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Abstract

Previous approaches for automatic lay sum-
marisation are exclusively reliant on the source
article that, given it is written for a technical
audience (e.g., researchers), is unlikely to ex-
plicitly define all technical concepts or state
all of the background information that is rele-
vant for a lay audience. We address this issue
by augmenting eLife, an existing biomedical
lay summarisation dataset, with article-specific
knowledge graphs, each containing detailed
information on relevant biomedical concepts.
Using both automatic and human evaluations,
we systematically investigate the effectiveness
of three different approaches for incorporating
knowledge graphs within lay summarisation
models, with each method targeting a distinct
area of the encoder-decoder model architec-
ture. Our results confirm that integrating graph-
based domain knowledge can significantly ben-
efit lay summarisation by substantially increas-
ing the readability of generated text and im-
proving the explanation of technical concepts.1

1 Introduction

Lay summarisation consists of generating a concise
summary that illustrates the significance of a longer
technical (or otherwise specialist) text and is com-
prehensible to the non-expert (Kuehne and Olden,
2015). A lay summary should contain minimal
jargon and technical details (e.g., methodology),
instead focusing largely on the simplification of
key technical concepts and the explanation or rele-
vant background information, thus allowing readers
without technical knowledge to grasp the general
topic and main ideas of an article (Srikanth and Li,
2021; Goldsack et al., 2022). However, since the
original article is intended for a technical audience
who already possess some domain knowledge, it

∗ Corresponding author
1Our code and data is available at https:

//github.com/TGoldsack1/Enhancing_Biomedical_
Lay_Summarisation_with_External_Knowledge_Graphs.

Figure 1: Overview of the “knowledge graph-enhanced
Lay Summarisation" task formulation, exemplifying
graph-based external information.

is unlikely to explicitly include all the information
necessary for the lay summary, such as background
details or definitions. As a result, lay summaries
are often highly abstractive, adopting a simpler lexi-
con than the original article (Goldsack et al., 2022),
and are typically written by experts who possess
the knowledge required to simplify and explain the
contents of the article (King et al., 2017).

Despite this disparity between lay summary and
source article, automatic approaches to lay sum-
marisation have typically relied solely upon the
source article as input (Chandrasekaran et al., 2020;
Guo et al., 2021; Luo et al., 2022a). Aiming to
address this, we propose enhancing lay summari-
sation models with external domain knowledge,
conducting the first study on knowledge graph-
enhanced lay summarisation with a focus on
biomedical articles. We augment eLife (Goldsack
et al., 2022), an existing high-quality lay sum-
marisation dataset, with article-specific knowledge
graphs containing information on the technical con-
cepts covered within the articles and the relation-
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ships between them (exemplified in Figure 1), thus
providing a structured representation of the domain
knowledge that an expert human author might draw
upon when writing a lay summary (§3). In do-
ing this, we hypothesise that a model’s ability to
simplify and explain technical concepts for a lay
audience will improve.

Although other forms of summarisation task
(e.g., news articles) have seen significant research
in the enhancing models using knowledge graphs
(Huang et al., 2020; Zhu et al., 2021a; Lyu et al.,
2022), this has yet to be explored for lay sum-
marisation. To our knowledge, there is no work
on determining the most effective way to incorpo-
rate graph-based knowledge for lay summarisation
or other summarisation tasks. Therefore, we sys-
tematically investigate the effectiveness of three
different methods for injecting graph-based in-
formation into lay summarisation models (§4)
assessing them with both automatic and human
evaluation (§5 & §6). Our results demonstrate that
the integration of graph-based domain knowledge
can significantly improve automatic lay summari-
sation enabling models to generate substantially
more readable text and to better explain technical
concepts.

2 Related Work

2.1 Lay Summarisation

The task of lay summarisation is a relatively
novel one, introduced by the LaySumm subtask
of the CL-SciSumm 2020 shared task series (Chan-
drasekaran et al., 2020). Introducing a multi-
domain corpus of 572 article-lay summary pairs,
the task attracted a total of 8 participants. The win-
ning system, proposed by Kim (2020), adopted a
hybrid approach, using a PEGASUS-based (Zhang
et al., 2020) model to generate an initial abstractive
lay summary before augmenting this with suffi-
ciently readable article sentences extracted by a
BERT-based model (Devlin et al., 2019).

Subsequent lay summarisation work has focused
almost exclusively on the introduction and bench-
marking of new corpora (all from the biomedical
domain), rather than introducing specific modelling
approaches for the task. Guo et al. (2021) intro-
duce CDSR, a dataset derived from the Cochrane
Database of Systematic Reviews, whereas Gold-
sack et al. (2022) introduce PLOS and eLife, two
datasets derived from different biomedical jour-
nals (the Public Library of Science and eLife

journals, respectively).2 Both studies benchmark
their datasets with widely-used summarisation ap-
proaches, with BART variants (Lewis et al., 2020)
invariably achieving the strongest performance. In
another highly related work, Luo et al. (2022a)
address the task of readability-controlled summari-
sation using data derived from PLOS, training a
BART-based model to produce both the abstract
and lay summary of an article in a controlled set-
ting.

In contrast to previous works, we investigate
the unexplored approach of modelling and inte-
grating structured domain knowledge into lay sum-
marisation models using article-specific knowledge
graphs.

2.2 Knowledge Graph-Enhanced Text
Generation

In recent years, the utilisation of knowledge graphs
(KGs) containing external knowledge for text gen-
eration has seen increased interest, particularly
when it comes to the modelling of commonsense
knowledge. In particular, works focusing on tasks
such as dialogue generation (Zhou et al., 2018;
Tang et al., 2023), commonsense-reasoning (Liu
et al., 2021), story generation (Guan et al., 2019;
Tang et al., 2022), essay generation (Yang et al.,
2019) have all seen the introduction of common-
sense KG-enhanced models.

