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Abstract

Nearest neighbor machine translation (kNN-
MT), which interpolates target token probabili-
ties with estimates derived from additional ex-
amples, has achieved significant improvements
and attracted extensive interest in recent years.
However, existing research does not explicitly
consider the source context when retrieving
similar examples, potentially leading to subop-
timal performance. To address this, we compre-
hensively revisit the role of source context and
propose a simple and effective method for im-
proving neural machine translation via source
context enhancement, demonstrating its crucial
role in both retrieving superior examples and
determining more suitable interpolation coef-
ficients. Furthermore, we reveal that the prob-
ability estimation can be further optimized by
incorporating a source-aware distance calibra-
tion module. Comprehensive experiments show
that our proposed approach can be seamlessly
integrated with representative kNN-MT base-
lines, resulting in substantial improvements
over these strong baselines across a number
of settings and domains. Remarkably, these im-
provements can reach up to 1.6 BLEU points.1

1 Introduction

Nearest neighbor machine translation (Khandel-
wal et al., 2021, kNN-MT) enhances conventional
neural machine translation (NMT) by adopting a
retrieval-based strategy to interpolate the target to-
ken probability distribution produced by the NMT
model with the one estimated from similar exam-
ples of an auxiliary datastore. Since demonstrat-
ing promising results in a wide range of machine
translation scenarios such as multilingual transla-
tion (Khandelwal et al., 2021; Li et al., 2022), do-
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1Our code is available at https://github.com/li-xuanhong/
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Figure 1: The ratio of the top-k retrieved examples
whose value is equal to the ground-truth token, which
is roughly inversely correlated with the source context
distance, indicating the potential benifit of source con-
text for kNN-MT. The development set of IT domain
from (Zheng et al., 2021a) is used and k = 32. Please
refer to introduction for more detials.

main adaptation (Zheng et al., 2021b; Du et al.,
2022), and online learning (Wang et al., 2022b), it
has attracted increasing attention in recent years.

Due to its success, extensive efforts have been
made to improve the effectiveness of kNN-MT.
Zheng et al. (2021a) propose a dynamic approach to
determine the number of examples to be retrieved.
In contrast, Wang et al. (2022c) concentrate on de-
veloping retrieval-aware example representations.
Jiang et al. (2022) suggest leveraging NMT pre-
dicted results to calibrate kNN distribution. Ad-
ditionally, Zheng et al. (2021a) improve the esti-
mation of probability distribution by employing
an ensemble of multiple estimations derived from
different numbers of examples. Despite these ad-
vances, the source context, e.g. the source side
of a parallel sentence pair, has not been explicitly
considered in these works.

Preliminary study shows that source context may
have significant potiential in kNN-MT. Typically,

8087

https://github.com/li-xuanhong/source-context-knn-mt
https://github.com/li-xuanhong/source-context-knn-mt


an example in kNN-MT is denoted as a key-value
pair (Khandelwal et al., 2021), where key is the de-
coder intermediate representation given the source
sentence and the target prefix, and value is the next
target token observed in training data. The top-
k examples ranked descendingly according to the
distance between the keys and the current decoder
hidden state are used to estimate the probability
distribution to be interpolated. Figure 1 shows the
ratio of the top-k examples whose value is equal to
the ground-truth target token v.s. the source con-
text distance duing inference, where source con-
text distance is defined as the L2 distance between
the representations of the input sentence and the
corresponding source sentence of an example (see
Sec. 3.1 for more details). It is evident that the ratio
roughly inversely correlates to the source context
distance, indicating potential usefulness of source
context in kNN-MT. Moreover, Dai et al. (2023)
show that source context is effective in selecting
subset of parallel sentence pairs for improving the
efficiency of kNN-MT. Therefore, source context
deserves further attention in kNN-MT.

In this work, we revisit the source context in
kNN-MT and reveal that it is effective in enhanc-
ing the three fundamental components of kNN-MT,
namely, example retrieval, probability distribution
estimation and interpolation. By leveraging a dy-
namic datastore, built with data selected based on
source context similarities, we manage to recall ad-
ditional candidate examples that hold potential util-
ity, yet might be overlooked by the existing kNN-
MT methods. We then perform a distance calibra-
tion of all candidates based on both the source and
target contexts, thereby achieving a more precise
probability distribution estimation. Additionally,
we propose to determine the interpolation coeffi-
cient based on the similarity of the source context.

Since an advantage of our proposed method is
its seamless integration capability with existing
kNN-MT methods, we integrate our method with
representative kNN-MT baselines and conduct ex-
periments on five benchmark datasets from differ-
ent domains. Experimental results demonstrate that
our method consistently outperforms all the base-
lines across all these datasets, with improvements
of up to 1.6 BLEU points. Further ablation stud-
ies justify that source context indeed plays a cru-
cial role in all the three fundamental components.
Furthermore, our source context-enhanced kNN-
MT method achieves significant improvements in

other sequence-to-sequence tasks that are challeng-
ing for existing kNN-MT methods, indicating that
source context merits further consideration within
the kNN-MT framework.

