Note that we take JGA and RC as primary evaluation
metrics since SA is indistinguishable (Kim et al., 2022).

approach from two angles. First, we compare DST
performance of two settings without involving AL
to show the benefits that AL brings:

• Full Data (100%): all the turns are used for
training, which shows the upper limit of the
base DST model performance.

• Last Turn (14.4%4): following Liang et al.
(2021) and Lin et al. (2021a), for each dia-
logue, only the last turn is used for training.

Second, when using AL, we compare our turn-level
framework with the dialogue-level approach:

• CUDS (∼14%) (Xie et al., 2018): a dialogue-
level method that selects a batch of dialogues
in each AL iteration based on the combina-
tion of labelling cost, uncertainty, and diver-
sity, and uses all the turns for training. We
carefully maintain the number of selected dia-
logues in each iteration so that the total num-
ber of training instances is roughly the same
(i.e., k ≃ 2000) for a fair comparison.

• Selected Turn (14.4%): we apply Algo.1 and
set U = 7888, L = ∅, k = 2000 and use the
turn selection methods mentioned in Section
4.2 to conduct experiments. As a trade-off
between computation time and DST perfor-
mance, here we use k = 2000; however, we
find that a smaller k tends to have a better per-
formance (Section 6.2). Given k = 2000, we
have selected 7,888 turns after four rounds,
and use them to train a final model.

414.4% = # turns used
# total turns = 7888

54945

6 Results & Analysis

6.1 Main Results

Due to space limitation, we report the final results
after the four AL iterations in Table 1. We present
the intermediate results in Fig.2.

Our turn-level AL strategy improves DST per-
formance. From Table 1, we first observe that,
using the same amount of training data (14.4%),
our proposed AL approach (i.e. PPTODbase+ME
and KAGE-GPT2+ME) outperforms the non-AL set-
tings, Last Turn, in terms of both joint goal ac-
curacy and slot accuracy. Specifically, compared
with PPTODbase+LastTurn, our PPTODbase+ME sig-
nificantly boosts the JGA by 3.1% on MultiWOZ
2.0 and 2.3% on MultiWOZ 2.1. KAGE-GPT2+ME
also improves its baselines by around 0.9% on both
datasets. Compared with the dialogue-level AL
strategy CUDS, our turn-level methods improve
the JGA by a large margin (2.3%∼4.3% on both
datasets). Considering that DST is a difficult task
(Budzianowski et al., 2018; Wu et al., 2019; Lee
et al., 2021), such JGA improvements demonstrate
the effectiveness of our turn-level AL framework,
which can effectively find the turns that the base
DST model can learn the most from.

Our turn-level AL strategy reduces annotation
cost. The reading costs (RC) of PPTODbase+ME
and KAGE-GPT2+ME drop by a large margin (around
29%∼43%) compared to the Last Turn and CUDS
settings, indicating the benefits and necessity of
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Figure 2: Joint goal accuracy on test sets of AL over four iterations with k = 2000 dialogues queried per iteration.
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Figure 3: Joint goal accuracy on test sets of KAGE-
GPT2 on MultiWOZ 2.0 with k = 500, 1000, 1500.

selecting dialogue turns. This significantly saves
the annotation cost because a human annotator does
not need to read the entire dialogue to label the last
turn but only needs to read until the selected turn.

Our approach uses less annotated data can
achieve the same or better DST performance.
To further explore the capability of our AL ap-
proach, we plot the intermediate DST performance
during the four iterations, as shown in Fig.2. No-
tably, PPTODbase with Least Confidence (LC) and
Maximum Entropy (ME) turn selection methods
surpass the Last Turn baselines at just the second
or third iteration on MultiWOZ 2.0 and MultiWOZ
2.1 respectively, showing the large data efficiency
of our approach (only 7.3% / 10.9% data are used).
This can be explained that PPTODbase is fine-tuned

on so-far selected turns after each iteration and
gains a more robust perception of unseen data, thus
tending to choose the turns that are more benefi-
cial to the model. In contrast, KAGE-GPT2 un-
derperforms the Last Turn setting in early itera-
tions, achieving slightly higher accuracy in the fi-
nal round. Despite this, the overall performance
of KAGE-GPT2 is still better than PPTODbase un-
der the weakly-supervised settings. This is pos-
sibly because the additional graph component in
KAGE-GPT2 enhances the predictions at interme-
diate turns and the correlated domain-slots (Lin
et al., 2021a). However, when using CUDS, both
DST models underperform a lot on both datasets,
especially during early iterations. This indicates
that the dialogue-level strategy, which does not
distinguish the importance of turns in a dialogue,
might not be optimal for selecting training data. In
Section 6.2, we show that a smaller query size k
can achieve higher data efficiency.