Some recent work has also focused on using KGs
for abstractive summarisation, but tending towards
modeling internal knowledge. Aiming to improve
the faithfulness and informativeness of summaries,
Huang et al. (2020), Zhu et al. (2021a), and Lyu
et al. (2022) all utilise OpenIE to construct fact-
based knowledge graphs from source documents
(news articles). Huang et al. (2020) and Zhu et al.
(2021a) extract graph node features using graph
attention networks (Veličković et al., 2017), before
incorporating these into the summarisation model
decoder using an attention mechanism. Lyu et al.
(2022) instead make use of additional semantic loss
measures to attempt to capture extracted facts using
an adapted pointer-generator network.

In contrast to previous works, we apply KG-
based techniques to biomedical lay summarisation
(as opposed to news article summarisation), a do-
main with additional challenges, including the ex-
tensive length of input articles and the presence of

2A version of these datasets with different test sets is also
used within the BioLaySumm 2023 shared task (Goldsack
et al., 2023a), that ran in parallel with this work.

8017



complex technical concepts that need to be simpli-
fied or explained. Furthermore, due to the unique
requirements of the task, we innovate by construct-
ing knowledge graphs largely using external do-
main knowledge sources rather than from the arti-
cle itself, as is the case with previous approaches.

3 Article Knowledge Graphs

We augment eLife, an existing dataset for biomedi-
cal lay summarisation with heterogeneous article-
specific knowledge graphs (KGs). Each KG
contains structured information on the complex
biomedical concepts covered within the article and
the relationships between them. In order to localise
this information and provide an indication of where
in an article a concept is mentioned, we also choose
to model the article’s section-based document struc-
ture within our graphs through the use of section-
specific nodes. In the following, we describe in
detail: 1) our process for extracting the knowledge
that is used by our model (§3.1), and 2) how we
structure that knowledge within a knowledge graph
(§3.2). The methods by which we integrate graph-
based knowledge into summarisation models are
discussed in §4.

3.1 Knowledge Extraction

To extract relevant domain knowledge for an article,
we draw upon the Unified Medical Language Sys-
tem (UMLS) (Bodenreider, 2004). This rich and
actively-maintained resource has long been used as
a key knowledge source for NLP in the biomedical
domain (McCray et al., 2001; Demner-Fushman
et al., 2010; Kang et al., 2021) and is comprised of
three primary components: the Metathesaurus, the
Semantic Network, and the Specialist Lexicon and
Lexical Tools. The Metathesaurus is an extensive
multi-lingual vocabulary database containing infor-
mation on a large number of biomedical concepts,
including their various names and definitions. The
Semantic Network defines a set of semantic types
that represent broad subject categories into which
all concepts in the Metathesaurus can be assigned.
Additionally, high-level relationships that occur be-
tween different semantic types are also defined. To
extract the UMLS concepts mentioned within a
given article, we utilise MetaMap (Aronson and
Lang, 2010), one of the Lexical Tools provided
alongside UMLS for this exact purpose, that is
widely used in previous work (Sang et al., 2018;
Sharma et al., 2019; Lai et al., 2021). For all arti-

Metric Abstract Lay Summary Definitions
FKGL↓ 15.57 10.92 10.55
CLI↓ 17.68 12.51 13.02
DCRS↓ 11.78 8.83 10.36
WordRank↓ 9.21 8.68 8.6

Table 1: Mean readability scores for abstracts, lay sum-
maries, and key UMLS definitions for eLife. FKGL
= Flesch-Kinkaid Grade Level, CLI = Coleman-Liau
Index, DCRS = Dale-Chall Readability Score.

cles in eLife, we apply MetaMap to each section
in turn, retrieving all mentioned UMLS concepts.
We restrict MetaMap to only a select number of
English vocabularies without prohibitive access re-
strictions, but otherwise run it using default set-
tings.

In line with observations made in previous works
(Lai et al., 2021), we found that MetaMap, whilst
succeeding in linking biomedical entities men-
tioned in the text with their corresponding UMLS
concepts, also frequently returned a number of
irrelevant concepts. Therefore, we adopt a text
overlap-based approach to filter the original pool
of extracted concepts for a given section, which we
empirically found to eliminate the vast majority of
the noise.3

For each remaining UMLS concept, we retrieve
all semantic types with which it is associated, in
addition to the formal definitions of both the con-
cept and semantic types. Notably, these definitions
are used as an integral component within all three
KG-enhancement methods.4 In order to confirm
their suitability for a lay audience, we calculate
and compare their average readability scores with
those reported by Goldsack et al. (2022) for both
the technical abstracts and lay summaries of eLife
articles. The results of this analysis, given in Table
1, show that the UMLS definitions obtain scores
that are overall much closer to those of the lay
summaries than the abstracts, actually exceeding
them in two out of the four metrics (FKGL and
WordRank). An example of the definition format
used for text augmentation is given in Figure 6 in
the Appendix. In the next section, we describe
how we represent all extracted information within
article-specific knowledge graphs.

3More details on MetaMap vocabularies, noise reduction
process, and the average article KG statistics are provided in
the Appendix.

4Concepts without a formal UMLS definition are also re-
moved from the final pool.
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Figure 2: Example of article knowledge graph structure. Graph nodes are coloured as follows: Document, Section,
Metadata, Concept, Semantic type.

3.2 Graph Construction
Each graph G = {V, E}, where V is a set of nodes
(or entities) and E is a set of edges. Each edge
eij ∈ E defines a relation rij between entities
vi, vj ∈ V , and thus can be represented as a triplet
eij = (vi, rij , vj). All graphs are heterogeneous,
containing multiple types of entities and relations.
Figure 2 presents a visualisation of an article knowl-
edge graph.5 Each type of node is described below:

• Document node – the central root node,
which is the ancestor of all other nodes in
the graph. We label this node simply with the
unique ID assigned to each article.

