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Abstract
Large Language Models (LLMs) are trained
on corpora disproportionally weighted in fa-
vor of Standard American English. As a re-
sult, speakers of other dialects experience sig-
nificantly more failures when interacting with
these technologies. In practice, these speakers
often accommodate their speech to be better
understood. Our work shares the belief that
language technologies should be designed to
accommodate the diversity in English dialects
and not the other way around. However, prior
works on dialect struggle with generalizing to
evolving and emerging dialects in a scalable
manner. To fill this gap, our method, Hyper-
LoRA, leverages expert linguistic knowledge
to enable resource-efficient adaptation via hy-
pernetworks. By disentangling dialect-specific
and cross-dialectal information, HyperLoRA
improves generalization to unseen dialects in a
task-agnostic fashion. Not only is HyperLoRA
more scalable in the number of parameters, but
it also achieves the best or most competitive
performance across 5 dialects in a zero-shot
setting. In this way, our approach facilitates
access to language technology for billions of
English dialect speakers who are traditionally
underrepresented.

1 Introduction

Dialectal diversity stems from racial, cultural, re-
ligious, ethnic, regional, socio-economic, and age-
related differences. Considering the increasingly
widespread integration of LLMs (Dai et al., 2019;
Liu et al., 2019; Raffel et al., 2020) in daily tools,
these LLMs should be made invariant to dialec-
tal differences. This is not yet the case, in fact,
a significant gap in the performance of LLMs is
observed when they are applied to English dialects
linguistically distant from Standard American En-
glish (SAE) (Jurgens et al., 2017; Blodgett et al.,
2018; Kiritchenko and Mohammad, 2018; Ziems
et al., 2023b). These discrepancies raise racial, eth-
nic, and socio-economic concerns for groups that

Unseen
Methods Tasks Dialects
Jørgensen et al. (2016) ✗ ✗

Blodgett et al. (2018) ✗ ✗

Multi-VALUE Ziems et al.
(2023b)

✗ ✗

TADA Held et al. (2023) ✓ ✗

HyperLoRA ✓ ✓

Table 1: Comparison of previous work in dialectal ro-
bustness under zero-shot transfer capabilities to new
tasks and new dialects.

are under-represented (Gururangan et al., 2022) in
the training corpus of these technologies (Hovy
and Spruit, 2016; Blodgett and O’Connor, 2017;
Halevy et al., 2021a). Understanding and mitigat-
ing these discrepancies are particularly important
in avoiding harmful and undesired consequences,
which can range from denial of care in commer-
cial healthcare systems (Obermeyer et al., 2019)
to racial biases in hate speech detection (Davidson
et al., 2019; Sap et al., 2019; Rios, 2020; Halevy
et al., 2021b; Zhou et al., 2021).

Previously, dialectal robustness methods have
primarily focused on filling the lack of dialect data
via manual (Blevins et al., 2016; Blodgett et al.,
2018) and weak forms of supervision (Jørgensen
et al., 2016; Jurgens et al., 2017), or more recently
via synthetic data augmentation (Multi-VALUE;
Ziems et al., 2022, 2023b). A shared limitation
of these methods is their assumption of available
dialectal data for all downstream tasks. In prac-
tice, this is unrealistic, as it is already challeng-
ing to find annotators in all dialects (Ziems et al.,
2023b). Recent work has started to reduce the
burden on task-specific dialectal data, such as by
training task-agnostic adapters via cross-dialectal
alignment (Held et al., 2023). While new dialects
are emerging and existing dialects are evolving, the
need for data in all dialects remains, as well as
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adaptation methods that are resource-efficient and
task-agnostic.

To this end, we propose HyperLoRA, an effi-
cient adaptation method to new dialects without
the need for additional dialect annotations. In re-
moving this dependency on dialect data, we turn to
existing expert knowledge on dialects. Bird (2022)
claims that we do not need to bridge the gap in
data in settings where expert knowledge is read-
ily available. This assumption of having access to
expert knowledge is reasonable because the cost
of having a single expert identify the dialect of a
speaker is much lesser than hiring annotators from
all dialects. Previously, the use of typological fea-
tures has been successful in removing this gap in
the multilingual setting (Ansell et al., 2021). In-
spired by this, our work investigates whether this
expert knowledge and typological features can be
leveraged for dialects as well.

A natural solution in leveraging this expert
knowledge is via hypernetworks (Ha et al., 2016),
which have exhibited remarkable generalization ca-
pabilities in computer vision and NLP (Knyazev
et al., 2021; Üstün et al., 2022). Using a hyper-
network, we modulate dialect-specific LoRA (Hu
et al., 2021) adapters using typological features
for adaptation to target dialects. By isolating the
complexity of the typological space to the hyper-
network and by generating dialect-specific LoRA
adapters, we minimize the cross-dialectal interfer-
ence (Wang et al., 2020) in the main model. The
hypernetwork is trained on parallel corpora to opti-
mize a morphosyntactic alignment objective in the
representation space, which allows HyperLoRA
to learn to adapt to dialects independently of the
downstream application. This alignment objective
is novel, principled, and easy to compute. Most
importantly, we find that effectively using expert
knowledge can account for 250 annotations per di-
alect. Finally, we design a metric to evaluate the
coverage of dialect features, in order to better un-
derstand the limitations of using hypernetworks for
zero-shot generalization to dialects.