2 Background

This section briefly introduces kNN-MT (Khandel-
wal et al., 2021), formulated as the following two
main steps: datastore construction and prediction
with datastore.

Datastore Construction A datastore for kNN-
MT usually contains decoder intermediate repre-
sentations and corresponding target tokens as key-
value pairs. Specially, given a sentence pair (x,y)
from the training dataset T = {(x(i),y(i))}, where
x = x1, x2, · · · , xm and y = y1, y2, · · · , yn, it is
fed into a pre-trained NMT model M in a teacher
forcing way. The decoder representation at position
t is denoted as f(x,y<t), and the corresponding
target token is yt, then the datastore D is as follows:

D = {(f(x,y<t), yt)|(x,y) ∈ T , ∀yt ∈ y}. (1)

Prediction with Datastore Given a source sen-
tence x, the NMT model M generates the pre-
diction ŷ token by token. Considering the t-th
time step, the decoder representation is denoted
as ĥt = f(x, ŷ<t). A kNN-MT model uses ĥt

as a query to retrieve the most similar k entries
N = {(h(i), v(i))}ki=1 in the datastore D. Then
the kNN distribution pkNN(yt|x, ŷ<t) is calculated
based on the L2 distances d(ĥt,h

(i)) between
query ĥt and the key hi:

pkNN(yt|x, ŷ<t) ∝ (2)

∑

(hi,vi)

1yt=v(i) exp

(
−d(ĥt,h

(i))

T

)
,

where T is the temperature used to smooth the kNN
distribution, and the final probability distribution
is obtained by interpolating the kNN distribution
with the NMT distribution:

p(yj |x, ŷ<j) = λ pkNN(yj |x, ŷ<j)

+ (1− λ) pNMT(yj |x, ŷ<j),
(3)

where λ is the interpolation coefficient, and a larger
λ means a larger percentage of the kNN distribu-
tion in the final distribution.
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Figure 2: An overview of the proposed method. Source-context enhanced kNN-MT from three aspects, namely
retrieval, calibration, and interpolation.

3 kNN-MT via Enhanced Source Context

In this section, we will detail the proposed method,
which improves three crucial processes of kNN-
MT, including retrieval, calibration, and interpola-
tion with source context enhancement. The com-
plete process is illustrated in Figure 2.

3.1 Source-Enhanced Retrieval
In the Vanilla kNN-MT (Khandelwal et al., 2021),
the target-side representation is used as a query to
retrieve entries similar to it from the constructed
datastore, but the entries retrieved in this way may
be affected by noise (Wang et al., 2022a,c) and
some desired entries may be missed. Therefore, we
adopt an adaptive approach by utilizing text similar
to the input text to construct auxiliary datastores.
The intuition is that if the source text is similar,
there is a higher probability that the target text
will also be similar. Consequently, the entries con-
structed from similar source texts are more likely
to be the ground truth than others (Figure 1).

Specifically, we first encode the source texts x(j)

from the training set T using the encoder of the
NMT model M, resulting in the representation
r
′(j) ∈ RL×H , where L is the sentence length and
H is the hidden size, then we take the average over
the length dimension to get the final representation
r(j) ∈ RH . Correspondingly, the input sentence x
to be translated is encoded into r ∈ RH .

Then, we calculate the L2 distance d(r, r(j)) be-
tween x and x(j) to score the similarity between
them. The set of n sentences {x(l)}nl=1 with the
smallest L2 distance are selected, and their corre-
sponding sentence pairs {(x(l),y(l))}nl=1 will be

used to construct an auxiliary datastore D′. The
construction method is identical to the approach
described in Sec. 2. Note that we construct an
adaptive auxiliary datastore independently for each
input sentence.

Finally, we use ĥt as the query to retrieve k near-
est entries from each of the datastores D and D′,
and combine them to obtain an entries list whose
size is 2k for constructing the kNN distribution.

3.2 Source-Aware Calibration
After source-enhanced kNN retrieval, a list of en-
tries N = {(h(i), v(i))}2ki=1 is retrieved. These en-
tries are now ranked based on their target-side dis-
tance d(ĥt,h

(i)). However, since the NMT model
used to compute the keys is not optimized for re-
trieval, using target-side distance alone may result
in suboptimal performance (Wang et al., 2022c).
Therefore, we employ source-side distance to cal-
ibrate the potentially inaccurate original distance
(target-side distance), prioritizing entries that ex-
hibit distance in both the target and source sides.
Accordingly, the kNN distribution in Eq. 2 is also
calibrated.