• Section node – each section node represents
a specific titled section (e.g. Introduction) of
the document, including the abstract. To label
these nodes, we concatenate the article ID
with “_Abs" for the abstract or “_Sec{i}" for
other sections, where {i} is the index of the
section (zero-based).

• Metadata node – identify additional informa-
tion relating to the article or its specific sec-
tions. This includes article and section titles,
article keywords, and the date of publication.

• Concept node – nodes representing UMLS
concepts. These are labelled with their unique
UMLS identifier (CUI).

5Note that, for visual clarity, this example contains signifi-
cantly fewer concept and semantic type nodes than are present
in the actual article graph.

• Semantic type node – nodes representing
semantic types from the Semantic Network.
These are labelled with their unique Semantic
Type identifier (TUI).

In addition to the 54 different relationship types
defined within the semantic network (e.g., affects
in Figure 2), we define several relations in order to
represent the graph structure and additional meta-
data. Specifically, we define the relations contains,
was_published_in, has_title, and has_keyword.

4 Knowledge-Enhanced Lay
Summarisation Approaches

We investigate the effectiveness of three differ-
ent methods for incorporating external knowledge
from article graphs into encoder-decoder-based
summarisation models. Our experiments are care-
fully designed so as to target a distinct aspect
within the model architecture (i.e., the input, the en-
coder, and the decoder) with each selected method,
taking inspiration from models that have recently
been proven effective in the domain of news ar-
ticle summarisation (Zhu et al., 2021a; Pasunuru
et al., 2021). Figure 3 provides a visualization of
how each of these approaches fits into this architec-
ture. To allow the ingestion of the full input arti-
cle, we make use of Longformer Encoder-Decoder
(Beltagy et al., 2020) as our base model for all
experiments. This BART-based model replaces
standard transformer self-attention with a sparse
attention mechanism that scales linearly to the se-
quence length, enabling the processing of longer
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Figure 3: Visualisation of how our various knowledge-enhancement approaches incorporate external knowledge
from article knowledge graphs into a transformer-based encoder-decoder architecture (as described in §4). A)
Decoder cross-attention, B) Document embedding enhancement, C) Article text augmentation.

texts (such as research articles). We describe each
knowledge-enhancement approach in detail below.

(A) Decoder cross-attention. We make use of a
Graph Attention Network (GAT) (Veličković et al.,
2017) to obtain an embedding of the article graph
G in parallel with the base model encoder.

HG = GAT(G) (1)

These Graph Neural Network (GNN) models pro-
duce a final set of node features (i.e., a graph em-
bedding) by using attention layers to efficiently ag-
gregate over the features of neighboring nodes, and
are widely used in current literature to aggregate
graph-based information for NLG tasks (Huang
et al., 2020; Zhu et al., 2021b; Liu et al., 2021).
During the decoding phase, we follow previous
works (Zhu et al., 2021a) by forcing our model to
attend to the KG embedding HG . Specifically, in
every transformer layer of the decoder, we include
a second cross-attention mechanism that occurs
directly after the standard encoder cross-attention
(see arrow A in Figure 3) and attends to the output
of the GAT-based model.

(B) Document embedding enhancement.
Again, we obtain an embedded graph represen-
tation HG using the GAT model, but rather than
attending to graph embeddings during decoding,
we follow Pasunuru et al. (2021), combining the
embedded node information into the final docu-
ment embedding (i.e., the output of the encoder).

Specifically, we concatenate the document and
graph embeddings, before passing them through
an additional encoder layer. For a given input
document X , this process can be formalised as
follows:

HX = Encoder(X) (2)

HC = [HX ;HG ] (3)

H∗ = p ·EncoderLayer(HC)+ (1− p) ·HC (4)

where HX is an embedding of document X , HC is
the concatenated document and graph embeddings,
H∗ is the final ‘enhanced’ document embedding
that is subsequently attended to during decoding,
and p is a scaling factor controlling the extent to
which the additional encoder layer output is incor-
porated in the final enhanced document embedding.
Note that p is treated as a hyperparameter to the
model, for which a value of 0.25 was found to
provide the strongest validation set performance.6

(C) Article text augmentation. We also experi-
ment with simply augmenting the input text with
textual explanations of the key concepts (and their
relations) derived from the graph. Whilst this may
be arguably the most ‘natural’ way for a PLM-
based model to interpret external information, this
approach leads to an exponential increase in the

6We also find that a large value of p causes significant
degradation in performance, suggesting that the original docu-
ment information is lost.
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number of tokens required to describe each ele-
ment, hence it is restricted to a set of few concepts.
We select only those entities which are likely to
be most central to the topic of the article (and,
therefore, relevant to the lay summary). Specifi-
cally, we take the concept nodes that are mentioned
in the article abstract and use the graph relations
and retrieved definitions to provide a textual expla-
nation of these salient concepts and their seman-
tic types, which is then prepended to the article
text. This takes the format of “{concept_name} =
{concept_definition}. {concept_name} is a {sem-
type_name}." repeated for each selected concept,
followed by semantic type definitions formatted
“{semtype_name} = {semtype_definition}" repeated
for all mentioned semantic types.