2 Related Work

Dialectal NLP When applied to other English di-
alects, existing language models that primarily fo-
cus on Standard American English (SAE) often
demonstrate significantly lower performance (Sap
et al., 2019; Rios, 2020; Halevy et al., 2021b; Zhou
et al., 2021). Previous research has revealed that

prompting LLMs can further degrade the perfor-
mance on these dialects (Ziems et al., 2023a; Liu
et al., 2023). These discrepancies can further rein-
force existing power imbalances (Hovy and Spruit,
2016; Bommasani et al., 2021) and bring alloca-
tional harm to specific racial, ethnic, and socio-
economic communities. This is precisely why the
development of dialect robust methods are cur-
rently of the utmost importance.

Transfer Learning Transfer Learning has be-
come the dominant paradigm in specializing mod-
els to target languages and tasks. To this effect,
many parameter-efficient fine-tuning (PEFT) (Hu
et al., 2021; Houlsby et al., 2019; Zaken et al.,
2022) modules have been designed for efficiently
adapting Large pretrained Language Models to
downstream applications (Pfeiffer et al., 2023).
MAD-X (Pfeiffer et al., 2020b) shows that sep-
arate task and language adapters can be composed
to achieve multi-task cross-lingual transfer. Like
MAD-X, TADA (Held et al., 2023) trains dialect-
specific adapters separately from task adapters, al-
lowing the adaptation of the SAE-trained model to
different dialects in a task-agnostic manner. These
works, however, are limited by the need to train an
adapter for each language/dialect. To address this
shortcoming, several works make use of hypernet-
works to generate language-specific adapters from
language typological vectors (Ansell et al., 2021)
and language identifiers (Üstün et al., 2022), effec-
tively removing the need to train over hundreds of
language adapters. In addition to adapters, hyper-
networks have also been applied to prompt-tuning
(He et al., 2022) and LoRA (Phang et al., 2022).
While prior work mainly generates modules for lan-
guage adaptation, our work is the first to perform
dialect adaptation via hypernetworks.

Cross-lingual alignment Cross-lingual align-
ment has been observed in learned representations
of multilingual language models (Pires et al., 2019).
Alignment is a particularly desirable property en-
abling task-adapter modules to be shared across
languages. Furthermore, cross-lingual alignment
methods (Conneau et al., 2018, 2020) are partic-
ularly effective when working with highly simi-
lar languages, making them suitable for the cross-
dialectal setting. Surprisingly, this cross-dialectal
setting remains underexplored. In most settings,
token-to-token level supervision for alignment is
unavailable. Prior works have addressed this by
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Figure 1: HyperLoRA Architecture. During training,
only hypernetwork weights are updated and there is no
task adapter in the main model. At inference, the task
adapter and its classification head are added.

developing unsupervised methods. In this line of
work, a few methods perform cross-lingual align-
ment by minimizing an approximate Wasserstein
distance (Arjovsky et al., 2017; Romanov et al.,
2019). Alternatively, prior work has shown that di-
rectly optimizing for a relaxed Wasserstein distance
using Sinkhorn’s Divergence can also be effective
for cross-lingual alignment when sufficiently re-
liable representations are available (Zhang et al.,
2017). In our setting, Multi-VALUE provides us
with an abundance of pseudo-dialectal training data,
which makes it possible for us to design a mor-
phosyntactic alignment objective.

3 HyperLoRA

As a first step towards dialectal robustness, Hyper-
LoRA enables resource-efficient adaptation to new
dialects in a task-agnostic manner. Our approach
relies on 4 key ingredients: (1) we support low-
resource dialects with expert linguistic knowledge
whose information is modeled by (2) a hypernet-
work that learns a shared linguistic feature space
across dialects. The hypernetwork is trained to gen-
erate (3) lightweight LoRA modules with (4) the
objective to align dialect and SAE representations
by finding the optimal transport plan. Under this
optimal transport plan, we can directly plug the
LoRA modules into any downstream task.

3.1 Dialectal Typology as Expert Knowledge

"The man I met’s girlfriend is a real beauty", is
what an East Anglian dialect speaker would say
instead of "The girlfriend of the man I met is a real
beauty". The East Anglian speaker uses a construc-

tion where the possessive marker is appended at the
end of the noun phrase. To linguists, this is known
as a linguistic feature or linguistic rule that dialect
speakers employ at different rates and in different
contexts. Experts have found that this feature is
not unique to the East Anglian dialect and can be
found in many dialects geographically close to the
East Anglian dialect, or even in Indian English and
in Hong Kong English, with lower levels of per-
vasiveness. Experts have long studied the intra-
and cross-dialectal variations in the lens of these
typological features. We follow the intuition of
Nerbonne (2009), defining dialects by their unique
sets of correlated dialect features. These typolog-
ical feature vectors are readily available on the
Electronic Atlas of Varieties of English (eWAVE;
Kortmann et al., 2020)1. Multi-VALUE applies fea-
ture transformations probabilisticially according to
their attestation in eWAVE at the following rates:
100% for obligatory features, 60% for features nei-
ther pervasive nor rare, 30% for rare features and
0% for no information or attested absence. We fol-
low this procedure. More specifically, we model
the space of linguistic features jointly with their
aggregation patterns using a neural network and
investigate its usefulness for cross-dialectal gener-
alization.