Specifically, we calculate the sum of the target-
side distance d(ĥt,h

(i)) and the source-side dis-
tance d(r, r(i)) as a new distance metric dc. To
better control the weight assigned to the source-
side distance in dc, we introduce a hyperparameter
µ, and dc is defined as

d(i)c = d(ĥt,h
(i)) + µ× d(r, r(i)). (4)

In order not to affect the speed of inference, we
store the target token and its corresponding encoder
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output ri when constructing the datastore2. The
entries in the datastore are like (hi, vi, ri).

Since the hyperparameter µ directly affects the
performance of the model, setting µ as a fixed value
may hinder the ability of the model to generalize
effectively. Therefore, we propose a lightweight
module consisting of a two-layer feed-forward net-
work to dynamically adjust the hyperparameter µ
based on the retrieved entries:

z = [s(1), ..., s(2k); d(1)c , ..., d(2k)c ;u(1), ..., u(2k)],

µ = sigmoid(W2(tanh(W1z)) + b1), (5)

where s(i) is source-side distance, d(i)c is our new
distance (Eq. 4), u(i) is the number of unique values
in neighbors, and W1, W2 are parameter matrices.

The distance metric dc we propose here consid-
ers both the target-side distance and the source-side
distance. As the distances of the retrieved entries
are calibrated, the kNN distriction in Eq. 2 is also
calibrated accordingly. Subsequent experimental
results further demonstrate that the new distance
can effectively mitigate the noise and suboptimality
issues caused by the target-only distance.

3.3 Source-Augmented Interpolation
Previous work has demonstrated that in the interpo-
lation process of kNN-MT, using fixed interpola-
tion coefficients λ or retrieval quantities k will de-
crease the model performance (Zheng et al., 2021a;
Jiang et al., 2022) as they tend to treat retrieved
information of different quality equally. Inspired
by these works, we propose a source-augmented
lightweight module to adaptively compute λ in the
interpolation process:

z′ = [s(1), ..., s(2k); d(1)c , ..., d(2k)c ;u(1), ..., u(2k)],

λ = sigmoid(W3(tanh(W4z
′)) + b2), (6)

where W3, W4 are parameter matrices, and s(i),
d
(i)
c and u(i) are the same as Eq. 5.

3.4 Training Procedure
During training, we freeze the parameters of the
NMT model M and only update the parameters of
the lightweight module (like W1 and W2), min-
imizing the cross-entropy loss until convergence.

2In theory, this approach could require doubling the stor-
age capacity. However, considering that tokens in the same
sentence share the same source-side representation, we only
utilize an additional 3% of storage space in our implementa-
tion.

Dataset IT Medical Koran Laws JRCEnDe JRCEnEs

Train 222,927 248,009 17,982 467,309 699,569 679,088
Dev 2,000 2,000 2,000 2,000 2,454 2,533
Test 2,000 2,000 2,000 2,000 2,483 2,596

Table 1: Statistics of datasets.

This ensures that the lightweight modules can dy-
namically allocate the appropriate µ and λ values
based on the quality of the retrieval results.

4 Experiments

4.1 Experimental Settings
Datasets and Evaluation In order to conduct
a more comprehensive comparison, we selected
datasets separately from the direction of domain
adaptation and in-domain translation. For do-
main adaptation, we follow the same configura-
tion as previous studies (Zheng et al., 2021a; Jiang
et al., 2022), conducting experiments on four com-
monly used benchmark domain datasets (Koehn
and Knowles, 2017), including IT, Medical, Ko-
ran, and Law. We use the split version from Aha-
roni and Goldberg (2020) and the translation di-
rection is De→En. For in-domain translation, we
perform experiments in four directions on the JRC-
Acquis (Steinberger et al., 2006) dataset, includ-
ing En→De, De→En, En→Es, and Es→En. The
statistics of these datasets are shown in Table 1. All
data are tokenized by Moses toolkit 3, and we use
SacreBLEU 4 to evaluate the performance 5.

Implementation We use kNN-BOX (Zhu et al.,
2023b) to implement multiple kNN-MT models.
Faiss (Johnson et al., 2021) is employed for en-
tries retrieval. For the four domain datasets, we
use WMT 19 winner model (Ng et al., 2019) as
the base translation model. For the JRC-Acquis
dataset, we train a Transformer (Vaswani et al.,
2017) model for each translation direction, which
served as the base model. During the training pro-
cess of the kNN-MT model, following the settings
of the previous research, we use Adam (Kingma
and Ba, 2015) as the optimizer and use the cross-
entropy loss for optimization. The learning rate is
set to 3× 10−4, and the batch size is 32. The train-
ing is stopped when the loss no longer decreases,
and hyperparameters are adjusted based on the re-
sults from the validation set. The specific model

3https://github.com/moses-smt/mosesdecoder
4https://github.com/mjpost/sacrebleu
5The signature of ScareBLEU is BLEU+case.mixed+

numrefs.1+smooth.exp+tok.13a+version.1.5.1
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configuration is presented in Appendix A. All ex-
periments are conducted on an Ubuntu server with
a RTX3090 GPU.