5 Experimental Setup

5.1 Data

We derive knowledge graphs for all articles in eLife
(Goldsack et al., 2022), a dataset for biomedical lay
summarisation containing 4,828 article-summary
pairs. Target summaries are expert-written lay sum-
maries (i.e., summaries with a non-expert target
audience) and inputs are the full text of the cor-
responding biomedical research articles. As ex-
plained in §1, we believe this task to be particularly
suitable for domain knowledge augmentation due
to the contrast in the level of expertise of the target
audience between source and target which causes
a discrepancy in the language used (specifically,
reducing or explaining jargon terms) and the level
of background information required.7

5.2 Baselines

As a baseline model, we include BART (Lewis
et al., 2020), the state-of-the-art benchmark re-
ported by Goldsack et al. (2022) for eLife, as
well as in other previous lay summarisation works
(Guo et al., 2021). Additionally, we include the
reported performance of BARTscaffold (Goldsack
et al., 2022), a variant of BART trained to produce
both the abstract and lay summary of an article in a
controlled setting, which is equivalent to the model
proposed by Luo et al. (2022a).8

7This discrepancy is evidenced in the analysis provided by
Goldsack et al. (2022).

8Note that the original code for Luo et al. (2022a) is not yet
available at the time of writing and their results are reported
on a different dataset and thus are not comparable.

5.3 Implementation and Training

Each knowledge-based approach is implemented
by manually adapting the Longformer implementa-
tion from Huggingface (Wolf et al., 2020) and, fol-
lowing previous work on lay summarisation (Chan-
drasekaran et al., 2020; Luo et al., 2022b; Gold-
sack et al., 2022), uses the full article text as input.
For GAT-based models, we make use of the Deep
Graph Library package (Wang et al., 2019) to im-
plement a 3-layer GAT with 4 attention heads at
each layer. For article graphs, we vary our node
initialisation approach based on node type (as de-
fined in §3.2). Specifically, we initialise concept
and semantic type node features, with the embed-
dings of their textual definitions; document and
section nodes with the embeddings of their title
text (with title metadata nodes being subsequently
ignored); and remaining metadata nodes (publi-
cation date and keywords) with embeddings on
their textual content. All embeddings are gener-
ated using SciBert (Beltagy et al., 2019), a lan-
guage model specifically trained on research pa-
pers from Semantic Scholar (Ammar et al., 2018)
that is widely used for scientific data (Cohan et al.,
2019; Cai et al., 2022; Goldsack et al., 2023b).
Furthermore, all node embedding features are con-
catenated with one-hot features according to node
type, as well as Random Walk Positional Encod-
ings (Dwivedi et al., 2021). Following initialisa-
tion with allenai/led-base-16384 checkpoint,
we train all models on A100 GPUs and retain the
checkpoint with the best validation set performance
(more details provided in the Appendix).

5.4 Evaluation Setup

We conduct both automatic and human evaluations
to provide a comprehensive assessment of how
each knowledge-enhancement method affects the
overall performance.

Automatic evaluation. For each model, we re-
port the average scores of several automatic met-
rics on the test split of eLife. As is common prac-
tice, we report widely-used summarisation metrics:
BERTScore (Zhang et al., 2019) and the F1-scores
of ROUGE-1, 2, and L (Lin, 2004).

To assess the readability of generated summaries,
we report Flesh-Kincaid Grade Level (FKGL) and
Dale-Chall Readability Score (DCRS), both of
which compute an estimate of the US-grade level
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Model Relevance Readability Factuality
R-1↑ R-2↑ R-L↑ BeS↑ CLI↓ DCRS↓ BaS↑

BART 46.57 11.65 43.70 84.94 11.7 9.36 -2.39
BARTscaffold 45.28 10.99 42.51 84.65 11.32 9.19 -2.57
Longformer 47.23 13.20 44.44 85.11 11.72 9.09 -2.56
– text-aug 48.58* 14.24* 45.71* 85.4* 10.94* 8.72* -2.45*
– doc-enhance 48.10* 14.43* 45.52* 85.33* 10.72* 8.50* -2.35*
– decoder-attn 48.30* 13.93 45.45* 85.39* 10.99* 8.75* -2.48*

Table 2: Average performance of models on eLife test split. R = ROUGE F1, BeS = BERTScore F1, CLI =
Coleman-Liau Index, BaS = BARTScore. * denotes that KG-enhanced model results are statistically significant
with respect to the base model (Longformer) by way of Mann-Whitney U test.

required to comprehend a text.9

Additionally, we evaluate factuality using
BARTScore (Yuan et al., 2021), which has been
shown to have a strong alignment with human judg-
ments of factual consistency in a recent study fo-
cusing specifically on long documents (Yee Koh
et al., 2022). Following Yee Koh et al. (2022), we
adapt BARTScore to use Longformer (thus allow-
ing it to process the entire document as input) and
fine-tune it on eLife.

Human evaluation. To provide a comprehensive
assessment of the summaries generated by each
knowledge-enhanced model, we conduct a human
evaluation focusing on readability and factuality.
Specifically, making use of 5 randomly sampled ar-
ticles from the eLife test set, we ask human judges
to evaluate each sentence within a generated sum-
mary along the following binary criteria: 1) Factu-
ality - is the sentence factually correct (with respect
to the source article); and 2) Readability - would
a layperson be able to understand this sentence.10

To help determine the factuality of the sentence,
the annotator has access to the PDF of the source
article as well as the reference lay summary.11

6 Experimental Results

6.1 Automatic Evaluation

Table 2 presents the performance of different mod-
els using the described automatic evaluation met-
rics on the test set of eLife. In addition to applying
KG-enhancement methods in isolation, we also ex-
periment with combining different methods, which

9Computed using the textstat package.
10An average of 68.5 sentences evaluated per model.
11Following Yee Koh et al. (2022), we encourage judges

to use text-based search within the article to quickly identify
relevant passages rather than asking them to read each article
in full, reducing the cognitive burden placed upon them.

we largely find to be detrimental to model perfor-
mance. Discussion and results (Table 6) of com-
bined methods are provided in the Appendix. We
discuss the performance of individually applied
methods below, focusing on each aspect of auto-
matic evaluation in turn.