3.2 HyperNetworks

We leverage hypernetworks for Low-Rank Adap-
tation (LoRA). LoRA (Hu et al., 2021) is a fine-
tuning approach that keeps the full model parame-
ters fixed and instead updates a low-rank decompo-
sition of the attention matrices. Instead of updating
LoRA weights directly, our approach learns the
weights of a hypernetwork (Ha et al., 2016), which
is then used to generate the appropriate LoRA
weights. To our knowledge, we are the first to
generate LoRA adapters with a hypernetwork for
domain adaptation. We give a detailed outline in
Figure 1 for this novel hypernetwork architecture
for generating LoRA parameters. Concretely, we
lay out the notation for our hypernetwork archi-
tecture as follows. Let Dk

q , U
k
q denote the layer k

low-rank projections associated with the query, and
Dk

v , U
k
v , those associated with the value. We use

hypernetworks g taking as input concat(d, ik{q,v})
where d ∈ [0, 1]# features is the dialect feature vec-
tor and ik{q,v} ∈ {0, . . . , 2 × # blocks} the posi-

1These vectors can be found at https://github.com/SALT-
NLP/multi-value
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Figure 2: Training and Inference pipelines: During training, the hypernetwork learns a mapping from the dialect
feature vector to the LoRA adapter weights that perform alignment. During inference, the same hypernetwork is
used to generate dialect-specific LoRA adapters from dialect features. At both the training and inference time, we
concatenate a positional encoding to the dialect feature to differentiate between transformer blocks, and between the
query and the value LoRA adapters.

tional embedding that differentiates between layers
and between queries and keys. We use separate
hypernetworks for Dk

{q,v} and Uk
{q,v}. Each hy-

pernetwork is parameterized by weights Wd,Wu

denoting the down and up projections respectively.
Finally, for D{q,v} (similarly for U{q,v}) the hyper-
network equations can be written as:

x = concat(d, ik{q,v}) (1)

Dk
{q,v}, U

k
{q,v} = g(x), g′(x) (2)

and more specifically:

D{q,v} = MM(ReLU(MM(x,Wd)),Wu) (3)

where MM stands for matrix multiplication. Equa-
tion 3 also applies to Uk

{q,v} with its respective
weights via a similar calculation. Training Hy-
perLoRA is shown in Figure 2 and Algorithm 1.

3.3 Dialect-Specific Low-Rank Adaptation
Previous cross-lingual adaptation methods have fo-
cused on a variety of different bottleneck adapter
configurations applied after the multi-head atten-
tion in the transformer layer (Lialin et al., 2023;
Pfeiffer et al., 2020b, 2023). Building upon these
efforts, we hypothesize that adaptation at the at-
tention level can be effective for the morphosyntac-
tic variations present in dialects. This hypothesis
stems from the observation that the self-attention
mechanism, known for its sensitivity to syntac-
tic nuances, can better serve syntactical variations

across and within dialects. However, a comprehen-
sive examination of PEFT modules for dialects is
needed, which we leave for future work.

3.4 Morphosyntactic Alignment

While there is an abundance of sentence parallel
bitexts originating from machine translation used
for cross-lingual alignment, the equivalent does
not exist for English dialects. As a remedy, we
employ the rule-based translation system of Multi-
VALUE (Ziems et al., 2023b) to generate paral-
lel corpora for all source dialects. While Multi-
VALUE evaluation was shown to be predictive of
real-world performance (Ziems et al., 2023b), the
synthetic nature of this evaluation is a limiation
of our work discussed further in the Limitations
section.

The Multi-VALUE transformed corpora are only
aligned at the sentence level. However, the differ-
ences we tackle lie at the morphosyntactic level,
which calls for a token-level alignment. To this
end, we leverage unsupervised alignment methods
discussed in previous work (Zhang et al., 2017;
Alvarez-Melis and Jaakkola, 2018). We measure
token-level variations via the earth mover’s dis-
tance, denoted as W(PDIAL,PSAE), where PDIAL
represents the distribution of dialect last layer rep-
resentations, while PSAE corresponds to the dis-
tribution for SAE. The earth mover’s distance,
or Wasserstein’s distance (W), can be approxi-
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mated via Sinkhorn’s divergence (Feydy et al.,
2018) which interpolates between the Wasserstein
Distance, and the Maximum Mean Discrepancy
(MMD) via the equation:

Sε(α, β)
def
= Wε(α, β)−

1

2
Wε(α, α)−

1

2
Wε(β, β)

Here Wε is the computationally-efficient entropy
regularized Wasserstein distance (Cuturi, 2013),
which is defined as follows:

Wε(α, β)
def
= min

π∈Π(α,β)

∫

X×Y
c(x, y)dπ(x, y)

+ εKL(π, α⊗ β)

where x and y are the last layer dialect and SAE rep-
resentations respectively. And similarly X and Y
are the feature spaces for last layer dialect and SAE
representations, respectively. π is the coupling that
minimizes the cost c of moving mass from distribu-
tions α to β. To compute the Sinkhorn divergence,
we use the solver provided by Feydy et al. (2018)
with ε = 0.05 and c as the squared error.