Baselines We use the following models as our
baselines:

• Base NMT (Ng et al., 2019): the pre-trained
NMT model that is commonly used as the
base model of kNN-MT.

• Vanilla kNN-MT (Khandelwal et al., 2021):
the base kNN-MT model that introduces the
token level nearest neighbor method into
NMT for the first time.

• Adaptive kNN-MT (Zheng et al., 2021a): the
model innovatively introduces a lightweight
trainable module to adaptively determine hy-
perparameters such as k and µ during distri-
bution interpolation.

• KSTAR (Jiang et al., 2021): the model that
adds a learnable kernel to dynamically calcu-
late the similarity of retrieved instances and
smooth the obtained kNN distribution.

• CLKNN (Wang et al., 2022c): the model that
enhances the distinctiveness of the represen-
tation of keys in the datastore by employing
supervised contrastive learning.

• Robust kNN-MT (Jiang et al., 2022): the
model that calibrates the kNN distribution and
adds noise training to enhance the robustness.

4.2 Main Results

Domain Adaptation The main results of the four
domain datasets are shown in Table 2, where the
performance of the strong baseline before and after
the enhancement of our method is listed. Note that
due to Adaptive kNN-MT simultaneous adaptively
determine both λ and k, when enhancing Adap-
tive kNN-MT using our method, we additionally
incorporate the source-side distance as the input
to dynamically determine k. This differs from the
approach described in Sec. 3.3, which focuses on
adaptively calculating λ. The same rationale ap-
plies to Robust kNN-MT enhancement as well.

It can be found that after being enhanced by
our method, two strong kNN-MT baselines (Zheng
et al., 2021a; Jiang et al., 2022) have gained con-
sistent and significant performance improvement
on all datasets. For example, the enhanced Adap-
tive kNN-MT achieves an average increase of 1.57
BLEU points (47.74 to 49.31) on the IT dataset,

surpassing the strong baseline Robust kNN-MT
(48.78). Furthermore, after enhancement, Robust
kNN-MT can achieve a higher BLEU score (49.66)
on this dataset. Through an overall analysis of the
four datasets, our method demonstrates a signif-
icant improvement, with an average increase of
1.1 and 0.7 BLEU scores for Adaptive kNN-MT
and Robust kNN-MT, respectively. These results
demonstrate the effectiveness and the generality of
our method, as it can be applied to enhance many
kNN-MT models and bring consistent performance
improvements.

A question worth contemplating is why the en-
hancement effect on the Koran dataset is not as
significant as on other datasets, and the notable per-
formance of the CLKNN (Wang et al., 2022c) on
this dataset provides some insights. By employing
supervised contrastive learning, CLKNN enhances
the distinctiveness of the representations of keys in
the datastore. However, we still utilize the outputs
of the original NMT model as keys. Considering
the sparsity of correct entries in such small datasets,
retrieving the correct entries becomes even more
challenging when using these indistinct keys for
retrieval. Conversely, for larger-scale datasets, the
abundance of correct entries may make it easier to
retrieve the ground truth, and it can be observed
that our enhancement method performs well on
large-scale datasets.

In-Domain Translation The results on four do-
main datasets demonstrate the ability of our method
to enhance the domain knowledge transfer of kNN-
MT. Furthermore, we aim to demonstrate that the
kNN-MT model can enhance the utilization of in-
domain knowledge through token-level informa-
tion retrieval, thereby mitigating issues such as
knowledge forgetting, and our proposed method
further strengthens this ability. To achieve this, in
contrast to using pre-trained NMT models on do-
main datasets, we utilized NMT models trained on
the source domain specifically for the JRC-Acquis
dataset.

The results in Table 3 indicate that the kNN-
MT model can effectively enhance the original
NMT model by retrieving and utilizing in-domain
knowledge but still lags behind several Translation
Memory (TM) base strong baselines. After being
enhanced by our method, the performance of kNN-
MT has been significantly improved. For exam-
ple, the Adaptive kNN-MT and Robust kNN-MT
achieve 1.5 and 0.8 average BLEU improvement

8091



Model IT Medical Koran Laws Avg

Base-NMT 38.35 40.06 16.26 45.48 35.03
Vanilla kNN-MT 45.72 54.26 20.29 61.27 45.38
KSTAR 47.72 56.81 19.97 63.34 46.96
CLKNN∗ 47.84 55.87 21.81 62.01 46.88

Adaptive kNN-MT 47.74 56.12 20.31 62.87 46.76
+ Ours 49.31† (+1.57) 57.72† (+1.60) 20.38 (+0.07) 64.14† (+1.27) 47.89 (+1.13)

Robust kNN-MT 48.78 57.11 20.50 63.61 47.50
+ Ours 49.66† (+0.88) 57.78† (+0.67) 20.72 (+0.22) 64.52† (+0.91) 48.17 (+0.67)

Table 2: The BLEU scores on test sets of four domain benchmarks. “*” indicates the results from original papers,
and “†” denotes a statistically significant improvement (p < 0.05).