Relevance Longformer can be seen to outper-
form the standard BART model in terms of rele-
vance metrics, indicating that processing the entire
document provides some benefit for lay summari-
sation. Additionally, all three knowledge enhance-
ment methods significantly obtain improved scores
across almost all relevance metrics (with the excep-
tion of R2 for the ‘decoder attention’ model). This
provides a strong indication that the addition of
graph-based domain knowledge provides models
with relevant external information, enabling them
to produce lay summaries that are closer in resem-
blance to the high-quality references.

Readability For readability metrics, it can first
be noted that Longformer-based models obtain
lower CLI and DCRS scores than those BART-
based models. The calculation of CLI is based on
the number of characters, words, and sentences it
contains, whereas DCRS is based on the frequency
of “familiar" (i.e., commonly-used) words, suggest-
ing that Longformer produces summaries that are
less syntactically and lexically complex.

We observe that the application of all knowledge
enhancement methods results in improved scores
for both metrics, with the document enhancement
approach achieving the largest gains. This indicates
that all knowledge enhancement methods are able
to successfully influence the phrasing and structure
of the summaries being generated by increasing the
usage of more common (i.e., less technical) termi-
nology. As reported in Table 1, the average CLI
and DCRS scores for the reference lay summaries
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Model # Readability Factuality
Longformer 73 78.08 60.96
– text-aug 65 96.92* 68.46
– doc-enhance 67 97.01* 55.97
– decoder-attn 69 95.65* 63.77

Table 3: Average percentage of generated sentences pos-
itively classified by judges for each high-level binary
criteria. # = total number of sentences generated across
all summaries. * denotes that KG-enhanced model re-
sults are statistically significant with respect to the base
model (Longformer) by way of Mann-Whitney U test.

of eLife are 12.51 and 8.83, respectively.

Factuality For BARTScore (BAS), we again see
a statistically significant improvement over the
base Longformer model for all KG-enhancement
methods, with the greatest improvement being ob-
tained by the doc-enhance method. In order to gain
further insight in these results, we also calculate
the BARTScore values obtained by reference sum-
maries, getting a mean score -2.39, which is similar
to that of all tested models (and identical to that of
BART). This suggests that all models are able to
produce summaries with generative probabilities
similar to that of the reference summaries. How-
ever, given that one model (doc-enhance) actually
outscores the reference summaries, further analysis
is needed to gain an understanding of the difference
in the factual correctness of summaries produced
by each method, for which we turn to our human
evaluation.

6.2 Human Evaluation

Given the challenging and time-consuming nature
of evaluating the factuality of technical biomedical
sentences against the source article, we carefully
plan our human evaluation so as to ensure relia-
bility in our results. We employed two annotators
to evaluate generated sentences following the pro-
cedure laid out in §5, both of whom are experts
in NLP and familiar with common model short-
comings (e.g., hallucinations). Table 3 presents the
total percentage of sentences that were positively
classified for both readability and factuality aver-
aged across evaluators, who achieve a Cohan’s κ
of 0.42.

Discussion The results in Table 3 suggest that
the application of all KG-enhancement methods
causes a notable increase in the readability of the
text produced by the model, with all models scor-

a. [Meiosis]
Longformer - During meiosis, the DNA in one of the chromo-
somes is copied and then the two copies are recombined so that
each new generation will have a single copy of the gene that en-
codes the protein encoded by that gene.1/2

w/ text-aug - ... a process known as meiosis ... two copies of each
chromosome are then exchanged between the newly formed cells,
which results in a unique set of genes being passed on to the next
generation.2/2

b. [Glabrous skin / Mechanoreceptors]
Longformer - The orientation of an object depends largely on how
its edges activate mechanoreceptors in the glabrous skin of the
fingertips.0/2

w/ doc-enhance - The fingertip’s surface is covered by a ... layer
of skin known as the glabrous skin.2/2 These cells are responsible
for sensing touch, and they are also responsible for detecting the
orientation of objects that touch them.2/2

c. [Slow wave sleep]
Longformer - Most studies of sleep have focused on ... slow wave
sleep, in which the brain’s activity alternates between periods of
alternating periods of slow and fast sleep.0/2

w/ decoder-attn - Slow wave sleep is characterized by rhythmic
waves of electrical activity in the brain, which are thought to be
part of the process by which the brain consolidates memories.2/2

Figure 4: A case study comparing how the applica-
tion of each method affects the explanation of specific
technical concepts within the human evaluation sample.
Colours and superscript are used to denote the number
of evaluators who judged the sentence as readable for a
lay audience (e.g., 2/2 = 2 out of 2 evaluators).

ing significantly higher than the base Longformer
model. Alternatively, the results for factuality show
that, although there is a slight variance in perfor-
mance between KG methods, none of them are
judged to be by a statistically significant margin.
These results indicate that all methods are able to
effectively introduce relevant external information
into the model, enabling it to produce text that is
easier for a lay audience to comprehend without
significantly compromising the factual correctness
of the base model.

Case Study To gain a better insight into how
knowledge enhancement methods influence the
readability of generated summaries, we present a
case study in Figure 4 in which we compare the ex-
planations of specific technical concepts generated
by KG-enhanced models and the base Longformer
model, alongside their annotator ratings.12

These examples demonstrate how KG-
enhancement methods improve the model’s
handling of technical concepts, thus making them
easier to understand for a lay reader. Specifically,

12An extended version of this case study is given in Figure
5 in the Appendix.
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examples show how methods can influence the
model to generate an explanation in instances
where the base model fails to provide one (b) or
improve the explanation in instances where the
base model’s is difficult to understand (a and c).