Algorithm 1 HyperLoRA Training

Input: features {ds}s∈S , sentences {xs}s∈S ,
SAE representations hSAE
Initialize M # Main model
Initialize g # Hypernetwork
for training step do
s ∼ S # Sample dialect
Bs ∼ {xs} # Sample batch
θs ← g(ds) # LoRA adapter
for xs ∈ Bs do
hs ←M(xs; θs) # last hidden states

end for
loss← Sε({hs}, hSAE)
backpropagate loss in g

end for
Return: g

4 Experimental Setup

Datasets We evaluate our method on 5 di-
alect transformed variants of GLUE using Multi-
VALUE (Ziems et al., 2023b). We choose African
American Vernacular English (AAVE), Indian En-
glish (IndE), Nigerian English (NgE), Colloquial
Singaporean English (CollSgE), and Chicano En-
glish (ChcE) as our dialects of focus. AAVE has

been the primary focus of previous works in di-
alectal robustness. IndE and NgE are widely used
dialects by over a hundred million of speakers.
CollSgE has shown to be a particularly difficult
dialectal shift (Ziems et al., 2023b) sharing little
linguistic features with mainstream SAE, and with
many unique features in CollSgE alone. ChcE on
the other hand is particularly close to SAE. In our
experiments, we focus on these 5 dialects. Later,
in our ablation studies, we will explore training
HyperLoRA on other dialects closer to CollSgE to
study the impact of dialects used at training time.

Training Details For all experiments, we use
a pretrained RoBERTa Base (Liu et al., 2019) as
the backbone model. For the training of Hyper-
LoRA, we use 1000 WiC (Pilehvar and Camacho-
Collados, 2019) examples from each source di-
alect. At inference time, we plug the generated
LoRA module from the learned hypernetwork in
the backbone model with appropriate task-specific
adapters and their associated classification heads.
We train HyperLoRA with 4 source dialects using
the Adam (Kingma and Ba, 2017) optimizer with a
learning rate of 3e-5, with a linear scheduler, and
using a batch size of 16 for 50 epochs. We load the
model with the lowest loss at the end of training.
These hyperparameters have been selected via a
grid search over learning rates of 1e-5, 3e-5, and
1e-4, batch sizes of 16, 32, and 64, and between
30 and 50 epochs. For task-specific adapters, we
directly utilize readily available GLUE adapters
from Adapterhub (Pfeiffer et al., 2020a). In all of
our experiments, HyperLoRA is trained and evalu-
ated in a zero-shot fashion. For each unseen dialect
(e.g., A), we train HyperLoRA using the remain-
ing dialects (B, C, D, E) and evaluate its dialectal
robustness against A. For example, in Figure 2,
HyperLoRA is trained on AAVE, NgE, ChcE, and
IndE, and evaluated on the target dialect CollSgE.

Baselines In benchmarking HyperLoRA, we
evaluate its (1) resource efficiency against current
task-agnostic dialect methods, its (2) dialectal ro-
bustness against models trained for SAE, and its
(3) ability to effectively utilize expert knowledge
for adapting to new dialects. For each of these re-
search questions, we establish a suitable baseline.
To address the resource efficiency of our method,
we compare HyperLoRA with TADA (Held et al.,
2023) trained on varying numbers of examples
from the target dialect. More specifically, for each
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AAVE ChcE IndE NgE CollSgE

Figure 3: QQP Performance under Few-shot Evaluation: The x-axis denotes the number of examples of the
target dialect being used in the model on a log scale. We use a blue star (and the scattered line) to denote the
performance of HyperLoRA, while the orange line curve shows the performance of TADA using increasingly more
annotated samples. The cost of training scales linearly with the number of annotated samples.

k ∈ [10, 25, 50, 250, 500, 1000], we train TADA
on k WiC samples. We follow TADA to use
1000 examples and keep the remaining training
details unchanged. To highlight the dialectal ro-
bustness of HyperLoRA, we implement a simple
adapter baseline, which we denote by SAE. Us-
ing RoBERTa-Base as our backbone, we add task-
specific adapters trained on the original GLUE
dataset. Similarly to HyperLoRA, this is a zero-
shot baseline. Finally, we establish a baseline that
does not utilize expert knowledge. To do this, we re-
move the hypernetwork component of HyperLoRA,
keeping LoRA modules and our alignment loss. As
opposed to HyperLoRA, these LoRA modules are
cross-dialectal. We train and evaluate both Hyper-
LoRA and LoRA in the same zero-shot manner.

5 Experimental Results

5.1 Efficient Adaptation to Unseen Dialects
First, we highlight the efficiency of using expert
knowledge in adapting to new dialects. For the sake
of simplicity, we restrict our evaluation to Quora
Question Pairs (QQP), which is one of the tasks
with the least variability in performance.