6.2 Ablation Studies

In this section, we further investigate the factors
that impact our turn-level AL framework.

Effect of Dialogue Query Size. Theoretically,
the smaller size of queried data per AL iteration,
the more intermediate models are trained, resulting
the better model performance. Moreover, smaller
query size is more realistic since the annotation
budget is generally limited and there lack enough
annotators to label large amount of dialogues af-
ter each iteration. To this end, we initialize the
unlabelled pool U by randomly sampling 3,000 di-
alogues from the MultiWOZ 2.0 training set, and
apply our AL framework to KAGE-GPT2, using
different query sizes, i.e., k = 500, 1000, 1500,
which leads to 6, 3, 2 rounds respectively.

From Fig.3, we first observe that smaller k im-
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proves the intermediate DST performance: when
k = 500, both LC and ME strategies boost the ac-
curacy by a large margin at the second iteration than
k = 1000, and at the third iteration than k = 1500.
This suggests that, with the same number of train-
ing data, the multiple-trained DST model gains the
ability to have a more accurate perception of the
unseen data. By calculating the prediction uncer-
tainty of the new data, the model tends to choose
the turns that it can learn the most from. In con-
trast, RS chooses a random turn regardless of how
many AL rounds, therefore does not show the same
pattern as LC and ME. Finally, we find a smaller k
tends to achieve higher data efficiency when using
LC and ME strategies. It is clear from the figure
that k = 500 uses the least data when reaching the
same level of accuracy. However, the drawback of
a smaller query size is that it increases overall com-
putation time as more intermediate models have
to be trained. We provide a computational cost
analysis in Section 6.3.

Effect of Base DST Model. It is no doubt that
the base DST model is critical to our turn-level
AL framework as it directly determines the upper
and lower limit of the overall performance. How-
ever, we are interested to see how our approach
can further boost the performance of different DST
models. We randomly sample U = 500 dialogues
from the MultiWOZ 2.0 training set and set the
query size k = 100 for both models. As shown in
Fig.4, we also report the results of the two models
using the non-AL strategy of Last Turn, which can
be considered as the lower performance baselines.

We first confirm that both PPTODbase and
KAGE-GPT2 outperform their Last Turn base-
lines after applying our AL framework, demon-
strating both data efficiency and effectiveness of
our approach. Secondly, we notice that PPTODbase
achieves comparable accuracy in the first two
rounds, while KAGE-GPT2 nearly stays at 0 re-
gardless of the turn selection methods, showing
the superiority of PPTODbase under the extreme
low-resource scenario. This is possibly because
PPTODbase is pre-trained on large dialogue cor-
pora thus gains few-shot learning ability (Su et al.,
2022), whereas only 200 training data are not
enough for KAGE-GPT2 to be fine-tuned. How-
ever, in the later iterations, the performance of
KAGE-GPT2 grows significantly, especially when
using the ME strategy, eventually reaching the
same level as PPTODbase. In contrast, the accu-
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Figure 4: Joint goal accuracy on test sets of KAGE-
GPT2 and PPTODbase on MultiWOZ 2.0 with k = 100.
Results are averaged over three runs.

Method KAGE-GPT2 PPTODbase

LC 76.51±24.7 81.13±22.3

ME 68.18±29.1 58.68±31.5

Table 2: Reading Cost (RC) (%) of different turn selec-
tion methods. The lower the better.

racy of PPTODbase increases slowly, indicating the
model gradually becomes insensitive to the newly
labelled data.
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Figure 5: Visualization of the turns selected by
PPTODbase at the final round (k = 100). ME reduces
RC the most.

Effect of Turn Selection Strategy. From Fig.2,
while both ME and LC improve over the RS base-
line, ME does not consistently outperform LC dur-
ing AL iterations in terms of the joint goal accuracy,
and vice versa. However, as shown in Table 1, LC
results in a higher Reading Cost (RC) than ME,
which means LC tends to select latter half of turns
in dialogues. Conversely, ME significantly reduces
RC in the last iteration (Fig.5; more in Appendix
C) and is consistently better than LC and RS for
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Table 3: Example (MUL0295) of the selected turn (marks by ✓) by PPTODbase using ME and LC.