7 Conclusion

This papers presents the first study on the use
of knowledge graphs to enhance lay summarisa-
tion, augmenting the biomedical lay summarisa-
tion dataset eLife with article-specific knowledge
graphs containing domain-specific external knowl-
edge on relevant technical concepts. We compare
three distinct approaches for incorporating graph-
based knowledge into encoder-decoder summarisa-
tion models, placing an emphasis on the readabil-
ity and factual correctness of the generated output.
Our results suggest that integrating external knowl-
edge has the potential to substantially improve lay
summarisation, particularly for the generation of
readable text and explanation of technical concepts.
We would like to see future work investigate the use
of additional graph representations, as well as their
integration into larger models that adopt different
architectures (e.g., decoder-only).

Limitations

One possible limitation of our work is derived from
the use of resources from UMLS (i.e., UMLS con-
cept names, semantic types and relations, defini-
tions, etc.). Accessing these resources requires an
individual license with the US National Library
of Medicine (NLM), and their subsequent distribu-
tion is restricted by this license agreement. There-
fore, it is likely that we will have to confirm the
license status of those who wish to have access to
the knowledge-graph resources used in this work.
In an attempt to reduce any potential impacts this
will have on the ability to share our resources, we
only make use of only a select number of vocabu-
laries less restrictive licences. More details on the
vocabularies used are provided in the Appendix.
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A Appendix

Node type Average Count
Document 1.00
Section 5.90
Metadata 7.49
Concept 364.93
SemType 63.47

Table 4: The average node type frequency statistics for
a single article in the train split.

Graph Statistics Table 4 presents the average
node type frequencies in the graph of a given article.
Additionally, Tables 7 and 8 present the average
semantic type (SemType) node frequencies, and Ta-
ble 9 presents the average relation frequencies (all
of which are located at the end of the Appendix).

MetaMap - UMLS vocabularies. As mentioned
in §3, we restrict MetaMap to a select num-
ber of English vocabularies with access restric-
tions lower than level 4.13 Specifically, we al-
low MetaMap to use the following vocabularies:
Alcohol and Other Drug Thesaurus (AOD), Dis-
eases Database (DDB), CRISP Thesaurus (CSP),
DrugBank (DRUGBANK), Diagnostic and Sta-
tistical Manual of Mental Disorders - Fifth Edi-
tion (DSM-5), Human Phenotype Ontology (HPO),
NCI Thesaurus (NCI), MedlinePlus Health Topics
(MEDLINEPLUS), LOINC (LNC), MeSH (MSH),
RxNorm (RXNORM), and Gene Ontology (GO).

MetaMap - Noise reduction. We found that
MetaMap, in addition to accurately identifying
UMLS concepts that were mentioned in a pas-
sage of text, often also returned a large number
of unwanted concepts. These typically were only

13Information on all possible MetaMap vocabularies
and their access restrictions can be found on the fol-
lowing page: https://www.nlm.nih.gov/research/umls/
sourcereleasedocs/index.html

Model Abstractiveness (%)
Longformer 22.95
– text-aug 20.99
– doc-enhance 20.00
– decoder-attn 24.46

Table 5: The average abstractiveness (measured in terms
of novel 1-grams) of summaries generated using differ-
ent graph integration methodologies.

distantly relevant to the text - for example, multi-
word concepts with one matching word. Therefore,
for each section of an article, we employed a sim-
ple word overlap-based to filter out unwanted re-
trieved concepts. Specifically, after removing stop-
words from the main text and lemmatisation con-
cept names, we retain only the concepts for which
all words in its name were found to appear in the
section text. We empirically found this approach
to significantly outperform word embedding-based
approaches, which often failed to filter out irrele-
vant multi-word concepts if a single word appeared
in the main text.

Additional implementation and training details.
We employ Longformer Encoder Decoder (LED)
with the allenai/led-base-16384 Huggingface
checkpoint as our base model for all knowledge
enhancement approaches, using the default param-
eters for model training and an input limit of 8192.

For the “decoder cross-attention" method,
we replicate the standard Huggingface LED
multi-head decoder cross-attention implementation
(where the head no. is determined by the model
configuration), making use of the GAT-produced
graph embedding as the key and value matrices
(in place of the encoder output), with the query
matrix being the output of the previous standard
cross-attention module.

For the “document embedding enhancement"
method, we replicate the standard LED encoder
layer, adapting the configuration to account for
the larger input of the concatenated document and
graph feature representations.

For the “article text augmentation" method, we
prepend the article text with the graph-derived text
and shown in Figure 6, extending the input text
limit to 16,384 to accommodate the lengthy aug-
mentation text without losing article text. All mod-
els are trained for a maximum of 20 epochs, re-
taining the checkpoints that achieved the highest
validation set performance (average ROUGE score
across variants).

The time taken to train each model on 2 A100
GPUs ranged from 12 hours to 2 days depend-
ing on the specific methodology used, with the
GAT-based methods - “document embedding en-
hancement” and “decoder cross attention” - taking
longer than the “article text augmentation" method.

Summary abstractiveness. In an effort to gain
further insight into how each KG-enhancement
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Model Relevance Readability Factuality
R-1↑ R-2↑ R-L↑ BeS↑ CLI↓ DCRS↓ BaS↑

Longformer 47.23 13.20 44.44 85.11 11.72 9.09 -2.56
– text-aug + doc-enhance 46.28 13.45 43.77 84.72 11.37 8.06 -2.56
– text-aug + decoder-attn 47.27 13.93 44.52 84.95 10.47 8.15 -2.57
– doc-enhance + decoder-attn 28.85 3.7 27.58 73.60 2.68 1.56 -6.48

Table 6: Average performance of models with combinations of KG-enhancement methods on eLife test split. R =
ROUGE F1, BeS = BERTScore F1, CLI = Coleman-Liau Index, BaS = BARTScore.

method influences summary generation, we mea-
sure the abstractiveness (as the percentage of novel
1-grams) of the generated summaries, providing the
results in Table 5. Interestingly, the results show
that both the “text augmentation” and “document
enhancement” methods slightly decrease the ab-
stractiveness of the base model, but the “decoder
attention” method slightly increases it, suggesting
that this method is more effective at introducing
external vocabulary.