In Figure 3, we show QQP performances across
all 5 dialects. HyperLoRA finds competitive perfor-
mance at a much lower cost, showing comparable
performance to TADA trained on ≈ 250 dialect
samples. For AAVE, and CollSgE, this is lower,
around 50 and 25 respectively. This observation
highlights the value of expert linguistic knowledge
for dialect adaptation, as it can be equivalent to
having 250 annotated samples per dialect—a sub-
stantial benefit. The significance of this finding
becomes evident when considering the vast num-
ber of existing dialects, which exceeds 70, and

the potential emergence of new ones. Acquiring
250 annotated samples for each dialect can be pro-
hibitively expensive and challenging in terms of
finding suitable annotators (Ziems et al., 2023b).
We acknowledge that while HyperLoRA may not
completely bridge the performance gap, it effec-
tively addresses the trade-off between performance
and resource constraints without any dialect exam-
ples. Consequently, it provides a valuable degree
of robustness at an almost negligible cost.

5.2 Zero-Shot Transfer Results

To evaluate the dialectal robustness of HyperLoRA,
we compare HyperLoRA to the SAE baseline
across all 5 dialects in Table 2. We observe that
our method generally achieves higher performance
over the SAE baseline, with the exception of RTE.
Noticeably, HyperLoRA achieves higher perfor-
mance on more than 4 out of 7 tasks. In analyzing
these results, we find that COLA, RTE, and SST2
suffer from large variability in performance. On the
remaining tasks, that is MNLI, QNLI, QQP, and
STSB, HyperLoRA achieves the best or competi-
tive performance. As a whole, there is an improve-
ment of 1.7% in mean performance for AAVE and
0.8% in mean performance for NgE.

In the case of ChcE, our approach fails to bring
a mean performance improvement. It is worth not-
ing that the authors of Multi-VALUE (Ziems et al.,
2023b) also encountered a similar outcome when
training on ChcE instead of SAE. This lack of im-
provement can be attributed to the striking simi-
larities between ChcE and Colloquial American
English. This set of experiments takes into account
the potential variability in the differences between
the source dialects used to train HyperLoRA and
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COLA MNLI QNLI RTE QQP SST2 STSB Mean
Unseen Dialect Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours Orig. Ours

AAVE -0.02 10.5+ 83.7 83.8 90.5 90.5 68.9 68.4 87.0 87.2 92.8 93.5 88.5 88.7 73.0 74.7
ChcE 30.7 31.0 86.3 86.3 93.0 93.1 68.5 66.8 89.6 89.8 93.5 93.1 90.1 90.1 78.8 78.6
IndE 19.4 18.9 82.6 82.9 89.4 89.3 64.2 65.0 86.1 86.3 92.0 92.2 88.1 88.7+ 74.5 74.8
NgE 24.7 26.6 84.6 84.7 90.8 91.0 64.2 66.1 88.2 88.3 92.0 92.6 89.5 89.5 76.2 77.0

CollSgE 4.5 8.0 82.0 82.2 88.3 88.2 66.4 64.6 85.0 85.8+ 91.6 91.1 87.5 87.7 72.1 72.5

Table 2: Zero-shot performance on GLUE. For each task, we report the SAE Task Adapter performance (Orig.)
and the HyperLoRA performance (Ours). We report Matthew’s Correlation score for COLA, the Pearson-Spearman
correlation score for STS-B, and accuracy for the rest. Via a paired bootstrap test at α = 0.05, we label significant
improvements for each task with +. There was no significant drop in performance.

Methods CollSgE Glue Performance
Model COLA MNLI QNLI RTE QQP SST2 STS-B Mean
SAE 4.5 82.0 88.3 66.4 85 91.6 87.5 72.1

LoRA 0.7 82.0 88.3 64.6 85 91.0 87.5 71.3
HyperLoRA 8.0† (+7.3) 82.2 88.2 64.6 85.8+† (+0.8) 91.1 87.7 72.5

Table 3: CollSgE GLUE Performance With RoBERTa Base as our base model, we compare adding SAE-trained
task adapters, adding SAE task adapters and LoRA, and adding SAE task adapters and HyperLoRA. Both LoRA
and HyperLoRA are trained on AAVE, Chicano English, Nigerian English, and Indian English. For each task, we
run a paired bootstrap test with α = 0.05 and label significant improvements w.r.t. the SAE Task Adapter with +
and w.r.t. the LoRA baseline with †. There was no significant drop in performance.

the dialects HyperLoRA is evaluated on. This vari-
ability can explain the differences in performance
gain across dialects.

As a plug-and-play module that can be readily
used by any community, HyperLoRA has the poten-
tial to improve the robustness of the SAE-trained
backbone model regardless of dialect.

5.3 Effectiveness of Expert Knowledge

In order to validate the contribution of expert
knowledge, we compare HyperLoRA with the
LoRA baseline. We report the results in Table
3. We observe that training cross-dialectal LoRA
adapters can negatively impact GLUE performance.
When compared to the naive SAE baseline, LoRA
demonstrates poorer performance with a decrease
of 3.8% and 1.8% on COLA and RTE, respec-
tively. For HyperLoRA, we have found that al-
though there is still a slight decrease in RTE per-
formance -1.8%, it proves to be superior over the
SAE baseline. Specifically, HyperLoRA brings im-
provements of 3.5% on COLA and 0.8% on QQP.
Through a paired bootstrap test, we verify that the
drop in RTE performance is not statistically sig-
nificant, while the improvements on COLA and
QQP are statistically significant. In conclusion, our
findings suggest that employing a hypernetwork to
minimize negative interference, along with lever-

aging expert knowledge, proves to be an effective
strategy for improving cross-dialectal transfer.