Dialogue MUL0295 ME LC

Turn 1
[S]:
[U]: i am looking for an expensive place to dine in the centre of town.
State: {restaurant-area=centre, restaurant-pricerange=expensive}

Turn 2
[S]: great kymmoy is in the centre of town and expensive.
[U]: i want to book a table for 3 people at 14:00 on Saturday.
State: {restaurant-book day=saturday, restaurant-book people=3, restaurant-book time=14:00}

Turn 3
[S]: booking was successful. the table will be reserved for 15 minutes. reference number is: vbpwad3j.
[U]: thank you so much. i would also like to find a train to take me to kings lynn by 10:15.
State: {train-destination=kings lynn, train-arriveby=10:15}

✓

Turn 4
[S]: there are 35 departures with those criteria. what time do you want to leave?
[U]: the train should arrive by 10:15 please on sunday please.
State: {train-day=sunday}

✓

Turn 5
[S]: how many tickets will you need?
[U]: just 1 ticket. i will need the train id, cost of ticket and exact departure time as well.
State: {}

Turn 6
[S]: there is a train arriving in kings lynn on sunday at 09:58. it departs at 09:11 and costs 7.84 pounds. the train id is tr6088.
[U]: great! that s all i needed. thanks a lot for the help.
State: {}

Method # of Training data (%) ↓ JGA ↑ RC ↓ Runtime (hour) ↓
Full data 21072 (100%) 46.7 100 2.3
Last Turn 3000 (14.2%) 41.4 100 0.6

ME 3000 (14.2%) 44.3 59.3 1.6

Table 4: Computational cost comparison using KAGE-
GPT2 on MultiWOZ 2.0 with U = 3000 and k = 1000.

Method Total Annotation Cost ($) ↓
Full Dialogue z ∗ (T ∗ x+ T ∗ y)

Last Turn z ∗ (T ∗ x+ 1 ∗ y)
Selected Turn (Ours) z ∗ (t ∗ x+ 1 ∗ y), where 1 ≤ t ≤ T

Table 5: Annotation cost estimation comparison of dif-
ferent methods.

both DST models (Fig.4), which demonstrates the
effectiveness of ME under small query size k. We
report their RC in Table 2, which also confirms that
ME saves reading costs than LC. An example of
the turns selected by ME and LC in a dialogue is
shown in Table 3, more examples in Appendix D.

6.3 Cost Analysis

Our AL-based method saves annotation costs and
achieves comparable DST performance with tradi-
tional methods at the expense of increased compu-
tation time. In this section, we conduct a cost anal-
ysis, including computation and annotation costs.
We initialize the unlabelled pool U by randomly
sampling 3,000 dialogues from the MultiWOZ 2.0
training set, and apply our AL framework to KAGE-
GPT2, and set the query size as k = 1000. As
shown in Table 4, our method improves JGA and
RC than the Last Turn baseline, but with an in-
creased runtime since our method requires three
rounds of iteration.

Due to a lack of budget, we are unable to employ
human annotators to evaluate the actual annotation
cost. Instead, we conduct a theoretical cost analysis

to show the potential cost reduction of our method.
Suppose a dialogue D has T turns in total, and
it takes x minutes for a human annotator to read
each turn (i.e., reading time), y minutes to anno-
tate a single turn (i.e., annotating time), z dollars
per minute to hire a human annotator. Assuming
our proposed method selects the tth (1 ≤ t ≤ T )
turn to annotate. The total annotation cost, includ-
ing the reading time and annotating time of three
methods, are listed in Table 5. Since the Full Di-
alogue baseline takes each accumulated turn as a
training instance (Section 3), it requires the high-
est annotation cost. Our method only annotates a
single turn per dialogue, the same as the Last Turn
baseline. Therefore, the annotation cost lies in the
selected turn t, which is measured by RC in our
experiments. As shown in Table 1 and discussed
in Section 6.1, our method generally saves RC by
a large margin (around 29%∼43% across differ-
ent models) compared to the Last Turn baseline
and saves more compared to the Full data setting.
Therefore, from a theoretical cost estimation point
of view, our proposed method can save annotation
costs while maintaining DST performance.

7 Conclusion

This paper tackles the practical dialogue annota-
tion problem by proposing a novel turn-level AL
framework for DST, which strategically selects the
most valuable turn from each dialogue for labelling
and training. Experiments show that our approach
outperforms strong DST baselines in the weakly-
supervised scenarios and achieves the same or bet-
ter joint goal and slot accuracy with significantly
less annotated data. Further analysis are conducted
to investigate the impact of AL query sizes, base
DST models and turn selection methods.
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8 Limitations

We acknowledge the limitations of this paper as
follows.