Combining KG-enhancement Methods Table
6 presents the results obtained when applying dif-
ferent combinations of the KG-enhancement meth-
ods to Longformer. Interestingly, no combined
model matches the overall performance of any sin-
gle KG method model. Although these combina-
tions achieve positive results for readability metrics,
this generally comes at the expense of readability
metrics, with the combination of text augmenta-
tion and decoder attention being the only model to
achieve ROUGE scores equal to that of the base
model.

We believe this performance degradation is
likely a result of the dilution or loss of document
information at the expense of graph-based informa-
tion. This is similar to what was observed when
the value of p, as given in equation (4), was set to
too great a value for the document enhancement
method. In the case of the method combinations
that include the text augmentation method, the doc-
ument information is likely more diluted as a re-
sult of the larger embedding size (as caused by the
increased input size). Alternatively, when the doc-
ument embedding and decoder attention methods
are combined, the original document information
seems to be lost, resulting in particularly high loss
values during training and the model being unable
to produce a coherent output (as evidenced by the
extremely low scores for readability and factuality
metrics).

Case study Figure 5 presents an expanded ver-
sion of the case study given in Figure 4, whereby
we show all model outputs for each of the tech-
nical concepts. As in Figure 4, we see that the
KG-enhanced models typically improve on the ex-
planation proved by the base Longformer model.
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[Meiosis]
Longformer - During meiosis, the DNA in one of the chromosomes is copied and then the two copies are recom-
bined so that each new generation will have a single copy of the gene that encodes the protein encoded by that
gene.1/2

w/ text-aug - ... a process known as meiosis ... two copies of each chromosome are then exchanged between the
newly formed cells, which results in a unique set of genes being passed on to the next generation.2/2

w/ doc-enhance - ... meiosis depends on the rate and location of the recombination events, and on the length of the
DNA that is involved in the process.1/2

w/ decoder-attn - This is achieved through a process called meiosis, in which a cell divides to produce four daughter
cells, each of which contains a copy of one of the four copies of the genes found on the parent cell’s chromosomes.
2/2

[Glabrous Skin / Mechanoreceptors]
Longformer - The orientation of an object depends largely on how its edges activate mechanoreceptors in the
glabrous skin of the fingertips.0/2

w/ text-aug - ... information about the orientation of an object is based largely on how its edges activate mechanore-
ceptors in the skin of the fingertips.2/2 ... tactile neurons in the fingertips are able to detect the edges of objects with
high sensitivity2/2 ...
w/ doc-enhance - The fingertip’s surface is covered by a ... layer of skin known as the glabrous skin.2/2 These cells
are responsible for sensing touch, and they are also responsible for detecting the orientation of objects that touch
them.2/2

w/ decoder-attn - The orientation of an object is determined largely by how its edges contact the skin and activate
nerve cells in the fingertips.2/2

[Slow Wave Sleep]
Longformer - Most studies of sleep have focused on a type of sleep known as slow wave sleep, in which the brain’s
activity alternates between periods of alternating periods of slow and fast sleep.0/2

w/ text-aug - slow wave sleep is thought to help us to consolidate newly acquired memories and to consolidate our
sense of awareness of the world around us.2/2 ... in slow wave sleep, the propagation of slow waves is lost between
the brain’s regions.2/2

w/ doc-enhance - Slow wave sleep is characterized by a slow oscillation of electrical activity in the brain.2/2

w/ decoder-attn - Slow wave sleep is characterized by rhythmic waves of electrical activity in the brain, which are
thought to be part of the process by which the brain consolidates memories.2/2

Figure 5: An extended case study comparing how the application of each method affects the explanation of specific
technical concepts within the human evaluation sample. Colours and superscript are used to denote the number of
evaluators who judged the sentence as readable for a lay audience (e.g., 2/2 = 2 out of 2 evaluators).
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{Concept definitions and relations}
Alleles = Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES,
and governing the variants in production of the same gene product. Alleles is a Gene or Genome.
Molecule = An aggregate of two or more atoms in a defined arrangement held together by chemical bonds.
Molecule is a Substance.
Discover = See for the first time; identify. Discover is a Activity.
Histocompatibility = The degree of antigenic similarity between the tissues of different individuals, which
determines the acceptance or rejection of allografts. Histocompatibility is a Qualitative Concept.
In Vivo = Located or occurring in the body. In Vivo is a Spatial Concept.
Species = A group of organisms that differ from all other groups of organisms and that are capable of
breeding and producing fertile offspring. Species is a Classification.
Cells = The fundamental, structural, and functional units or subunits of living organisms. They are
composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary.
Cells is a Cell.
Allogeneic = Taken from different individuals of the same species. Allogeneic is a Qualitative Concept.
Antigens = Substances that are recognized by the immune system and induce an immune reaction.
Antigens is a Immunologic Factor.
Result = The result of an action. Result is a Functional Concept.
Major Histocompatibility Complex = The genetic region which contains the loci of genes which determine
the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION
ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTI-
GENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond
immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first
four components of complement. Major Histocompatibility Complex is a Gene or Genome.
...

{SemType definitions}
Gene or Genome = A specific sequence, or in the case of the genome the complete sequence, of nucleotides
along a molecule of DNA or RNA (in the case of some viruses) which represent the functional units of
heredity.
Substance = A material with definite or fairly definite chemical composition.
Activity = An operation or series of operations that an organism or machine carries out or participates in.
Classification = A term or system of terms denoting an arrangement by class or category.
Cell = The fundamental structural and functional unit of living organisms.
Qualitative Concept = A concept which is an assessment of some quality, rather than a direct measurement.
Spatial Concept = A location, region, or space, generally having definite boundaries.
Immunologic Factor = A biologically active substance whose activities affect or play a role in the
functioning of the immune system.
Functional Concept = A concept which is of interest because it pertains to the carrying out of a process or
activity.
Quantitative Concept = A concept which involves the dimensions, quantity or capacity of something using
some unit of measure, or which involves the quantitative comparison of entities.
Temporal Concept = A concept which pertains to time or duration.
...