6 Ablation Analyses

6.1 Morphosyntactic Alignment

To understand the effectiveness of our morphosyn-
tactic objective, we return to TADA’s setup and
modify its alignment objective to our Sinkhorn Di-
vergence. For both TADA and our alignment objec-
tive, we train dialect-specific adapters for AAVE
using 1000 parallel samples from the SAE WiC
dataset and the Multi-VALUE transformed AAVE
Wic Dataset. We evaluate these adapters on the
GLUE benchmark and report the results in Table 4.

We observe that both TADA and our alignment
objective outperform the naive SAE task adapter.
While our strategy achieves +0.7% on COLA and
-1.8% on RTE comparatively to TADA, we verify
through a paired bootstrap test and find that these
differences are not statistically significant. There-
fore, with no significant difference in performance,
our Sinkhorn divergence-based morphosyntactic
alignment objective presents a well-founded opti-
mization problem that can be efficiently solved. It
offers desirable convergence guarantees, eliminat-
ing the necessity for additional heuristics employed
in the adversarial training approach in TADA.
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Methods Adapters AAVE Glue Performance
Model Dialect Task COLA MNLI QNLI RTE QQP SST2 STS-B Mean
SAE ✗ ✓ -0.02 83.7 90.5 68.9 87.0 92.8 88.5 73.0

TADA ✓ ✓ 24.5 84.8 91.7 70.4 88.1 93.0 89.6 77.4
Sinkhorn ✓ ✓ 25.2 84.7 91.5 68.6 88.1 93.3 89.4 77.3

Table 4: Alignment Objectives: We compare the cross-dialectal alignment objective TADA with our objective
based on the Sinkhorn divergence. For both objectives, we train dialect adapters on AAVE data, and evaluate it on
AAVE GLUE tasks. We run a paired bootstrap test at α = 0.05 but find no significant difference between TADA
and Sinkhorn performances.

CollSgE Glue Performance
Source Dialect L1 dist Coverage COLA MNLI QNLI RTE QQP SST2 STS-B Mean

SAE 4.5 82.0 88.3 66.4 85.0 91.6 87.5 72.1
MalaE, MaltE, JamE, IndSAE 0.219 87.8 7.6 82.1 88.2 67.2 85.7+ 90.7 88.0 72.8
CapeE, FijiAE, MaltE, SriLE 0.209 65.7 7.4 82.2 88.3 65.7 85.7+ 90.7 87.9 72.6

NgE, AAVE, IndE, ChcE 0.257 81.3 8.0 82.2 88.2 64.6 85.8+ 91.1 87.7 72.5

Table 5: Impact of Source Dialects: We compare CollSgE performance when training HyperLoRA on different
source dialects. Typically low average L1 distance and higher coverage indicate that the source dialects are closer to
the target dialect. We label significant improvements in performance over SAE with +.

6.2 Impact of Source Dialects
We study the impact of the source dialects more
closely by analyzing the distinctiveness of the new
dialect at test time with respect to the source di-
alects used for training. This distinctiveness of di-
alect feature sets is natural, in fact, it is commonly
known in dialectology that some features contra-
dict each other (Nerbonne, 2009). Commonly used
metrics to measure dialect differences are the geo-
graphical distance and the Manhattan distance ap-
plied dialect feature vectors (Ziems et al., 2023b).
However, these metrics are not directly suited for
the multi-source setting. To this effect, we develop
a metric for feature coverage, as follows. We hy-
pothesize that HyperLoRA performs best on new
dialects when most of the linguistic features of the
new dialect have been seen during training.

Coverage = 1− ∥[
(∑

s∈S ds
)
− dt]−∥1

∥dt∥1
(4)

where ds and dt are the linguistic feature vectors
for a source dialect s and the target dialect t, re-
spectively. S represents the set of source dialects.
Our metric effectively computes the percentage of
weighted features in the target dialect that are cov-
ered by dialects in S .

To measure the impact of source dialects, we
compute the average Manhattan distance and the
coverage score for all combinations of 4 dialects
that are different from the target dialect. For

CollSgE, we find that the set (CapeE, FijiAE,
MaltE, SriLE) attains the lowest Manhattan dis-
tance, but also a low coverage score. Moving up
in the pareto frontier, the set (MalaE, MaltE, JamE,
IndSAE) attains a low Manhattan distance, but high
coverage score. We train HyperLoRA for these
two sets of source dialects and compare the perfor-
mance to our previous experiment (Section 5). We
report the results in Table 5.

We find that both lower average Manhattan dis-
tance and larger feature coverage can contribute
to performance improvement on the target dialect.
Specifically, simultaneously decreasing the Man-
hattan distances and improving the feature cover-
age can lead to an improvement of +2.6% on RTE
(from NgE, AAVE, IndE, ChcE to MalaE, MaltE,
JamE, IndSAE). Overall, when the new dialect is
particularly close in Manhattan distance and largely
covered by the source dialects, we observe Hyper-
LoRA can lead to the highest performance, with
an improvement of +0.7% on mean performance,
compared to the SAE baseline.