Model Es→En En→Es De→En En→De Avg

(Zhang et al., 2018)⋆ 64.30 61.56 60.26 55.14 60.31
(Xia et al., 2019)⋆ 66.21 62.76 61.72 56.88 61.89
(Cai et al., 2021)⋆ 66.48 62.76 63.85 57.53 62.65
(Cheng et al., 2022a)⋆ 67.76 64.04 64.33 58.69 63.70

Transformer 62.71 60.54 58.93 53.32 58.87
Vanilla kNN-MT 65.13 62.78 63.03 54.08 61.25

Adaptive kNN-MT 66.01 64.09 64.59 58.54 63.30
+ Ours 67.87† (+1.86) 65.53† (+1.44) 65.67† (+1.08) 60.31† (+1.47) 64.84 (+1.54)

Robust kNN-MT 67.08 64.97 64.93 59.52 64.13
+ Ours 67.95† (+0.87) 65.60† (+0.63) 65.73† (+0.80) 60.48† (+0.96) 64.94 (+0.81)

Table 3: The BLEU scores on test sets of JRC-Acquis. “⋆” highlights results provided by Cheng et al. (2022b), and
“†” marks an improvement that is statistically significant (p < 0.05).

Adaptive kNN-MT 47.74

w/ Retrieval 48.08 (+0.34)
w/ Calibration 48.63 (+0.89)
w/ Interpolation 48.25 (+0.51)
w/ All 48.89 (+1.15)

Table 4: The impact of each enhanced component on
the overall performance.

in four directions of JRC-Acquis and successfully
surpassing these TM-base strong baselines, thus
demonstrating the effectiveness of our source-side
enhancement.

4.3 Ablation Study
Our proposed method enhances three kNN-MT pro-
cesses (retrieval, calibration, and interpolation). To
investigate the utility of each enhanced module, we
conducted ablation experiments on the IT dataset.
Specially, we individually add each enhanced com-
ponent and observed the performance changes. The
results are shown in Table 4.

It can be observed that the performance of the
model has improved after incorporating each en-
hancement module, particularly with the most sig-
nificant improvement seen after the inclusion of

the calibration module. This is because the model
can only rely on target-side distances to determine
the weights of retrieved entries without the source-
aware calibration module, which makes the model
susceptible to noise and leads to suboptimal per-
formance. This finding further highlights the im-
portance of a comprehensive consideration of the
source-side context in kNN-MT.

It should be noted that, for a fair comparison, we
set the value of k to that which performs optimally
in Adaptive kNN-MT (k = 8), rather than the
value most suited for our approach. As a result, the
value of the “w/ All” term in Table 4 (48.89) does
not attain our highest reported performance (49.31).
Consequently, owing to the constraints imposed by
a smaller k value, the retrieval and interpolation
modules, despite exhibiting performance improve-
ments, have not been able to fully manifest their
capabilities.

5 Analysis

In this section, we attempt to explore several im-
portant and meaningful questions through experi-
mental analysis.

• Q1: Does the model enhanced with our
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method demonstrate robustness when setting
different values of k? (Sec. 5.1)

• Q2: Why does our method deliver perfor-
mance gains? (Sec. 5.2)

• Q3: Can our proposed enhanced method be
applied to other text generation tasks besides
translation? (Sec. 5.3)

5.1 Robustness (Q1)

Previous studies have found that the Vanilla kNN-
MT model is highly sensitive to the setting of the
retrieval entries number k, often achieving opti-
mal performance only when k is set to a moderate
value. This may limit the capacity of retrieval in-
formation that kNN-MT can utilize, resulting in
suboptimal performance. Some research enhanced
the robustness of the kNN-MT model through su-
pervised training to adaptively determine hyperpa-
rameters (Zheng et al., 2021a) or calibrate the kNN
distribution (Jiang et al., 2022).

To demonstrate that the model enhanced by our
method can achieve better robustness while improv-
ing performance, following previous studies, we
conducted experiments on the IT dataset, consider-
ing different settings of k. Note that our enhanced
model retrieves the same number of entries from
both the original datastore and the auxiliary datas-
tore. To ensure a fair comparison, in this section,
when we mention the enhanced model retrieves
k entries, it refers to the following scenario: the
model retrieves k/2 entries from both the original
and the auxiliary datastore and concatenates them
to form a list of size k. The experimental results
are shown in Figure 3.