First, our AL approach adds extra computation
time compared to directly training a DST model us-
ing only the last turns of dialogues. A smaller query
size (e.g., k) may further increase the runtime as
more intermediate models have to be trained. That
is, we achieved similar or even better DST perfor-
mance with significantly reduced annotation data at
the cost of increased computation time. Therefore,
the trade-off between computational cost, DST per-
formance, and annotation cost needs to be well-
determined.

Second, we are unable to employ human annota-
tors to evaluate the actual cost due to a lack of bud-
get. In practice, the number of annotators required
depends on the financial budget, project timeline,
and the proficiency of annotators. Estimating the
exact number of annotators and the annotation cost
is challenging. As a mitigation, we provide a theo-
retical cost analysis in Section 6.3. However, it is
a rough estimation and may not reflect the actual
cost.

Third, our experiments are limited to the Multi-
WOZ 2.0 (Budzianowski et al., 2018) and Multi-
WOZ 2.1 (Eric et al., 2020) datasets. We also tried
to use the SGD dataset (Rastogi et al., 2020). How-
ever, the PPTOD model is already pre-trained on
this dataset, making it unsuitable for downstream
evaluation. KAGE-GPT2 requires the predefined
ontology (i.e., the all possible domain-slot value
pairs in the dataset) to build a graph neural net-
work, but SGD does not provide all possible val-
ues for non-categorical slots. For example, Mul-
tiWOZ has all possible values predefined for the
non-categorical domain-slot train-arriveBy, while
SGD does not have it since it is innumerable. Our
AL framework is built upon the base DST model
and thus suffers the same drawbacks; we may try
other DST models and datasets in the future.
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A Datasets Statistics

MultiWOZ2.0 MultiWOZ2.1

Train

# Dialogues 7888 7888
# Domains 5 5
# Slots 30 30
# Total turns 54945 54961
# Last turns 7888 7888
# Avg. turns per dialogue 6.97 6.97
# Max turns per dialogue 22 22
# Min turns per dialogue 1 1

Validation
# Dialogues 1000 1000
# Total turns 7374 7374

Test
# Dialogues 1000 999
# Total turns 7372 7368

Table 6: Statistics of the datasets in the experiments.

B Configuration Details

We use the official release of KAGE-GPT25 (Lin et al., 2021a) and PPTOD6 (Su et al., 2022) to implement
our turn-level AL framework.

KAGE-GPT2 We use the L4P4K2-DSGraph model setup and follow its sparse supervision (last turn)
hyperparameter settings. Specifically, the loaded pre-trained GPT-2 model has 12 layers, 768 hidden size,
12 heads and 117M parameters, which is provided by HuggingFace7. AdamW optimizer with a linear
decay rate 1× 10−12 is used when training. The GPT-2 component and the graph component are jointly
trained, with the initial learning rates are 6.25× 10−5 and 8× 10−5 respectively. The training batch size
used is 2, while the batch size for validation and evaluation is 16.

PPTOD We use the released base checkpoint, which is initialized with a T5-base model with around
220M parameters. PPTODbase is pre-trained on large dialogue corpora, for more details, we refer readers
to the original paper. When training, Adafactor optimizer is used and the learning rate is 1× 10−3. Both
training, validation, and evaluation batch size used is 4.

Turn Selection During each AL iteration, we use the trained model from the last iteration to evaluate all
the turns within a dialogue and then select a turn based on the acquisition strategy.

Training At the end of each iteration, we re-initialize a new pre-trained GPT-2 model for KAGE-GPT2
or re-initialize a new model from the released pre-trained base checkpoint for PPTOD, and then train
the model as usual with all current accumulated labelled turns. We train the DST model for 150 epochs
using the current accumulated labelled pool L, and early stop when the performance is not improved for 5
epochs on the validation set. Importantly, instead of using the full 7,374 validation set, we only use the last
turn of each dialogue to simulate the real-world scenario, where a large amount of annotated validation
set is also difficult to obtain (Perez et al., 2021). However, we use the full test set when evaluating.

C Visualization of Selected Turns

To clearly compare the reading costs of different turn selection methods, we visualize the distributions of
the selected turns at the final round for the setting in Section 6.2, as shown in Fig.5 and Fig.6. A dot means
a selected turn from a dialogue, while the ends of the box represent the lower and upper quartiles, and the

5https://github.com/LinWeizheDragon/Knowledge-Aware-Graph-Enhanced-GPT-2-for-Dialogue-State-Track
ing

6https://github.com/awslabs/pptod
7https://huggingface.co/models

7717

https://github.com/LinWeizheDragon/Knowledge-Aware-Graph-Enhanced-GPT-2-for-Dialogue-State-Tracking
https://github.com/LinWeizheDragon/Knowledge-Aware-Graph-Enhanced-GPT-2-for-Dialogue-State-Tracking
https://github.com/awslabs/pptod
https://huggingface.co/models


median (second quartile) is marked by a line inside the box. A higher RC means the turn is selected from
the second half of the conversation (RC = 1 means the last turn is selected); thus, a human annotator
needs to read most of the conversation to label its state, which is more costly. From the figures, overall,
RS distributes randomly, while ME has a much lower reading cost than LC, especially for PPTODbase.
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Figure 6: Visualization of the turns selected by KAGE-GPT2 at the final round (k = 100).