Based on these findings, we demonstrate that
when computational resources are limited, employ-
ing these heuristics offers a straightforward and
efficient strategy for selecting the source dialects
when addressing evolving dialects.

7 Conclusion

In this paper, we propose HyperLoRA, a task-
agnostic, light-weighted, and highly scalable di-
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alect adaptation method. Where only accessing ex-
pert knowledge about dialects, we show that Hyper-
LoRA can lead to robustness improvement against
unseen dialects on the GLUE benchmark, across
five dialects. At inference time, HyperLoRA does
not require any dialect data, which makes it widely
applicable in resource and compute-constrained set-
tings. Furthermore, HyperLoRA is trained with a
data volume that can be easily replaced by manu-
ally translated dialect corpora. This resource and
computational efficiency greatly facilitate the ap-
propriation of language technologies within small
but diverse communities2. Finally, by generating
LoRA adapters using a lightweight hypernetwork,
our approach is highly portable to LLMs with less
than 0.5% additional parameters and without any
additional inference latency. These aspects enable
HyperLoRA to achieve a favorable tradeoff be-
tween the training and inference cost and dialectal
robustness. To sum up, HyperLoRA holds great po-
tential to enable billions of traditionally underrepre-
sented English dialect speakers to access language
technology using their preferred languages.

Limitations

HyperLoRA is trained on pseudo-dialects obtained
using the Multi-VALUE (Ziems et al., 2023b) trans-
formation rules, which are synthetic dialectal shifts
that focus on morphology and syntax-related differ-
ences. It is important to note that these shifts do not
encompass the entirety of possible variations found
in real-world dialects. Therefore, we encourage fu-
ture research to address this limitation and explore
other naturally occuring variations associated with
dialects such as lexical differences, topical shifts
and register shifts. Additionally, while HyperLoRA
can utilize any linguistic vector that provides a
more detailed characterization of dialects during
the testing phase, we did not conduct a sensitivity
analysis for these vectors. This lack of guarantee
can pose challenges since real-world dialectal vari-
ations are often much more nuanced and intricate.

Furthermore, our work does not include a
comprehensive comparison of various parameter-
efficient fine-tuning techniques for dialect adapta-
tion. We encourage further research to delve into
this area and explore it.

Finally, all of our experiments primarily focus on
encoder-only LLMs. As a result, this creates an ex-

2You can find our implementation at
https://github.com/zedian/hyperlora

periment gap where we are unable to verify the per-
formance of our method on encoder-decoder, and
decoder-only architectures. Future work should fill
the gap and further explore task-agnostic dialect
adaptation solutions for models with these alternate
architectures.

Ethics Statement

As highlighted in our limitations, we acknowledge
that we are unable to offer guarantees regarding the
usage of HyperLoRA in communities where intra-
dialectal variations are prevalent. This limitation
stems from the fact that dialects are not uniform en-
tities and encompass diverse variations. Therefore,
it is crucial for members of these dialect commu-
nities to take necessary precautions when applying
HyperLoRA to their use cases.
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A Alignment losses

As an attempt to explain the closeness in perfor-
mance in our alignment objective and TADA’s
alignment objective, we take a closer look at
TADA’s morphosyntactic alignment objective.
TADA solves the alignment problem via adversar-
ial training, where the critic optimizes:

max
Adv

E [ℓadv] = max
θ

Ed∼PDIAL [Adv(d; θ)]

− Es∼PSAE [Adv(s; θ)]

assume Adv is K-Lipschitz,

≈ 1

K
sup

∥Adv∥L≤K
Ed∼PDIAL [Adv(d; θ)]

− Es∼PSAE [Adv(s; θ)]

When c = ℓ2,

= W(PDIAL,PSAE)

Under the ℓ2 ground distance, the last step follows
from the Kantorovich-Rubinstein duality (Villani,
2008). Briefly, when the objective of the critic
reaches optimality, it approximates the Wasserstein
distance up to scaling factor K, while the generator
minimizes this approximate distance. As such, we
have shown that TADA aims to minimize the same
mathematical objective.

Our alignment objective is independent of the
chosen ground distance, as opposed to the dual
problem used by WGAN that only holds when
the ground distance is the ℓ2 distance. Using
Sinkhorn’s divergence, we do not need to intro-
duce an adversarial training procedure that relies
on the optimization and the approximation power
of a critic network. We understand that this is not
a direct comparison as TADA also includes a con-
trastive sequence loss, thus putting a higher weight
on the CLS token.