We can observe that across all value settings of
k, the model enhanced by the proposed enhanced
method consistently surpasses the original model,
demonstrating the effectiveness of our method.
Moreover, the enhanced model can achieve robust
performance as k increases. For example, the en-
hanced Adaptive kNN-MT model maintains a high-
performance improvement as k increases, while the
original model slowly declines after k = 8. This
suggests that our method can effectively filter out
noise in retrieval entries and appropriately utilize
the relevant knowledge to enhance the translation
model.

Another key issue is the inference speed. Theo-
retically, given the same value of k, calibration and
interpolation introduce only a marginal increase
in computation, while the retrieval computational
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Figure 4: Inference speed v.s. k on the IT dataset.

cost remains roughly unchanged. As a result, the
overall additional computational overhead is min-
imal. In Figure 4, we present the inference speed
of various kNN-MT models and their correspond-
ing enhanced models. We report the average speed
of five trials for each setting. It can be observed
that the enhanced model and the original model
have comparable inference speeds, which justifies
the theoretical analysis. Therefore, our proposed
method achieves sustained and stable performance
growth at a remarkably low cost.

5.2 Accuracy (Q2)

To investigate the source of performance gains due
to the source-side enhancement method, we ana-
lyze it from the perspective of retrieval accuracy.

A retrieved entry is considered correctly re-
trieved if its value matched the ground-truth token.
The experiments are performed on the validation
set of the IT dataset. Several metrics like P@n

8093



Model P@1 P@5 P@20 MAP@5 MAP@20 BLEU

Vanilla kNN-MT 0.3382 0.3176 0.2968 0.3262 0.3097 42.17

Adaptive kNN-MT 0.3408 0.3188 0.2971 0.3279 0.3106 43.98
+ Ours 0.3504 0.3405 0.3132 0.3492 0.3296 46.43

Robust kNN-MT 0.3496 0.3267 0.3038 0.3365 0.3181 45.15
+ Ours 0.3621 0.3433 0.3174 0.3523 0.3334 46.72

Table 5: The accuracy of retrieved entries of different kNN-MT models on IT validation set.

and MAP@n (the average of AP@n scores across
all queries) are employed to evaluate retrieval ac-
curacy. The results are shown in Table 5. It can
be observed that the enhanced model surpasses
the original model in all retrieval metrics, demon-
strating that our method enables the kNN-MT to
retrieve more correct entries, thereby leading to
better translation results.

An interesting observation is that Adaptive kNN-
MT, compared to Vanilla kNN-MT, shows min-
imal improvement in retrieval metrics but a sig-
nificant increase in the BLEU score. This might
be attributed to the content of the Adaptive kNN-
MT, which enhances performance by adaptively
adopting retrieval entries, and this improvement is
not related to retrieval accuracy. However, after
our method enhancement, Adaptive kNN-MT’s re-
trieval accuracy is significantly improved and the
performance is further enhanced. Combined with
our proposed method like improved calibration dis-
tance, we suspect that the performance improve-
ment is likely due to enhanced retrieval accuracy.

5.3 Generality (Q3)

To validate the generality of our proposed method,
we conducted experiments on several text genera-
tion tasks other than translation. We collect task-
oriented dialogue generation and question genera-
tion datasets from (Tang et al., 2022). Since these
datasets did not provide testing set, we split the
training set into a new training set and a valida-
tion set in a 9 : 1 ratio and report the experimental
results on the original validation set. We trained
a Transformer model as the base model on each
dataset. The BLEU metric is used to evaluate the
performance of the models, and the results are re-
ported in Table 6.

Based on the results presented in Table 6, it can
be observed that the kNN-MT method effectively
enhances the performance of the model on these
text generation datasets, indicating the potential of
the kNN-MT method in non-translation text gen-

Model DG QG

Transformer 39.86 29.56
Vanilla kNN-MT 41.09 30.85

Adaptive kNN-MT 41.67 31.16
+Ours 43.18 (+1.51) 32.09 (+0.93)

Robust kNN-MT 42.64 31.48
+Ours 43.51 (+0.87) 32.26 (+0.78)

Table 6: The experimental results on dialogue genera-
tion (DG) and question generation (QG) tasks.

eration tasks. Additionally, by enhancing with our
method, the performance of these kNN-MT models
can be further improved, thus demonstrating the
effectiveness and generality of our model.

6 Related Work

Existing approaches commonly improve kNN-
MT (Khandelwal et al., 2021) from effectiveness
and efficiency perspectives.