{Article text}

Figure 6: Text augmentation example.
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Semantic type Average Count
Manufactured Object 0.98
Classification 0.61
Qualitative Concept 1.0
Disease or Syndrome 0.51
Health Care Activity 0.95
Occupational Activity 0.94
Phenomenon or Process 0.99
Individual Behavior 0.26
Intellectual Product 1.0
Organism Attribute 0.96
Health Care Related Organization 0.47
Body Part, Organ, or Organ Component 0.86
Social Behavior 0.67
Therapeutic or Preventive Procedure 0.78
Research Device 0.13
Spatial Concept 1.0
Temporal Concept 1.0
Behavior 0.45
Environmental Effect of Humans 0.05
Mammal 0.76
Research Activity 1.0
Quantitative Concept 1.0
Occupation or Discipline 0.81
Functional Concept 1.0
Conceptual Entity 0.81
Activity 1.0
Population Group 0.65
Age Group 0.35
Mental Process 0.92
Natural Phenomenon or Process 0.93
Geographic Area 0.78
Biologic Function 0.43
Human-caused Phenomenon or Process 0.20
Idea or Concept 1.0
Body Location or Region 0.58
Finding 1.0
Organ or Tissue Function 0.38
Amino Acid, Peptide, or Protein 0.89
Injury or Poisoning 0.13
Professional or Occupational Group 0.50
Gene or Genome 0.84
Element, Ion, or Isotope 0.91
Body Substance 0.56
Cell 0.91
Receptor 0.50
Hazardous or Poisonous Substance 0.80
Pathologic Function 0.59
Organism 0.46
Indicator, Reagent, or Diagnostic Aid 0.81
Cell Component 0.82
Biologically Active Substance 0.91
Animal 0.52
Biomedical or Dental Material 0.63
Group 0.38
Body System 0.26
Physical Object 0.34
Antibiotic 0.39
Organism Function 0.95
Governmental or Regulatory Activity 0.48
Organization 0.61
Tissue 0.40
Diagnostic Procedure 0.41
Biomedical Occupation or Discipline 0.68
Entity 0.40

Table 7: The average semantic node type frequency
statistics for a single article in the train split.

Semantic type Average Count
Inorganic Chemical 0.66
Pharmacologic Substance 0.93
Physiologic Function 0.33
Immunologic Factor 0.58
Molecular Function 0.67
Clinical Attribute 0.39
Laboratory Procedure 0.88
Event 0.59
Human 0.04
Chemical Viewed Structurally 0.50
Sign or Symptom 0.28
Enzyme 0.68
Medical Device 0.78
Genetic Function 0.73
Nucleic Acid, Nucleoside, or Nucleotide 0.75
Organic Chemical 0.88
Patient or Disabled Group 0.23
Virus 0.20
Cell Function 0.74
Substance 0.94
Daily or Recreational Activity 0.72
Bacterium 0.37
Laboratory or Test Result 0.17
Neoplastic Process 0.17
Eukaryote 0.33
Amino Acid Sequence 0.30
Cell or Molecular Dysfunction 0.57
Regulation or Law 0.09
Chemical 0.45
Body Space or Junction 0.23
Nucleotide Sequence 0.37
Chemical Viewed Functionally 0.37
Family Group 0.52
Vertebrate 0.18
Fungus 0.23
Food 0.40
Embryonic Structure 0.28
Bird 0.19
Molecular Biology Research Technique 0.56
Molecular Sequence 0.06
Group Attribute 0.03
Vitamin 0.16
Mental or Behavioral Dysfunction 0.30
Hormone 0.19
Plant 0.18
Anatomical Structure 0.06
Fish 0.14
Machine Activity 0.25
Educational Activity 0.09
Reptile 0.02
Amphibian 0.03
Congenital Abnormality 0.04
Experimental Model of Disease 0.06
Archaeon 0.02
Language 0.02
Anatomical Abnormality 0.01
Acquired Abnormality 0.01
Fully Formed Anatomical Structure 0.01
Professional Society 0.01
Clinical Drug 0.00
Self-help or Relief Organization 0.00

Table 8: The average semantic node type frequency
statistics for a single article in the train split (continued).
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Relation type Average Count
contains 564.94
has_keyword 1.59
has_title 4.90
was_published_in 1.0
is_a 536.22
branch_of 0.86
affects 255.99
performs 25.23
exhibits 6.29
conceptual_part_of 10.80
result_of 134.99
measures 71.28
issue_in 97.14
associated_with 43.36
occurs_in 15.44
connected_to 2.61
process_of 101.00
degree_of 12.83
manifestation_of 37.81
uses 14.00
location_of 60.24
causes 42.52
adjacent_to 6.13
tributary_of 0.86
prevents 6.84
produces 67.90
method_of 13.61
property_of 6.45
complicates 54.91
evaluation_of 22.34
co-occurs_with 21.40
carries_out 8.23
interacts_with 102.22
measurement_of 17.90
traverses 1.45
developmental_form_of 3.52
treats 8.34
surrounds 4.74
part_of 27.68
conceptually_related_to 0.31
precedes 30.83
consists_of 6.54
analyzes 16.93
assesses_effect_of 23.76
disrupts 49.62
contains 2.97
diagnoses 8.38
indicates 3.30
practices 0.78
manages 0.77
derivative_of 0.28
interconnects 0.70
ingredient_of 0.05

Table 9: The average relation type frequency statistics
for a single article in the train split.
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