B Dialectal Differences

To quantify how much of our test sets are be-
ing modified by applying Multi-VALUE, we com-
pute the percentage of entries that have been trans-
formed for each test set in figure 8. On average, for
each dialect, we have over 88% transformed entries
except for Chicano English. This is expected, as
Chicano English shares many similarities with Col-
loquial American English. In the case of Colloquial
Singaporean English, the entries are almost always
transformed by Multi-VALUE. It is difficult in prac-
tice to get a precise estimate of these differences as
dialect variations do not fit in deterministic baskets,
instead different features are utilized at different
rates.
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Models CollSgE STS-B
Source Dialects L1 dist Coverage Performance
CapeE, FijiAE,
FijiBE, MalaE

0.228 0.866 87.97

JamE, aave,
AppE, FijiBE

0.287 0.815 87.84

JamE, CapeE,
MaltE, AbEng

0.231 0.837 88.03

JamE, FijiAE,
IndSAE, AbEng

0.238 0.844 87.99

SriLE, aave,
MalaE, AbEng

0.257 0.871 87.98

SriLE, IndE,
AppE, FijiAE

0.246 0.675 87.87

SriLE, IndE,
AppE, IndSAE

0.253 0.744 87.89

SriLE, NgE,
AppE, FijiBE

0.268 0.777 87.89

MalaE, MaltE,
JamE, IndSAE

0.219 0.878 88.03

CapeE, FijiAE,
MaltE, SriLE

0.209 0.657 87.88

Table 6: CollSgE STS-B Performance with Hyper-
LoRA trained on different source dialects. We report
both the L1 distance and the coverage metric.

Furthermore, the applied features to the test sets
are diverse. In table 9, we find that across all di-
alects, a large majority of rules are being applied
to the test sets.

C Different Source Dialects

Our ablation study focuses on few source dialect
combinations. As a result, drawing correlations risk
being misleading given the relatively small sample
of experiments we have at the moment. We report
additional experiments for our ablation study on
the impact of source dialects in table 6 and figure 4.
In these additional experiments for CollSgE STS-
B, training on source dialects with high coverage
score and low L1 distance maintains overall best
performance.

D Computational and Parameter
Efficiency

Parameter costs for HyperLoRA are reported in Ta-
ble 7. d and t mark the dependence on the number
of dialects and the number of tasks, respectively.
We compare HyperLoRA to Multi-VALUE (Ziems
et al., 2023b) and TADA (Held et al., 2023). The
Multi-VALUE models are standard fine-tuning and
adapter tuning methods applied directly to the di-
alect transformed task data.

Figure 4: Performance of HyperLoRA trained on dif-
ferent source dialects with respect to L1 distance and
Coverage metric

Model Approach # Params

MultiVALUE
Fine-tuning d× t× 125M

Adapter d× t× 1.2M
TADA Adapter d× 1.5M

HyperLoRA HyperLoRA 225K

Table 7: Computational efficiency with respect to
the number of trainable parameters for MultiVALUE,
TADA, and HyperLoRA. All these reported values use
a RoBERTa Base model as the base model. TADA in-
cludes a critic network.

HyperLoRA is extremely lightweight. We have
experimented with more complex architectures
which did not show further improvements in per-
formance. We hypothesize this is due to the fact
that the space of linguistic features is both simple
and has low intrinsic dimension.

E LoRA vs Adapters

In a previous iteration of the paper, we investigated
the use of Hyperformer++ (Mahabadi et al., 2021)
as our hypernetwork instead of HyperLoRA. We
present our results in table 10. What we find is that
bottleneck adapters are typically worse than LoRA
adapters in the zero-shot setting.
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Percentage of Transformed Entries
Dialect COLA MNLI QNLI RTE QQP SST2 STS-B Mean
AAVE 95.2 93.6 95.0 99.3 97.0 93.2 91.8 95.0
ChcE 55.3 59.0 26.4 74.0 41.4 57.9 37.1 50.1
IndE 98.8 96.8 99.6 100 98.8 97.1 99.6 98.7
NgE 82.6 87.5 84.5 98.6 82.2 91.3 91.2 88.3

CollSgE 99.7 97.6 99.5 100 99.7 97.1 99.8 99.1

Table 8: Dialectal Differences Percentage of transformed entries for each test set.

Number of Applied Features
Dialect Total Features COLA MNLI QNLI RTE QQP SST2 STS-B
AAVE 118 92 109 91 86 110 89 92
ChcE 30 23 28 24 25 28 22 24
IndE 90 71 85 77 68 84 74 73
NgE 45 34 42 32 35 42 34 32

CollSgE 67 58 63 54 51 63 54 55

Table 9: Dialectal Differences Number of applied transformations for each test set.

Methods NgE Glue Performance
Model Trainable Params. COLA MNLI QNLI RTE QQP SST2 STS-B Mean

SAE Task Adapter 0 24.7 84.6 90.8 64.2 88.2 92.0 89.5 76.2
Adapter 1.1M 23.8 83.8 89.9 66.7 86.9 91.7 89.0 75.9
LoRA 295K 25.6 84.6 90.8 65.3 88.2 92.4 89.4 76.6

Hyperformer++ 1M 20.3 83.2 87.6 63.9 88.3 91.9 88.7 74.8
HyperLoRA 225K 26.6 84.7 91.0 66.1 88.3 92.5 89.5 77.0

Table 10: Zero-shot NgE GLUE Performance RoBERTa-Base model adapters and LoRA. We compare adapter
models to LoRA models, and in particular, Hyperformer++ to HyperLoRA. LoRA, Adapter, Hyperformer++, and
HyperLoRA are trained using our alignment objective.
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