Effectiveness To enhance the effectiveness of
kNN-MT, Zheng et al. (2021a) adaptively deter-
mine the retrieved entries to be utilized. Jiang et al.
(2021) incorporates kernel smoothing methods to
kNN-MT. Jiang et al. (2022) calibrate kNN distri-
bution and make it more robust by noise-resistant
training. Wang et al. (2022c) employs contrastive
learning to make the keys of entries more discrimi-
native to improve retrieval accuracy, while Li et al.
(2022) utilizes representations from pre-trained
models to construct a higher-quality datastore. It
can be observed that these works lack explicit con-
sideration of the source context. In contrast, we
incorporate source context in all three processes of
kNN-MT: retrieval, calibration, and interpolation,
resulting in consistent performance improvements.

Efficiency Constrained by the performance re-
quirements imposed by large datastore for infer-
ence, researchers explore approaches to enhance
the efficiency of kNN-MT. Wang et al. (2022a)
reduces the dimensionality of entry features and
prunes redundant entries by clustering. Zhu et al.
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(2023a) explores the knowledge required by kNN-
MT and filter out redundant entries according local
correctness. Deguchi et al. (2023) retrieves tokens
from neighbor sentences instead of all sentences
and using a lookup table for distance calculation.
Dai et al. (2023) constructs a mini-datastore using
sentences similar to the input during each inference
instead of the original datastore and inspired us to
introduce the auxiliary datastore in our work. As
shown in Figure 4, our method introdues limited
extra computational cost, achieving a good balance
between effectiveness and efficiency.

7 Conclusion

In this paper, we revisit the role of source con-
text and propose a novel method for improving
neural machine translation via source context en-
hancement, which augments the key processes of
kNN-MT (i.e., retrieval, calibration, and interpola-
tion). Experimental results demonstrate that it can
simply and effectively enhance most mainstream
kNN-MT models, achieving consistent improve-
ments. Moreover, our method can significantly
improve the robustness of the kNN-MT model and
help improve its effectiveness in dialogue genera-
tion and question generation. We look forward to
further exploring the practical utility and efficiency
of this method in more natural language generation
tasks in the future.

Limitation

While our method has exhibited effectiveness, its
exploration beyond machine translation in terms of
generality has been confined to just two additional
text generation datasets, namely dialogue genera-
tion and question generation. Consequently, it is
imperative to investigate our method across a more
diverse set of tasks. Existing research (Dai et al.,
2023) indicates that the improvement brought by
kNN-MT on certain large-scale translation datasets
are not sufficiently significant. In future work, we
aim to rigorously assess the effectiveness of our
method on these large-scale translation datasets.
Although our work achieves a good balance be-
tween effectiveness and efficiency, we believe there
still room for improving efficiency without compro-
mising effectiveness by leveraging source context,
which will be explored in the future.

Acknowledgement

This work is supported by the National Social Sci-
ence Fund of China under Grant No. 20BTQ068.
We thank all anonymous reviewers for their insight-
ful suggestions on this work.

References
Roee Aharoni and Yoav Goldberg. 2020. Unsupervised

domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747–
7763, Online. Association for Computational Lin-
guistics.

Deng Cai, Yan Wang, Huayang Li, Wai Lam, and
Lemao Liu. 2021. Neural machine translation with
monolingual translation memory. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7307–7318, Online.
Association for Computational Linguistics.

Xin Cheng, Shen Gao, Lemao Liu, Dongyan Zhao, and
Rui Yan. 2022a. Neural machine translation with
contrastive translation memories. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3591–3601, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Xin Cheng, Shen Gao, Lemao Liu, Dongyan Zhao, and
Rui Yan. 2022b. Neural machine translation with
contrastive translation memories. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3591–3601, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Yuhan Dai, Zhirui Zhang, Qiuzhi Liu, Qu Cui, Weihua
Li, Yichao Du, and Tong Xu. 2023. Simple and
scalable nearest neighbor machine translation. In
Proceedings of the Eleventh International Conference
on Learning Representations.

Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui,
Masao Utiyama, Hideki Tanaka, and Eiichiro Sumita.
2023. Subset retrieval nearest neighbor machine
translation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 174–189, Toronto,
Canada. Association for Computational Linguistics.

Yichao Du, Weizhi Wang, Zhirui Zhang, Boxing Chen,
Tong Xu, Jun Xie, and Enhong Chen. 2022. Non-
parametric domain adaptation for end-to-end speech
translation. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Process-
ing, pages 306–320, Abu Dhabi, United Arab Emi-
rates. Association for Computational Linguistics.