D Example of Selected Turns

Table 3, Table 7 and Table 8 present the examples of selected turns by ME and LC using PPTODbase from
MultiWOZ 2.0. [S] and [U] denote the system and user utterance respectively, while State represents the
dialogue states that are mentioned at the current turn. ✓marks the selected turn by the strategy and is the
only turn in the dialogue used for training. Although not always the case, we can see that both ME and
LC can select the earliest turn that summarizes the entire dialogue, which not only saves the need to read
through the whole conversation but also keeps the valuable context information intact as much as possible.
However, still, a more suitable AL query strategy for DST is worthy of being studied.

Table 7: Example (MUL1068) of the selected turn by PPTODbase using ME and LC.

Dialogue MUL1068 ME LC

Turn 1
[S]:
[U]: i am looking for a gueshouse to stay in during my visit. i would like for it to be in the east section of town.
State: {hotel-area=east, hotel-type=guesthouse}

Turn 2
[S]: there are 6 entries, do you have any other preferences in hotel choice?
[U]: i would like a 4 star place that’s on the pricier side.
State: {hotel-pricerange=expensive, hotel-stars=4}

Turn 3
[S]: there are no 4 star expensive guesthouses on the east side of town. would you be interested in a cheap or moderate -ly priced 1 instead?
[U]: i would like 1 that is cheap then.
State: {hotel-pricerangen=cheap}

Turn 4
[S]: autumn house is cheap and has free internet and parking . would you like me to book a reservation for you?
[U]: yes please. can you book the reservation for saturday for 5 guests for a 2 night stay. thanks.
State: {hotel-book day=saturday, hotel-book people=5, hotel-book stay=2}

Turn 5
[S]: sorry, there are no rooms available for your specification -s. do you want to try a different day or a shorter stay?
[U]: try for 1 night instead. if that works, can i have the reference number?
State: {hotel-book stay=1}

Turn 6
[S]: how about the autumn house for 1 night starting saturday and your reference number is svciwlwa.
[U]: i also need to find something called gonville and caius college, can you help?
State: {attraction-name=gonville and caius college}

✓

Turn 7
[S]: gonville and caius college is located in the center of town on trinity street . anything else i can do for you?
[U]: can i get the postcode ?
State: {}

Turn 8
[S]: no problem , the postal code is cb21ta. did you need the phone number as well?
[U]: no thanks i am all set . thank you for your help today.
State: {}

✓
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Table 8: Example (PMUL2281) of the selected turn by PPTODbase using ME and LC.

Dialogue PMUL2281 ME LC

Turn 1
[S]:
[U]: can you help me find a place to dine?
State: {}

Turn 2
[S]: sure! what type of food would you like to eat in what area?
[U]: i would like some north indian food that is expensive, in the south.
State: {restaurant-food=north indian}

Turn 3
[S]: we do not have any north indian restaurant -s, though we do have many indian restaurant -s.
[U]: indian food would be fine then, can you tell me the name?
State: {restaurant-pricerange=expensive, restaurant-food=indian}

Turn 4
[S]: there are several indian restaurant -s, may i suggest the golden curry in the centre. it sounds like just what you are looking for.
[U]: i was actually hoping for a restaurant in the south. are there any available?
State: {restaurant-area=south}

✓

Turn 5
[S]: i found 1 called taj tandoori. want more information?
[U]: more information please
State: {}

Turn 6
[S]: it is expensive and in the south.
[U]: can i get the postcode for that please?
State: {}

✓

Turn 7
[S]: sure! the post code is cb17aa .
[U]: thanks! i am also looking for a nightclub. i’ll need the postcode, please?
State: {attraction-type=nightclub}

Turn 8
[S]: the ballare is a nightclub in the centre of town. the entrance fee is 5 pounds.
[U]: i’ll try that. what s the postcode please?
State: {}

Turn 9
[S]: their postcode is cb23na. can i help you with anything else today?
[U]: no thanks. that was all i needed today. goodbye.
State: {}
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