8095

https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2020.acl-main.692
https://doi.org/10.18653/v1/2021.acl-long.567
https://doi.org/10.18653/v1/2021.acl-long.567
https://aclanthology.org/2022.emnlp-main.235
https://aclanthology.org/2022.emnlp-main.235
https://doi.org/10.18653/v1/2022.emnlp-main.235
https://doi.org/10.18653/v1/2022.emnlp-main.235
https://openreview.net/forum?id=uu1GBD9SlLe
https://openreview.net/forum?id=uu1GBD9SlLe
https://doi.org/10.18653/v1/2023.acl-long.10
https://doi.org/10.18653/v1/2023.acl-long.10
https://aclanthology.org/2022.emnlp-main.21
https://aclanthology.org/2022.emnlp-main.21
https://aclanthology.org/2022.emnlp-main.21


Hui Jiang, Ziyao Lu, Fandong Meng, Chulun Zhou,
Jie Zhou, Degen Huang, and Jinsong Su. 2022. To-
wards robust k-nearest-neighbor machine translation.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5468–5477, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Qingnan Jiang, Mingxuan Wang, Jun Cao, Shanbo
Cheng, Shujian Huang, and Lei Li. 2021. Learning
kernel-smoothed machine translation with retrieved
examples. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7280–7290, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. In International Conference
on Learning Representations.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28–39, Vancouver. Association for Computa-
tional Linguistics.

Jiahuan Li, Shanbo Cheng, Zewei Sun, Mingxuan Wang,
and Shujian Huang. 2022. Better datastore, better
translation: Generating datastores from pre-trained
models for nearest neural machine translation. CoRR,
abs/2212.08822.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Facebook
FAIR’s WMT19 news translation task submission.
In Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day
1), pages 314–319, Florence, Italy. Association for
Computational Linguistics.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaž Erjavec, Dan Tufiş, and Dániel
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A Model Configuration

The specific hyperparameter settings of the Trans-
former model trained on the JRC-Acquis dataset
are presented in Table 7.

Hyperparameter Value

Embedding Dim 512
Attention Head 8
Encoder Layer 6
Decoder Layer 6
Dropout 0.1
Hidden Dim 512

Table 7: The configuration of our Transformer model.

B Datastore

Following previous work (Zheng et al., 2021a), we
employ numpy.array 6 to store key-value pairs and
utilized faiss 7 for index construction. The cluster
centroids are set to 4, 096 and 32 during training
and retrieval, respectively, while the vector code
size is set to 64. The specific disk space occupied
is presented in Table 8. It can be observed that the
storage occupied by the source context is about 3%
of the total original storage, demonstrating the low
space requirement of our work.

Datastore IT Medical Koran Law

Key-Value 6.93 13.22 1.00 36.51
Source Context 0.42 0.47 0.05 0.89

Table 8: Disk space (GB) occupied by different datas-
tores.

C Experiments on Larger Datasets

Following the settings in recent strong base-
lines (Zheng et al., 2021a; Jiang et al., 2022), we
conduct experiments on the four datasets, i.e., IT,
Medical, Koran, and Law, to make our work di-
rectly comparable with these recent strong base-
lines. We also conduct experiments on the Sub-
titles dataset (Koehn and Knowles, 2017), whose
training set consists of about 14 million parallel
sentence pairs, two orders of magnitude larger than
the previous four datasets. The translation direction
is De→En. For domain adaptation setting, we use
the WMT19 De→En direction winner model (Ng
et al., 2019) as the base model. For in domain
setting, we trained a Transformer (Vaswani et al.,

6https://numpy.org
7https://github.com/facebookresearch/faiss

2017) model from scratch using the Subtitle train-
ing set as the base model. The experimental results
are reported in Table 9. We can see that the two
strong kNN-MT baselines remain effective on this
larger dataset. Moreover, our method introduces
significant improvements under both the Domain
Adaptation and In Domain settings.

Model DA ID

Base Model 29.58 29.96

Adaptive kNN-MT 31.23 31.38
+ Ours 32.08† (+0.85) 32.47† (+1.09)

Robust kNN-MT 31.68 31.91
+ Ours 32.39† (+0.71) 32.66† (+0.75)

Table 9: The BLEU scores for the Subtitle dataset test
set in the Domain Adaptation (DA) and In Domain (ID)
settings. “†” denotes a statistically significant improve-
ment (p < 0.05).

D Auxiliary Datastore

Note that the auxiliary datastore is constructed
from the top n similar sentence pairs ranked by
the source-side similarity between the input sen-
tence and the source side of the sentence pairs.
Therefore, we will recall different entries from the
original and auxiliary datastores even if the same
query is used. Experiments on the development set
of the IT dataset reveal that only 7.38% of tokens
retrieved from the auxiliary datastore overlap with
those from the original datastore. Here, “overlap”
means the two tokens are identical and from the
same sentence pairs. This result indicates that the
auxiliary datastore has the potential to (1) introduce
more unique tokens and (2) recall complementary
references for the same tokens. In conjunction
with our ablation study results on the retrieval mod-
ule, this underscores the importance of considering
source context when constructing datastore.
Another noteworthy issue is that the size of the aux-
iliary datastore is about 4-5 orders of magnitude
smaller than the size of the original datastore, for
instance, 285 v.s. 3,602,862 on the IT dataset. This
means that the construction and retrieval of the aux-
iliary datastore necessitate minimal computational
expenditure.
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