
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 8667–8679
December 6-10, 2023 ©2023 Association for Computational Linguistics

Conversational Semantic Parsing using Dynamic Context Graphs

Parag Jain Mirella Lapata
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

parag.jain@ed.ac.uk mlap@inf.ed.ac.uk

Abstract

In this paper we consider the task of conversa-
tional semantic parsing over general purpose
knowledge graphs (KGs) with millions of enti-
ties, and thousands of relation-types. We focus
on models which are capable of interactively
mapping user utterances into executable logical
forms (e.g., SPARQL) in the context of the con-
versational history. Our key idea is to represent
information about an utterance and its context
via a subgraph which is created dynamically,
i.e., the number of nodes varies per utterance.
Rather than treating the subgraph as a sequence,
we exploit its underlying structure and encode
it with a graph neural network which further
allows us to represent a large number of (un-
seen) nodes. Experimental results show that
dynamic context modeling is superior to static
approaches, delivering performance improve-
ments across the board (i.e., for simple and
complex questions). Our results further con-
firm that modeling the structure of context is
better at processing discourse information, (i.e.,
at handling ellipsis and resolving coreference)
and longer interactions.

1 Introduction

General purpose knowledge graphs (KG), like
Wikidata (Vrandečić and Krötzsch, 2014) struc-
ture information in a semantic network of entities,
attributes, and relationships, allowing machines to
tap into a vast knowledge base of facts. Knowl-
edge base question answering (KBQA) is the task
of retrieving answers from a KG, given natural lan-
guage questions. A popular approach to KBQA
(see Gu et al. 2022 and the references therein) is
based on semantic parsing which maps questions to
logical form queries (e.g., in SPARQL) that return
an answer once executed against the KG.

Existing work (e.g., Bogin et al. 2019; Ravis-
hankar et al. 2021; Yin et al. 2021) has mostly fo-
cused on answering questions in isolation, whereas
we consider the less studied task of conversational

1. Who starred in Mathias Kneissl ?
SELECT ?x WHERE { wd:Q3298576 wdt:P161 ?x .
?x wdt:P31 wd:Q502895 . }
Rainer Werner Fassbinder, Volker Schlöndorff, Hanna
Schygulla

2. Who was the director of that work of art ?
SELECT ?x WHERE { wd:Q3298576 wdt:P57 ?x . ?x
wdt:P31 wd:Q502895 . }
Reinhard Hauff

3. Does Dubashi have that person as actor ?
ASK { wd:Q76025 wdt:P161 wd:Q24807818 . }
No

4. Which works of art are Rainer Werner Fassbinder or
Laura Esquivel a screenwriter of ?
SELECT ?x WHERE { { ?x wdt:P58 wd:Q44426 . ?x
wdt:P31 wd:Q838948 . }
UNION { ?x wdt:P58 wd:Q230586 . ?x wdt:P31
wd:Q838948 . } }
The American Soldier, Lili Marleen, Love Is Colder
Than Death ...
Q3298576: Mathias Kneissl, Q76025: Reinhard
Hauff, Q24807818: Dubashi, Q44426: Rainer
Werner Fassbinder Q230586: Laura Esquivel,
Q838948: work of art, Q502895: common name,
P161: cast member, P31: instance of, P57:
director, P58: screenwriter

Figure 1: Example interaction from SPICE dataset
(Perez-Beltrachini et al., 2023) with utterances, corre-
sponding SPARQL queries, and answers returned after
executing the queries on the Wikidata graph engine. The
bottom block shows the KG elements (i.e., graph nodes)
involved in this interaction.

semantic parsing. Specifically, our interest lies in
building systems capable of interactively mapping
user utterances to executable logical forms in the
context of previous utterances. Figure 1 shows an
example of a user-system interaction, taken from
SPICE (Perez-Beltrachini et al., 2023), a recently
released conversational semantic parsing dataset.
Each interaction consists of a series of utterances
that form a coherent discourse and are translated to
executable semantic parses (in this case SPARQL

queries). Interpreting each utterance, and mapping
it to the correct parse needs to be situated in a
particular context as the exchange proceeds. To an-
swer the question in utterance 2, the system needs

8667

to recall that Mathias Kneissl is still the subject
of the conversation, however, the user is no longer
interested in who starred in the film but in who
directed it. It is also natural for users to omit previ-
ously mentioned information (e.g., through ellipsis
or coreference), which would have to be resolved
to obtain a complete semantic parse.

In addition to challenges arising from process-
ing contextual information, the semantic parsing
task itself involves linking entities, types, and pred-
icates to elements in the KG (e.g., Mathias Kneissl
to Q3298576) whose topology is often complex
with a large number of nodes. Moreover, unlike
relational databases, the schema of an entity is not
static but dynamically instantiated (Gu et al., 2022).
For example, the entity type person can have hun-
dreds of relations but only a fraction of these will be
relevant for a specific utterance. Therefore, to gen-
erate faithful queries, we cannot rely on memoriza-
tion and should instead make use of local schema
instantiation. In general, narrowing down the set of
entities and relations is critical to parsing utterances
requiring complex reasoning (i.e., where numerical
and logical operators apply over sets of entities).

Existing work (Perez-Beltrachini et al., 2023)
handles the aforementioned challenges by adopting
various simplifications and shortcuts. For instance,
since it is not feasible to encode the entire KG,
only a subgraph relevant to the current utterance is
extracted and subsequently linearized and treated
as a sequence. Entity type information that is not
directly accessible via neighboring subgraphs is
obtained through a global lookup (essentially a re-
verse index of all types in the KG). This solution
is computationally expensive, as the lookup is per-
formed practically for every user utterance, and
does not scale well (the index would have to be
recreated every time the KG changed).

In this paper we propose a modeling approach
to conversational semantic parsing which relies
on dynamic context graphs. Our key idea is to
represent information about an utterance and its
context through a dynamically generated subgraph,
wherein the number of nodes varies for each ut-
terance. Moreover, rather than treating the sub-
graph as a sequence, we exploit its underlying
structure and encode it with a graph neural network
(Scarselli et al., 2009; Gori et al., 2005). To im-
prove generalization, we learn implicit node embed-
dings by aggregating information from neighboring
nodes whose embeddings are in turned initialized

through a pretrained model (Devlin et al., 2019). In
addition, we introduce context-dependent type link-
ing, based on the entity and its surrounding context
which further helps with type disambiguation.

Experimental evaluation on the SPICE dataset
(Perez-Beltrachini et al., 2023) demonstrates that
modeling context dynamically is superior to static
approaches, improving performance across the
board (i.e., for simple and complex questions re-
quiring comparative or quantitative reasoning). Our
results further confirm that modeling the structure
of context is better at processing discourse informa-
tion, (i.e., at handling ellipsis and resolving coref-
erence) and longer interactions with multiple turns.

2 Related Work

Previous work on semantic parsing for KBQA (Gu
et al., 2022) has focused on mapping stand-alone
utterances to logical form queries. Various ap-
proaches have been proposed to this effect which
broadly follow three modeling paradigms. Rank-
ing methods first enumerate candidate queries from
the KB and then select the query most similar to
the utterance as the semantic parse (Ravishankar
et al., 2021; Hu et al., 2021; Bhutani et al., 2019).
Coarse-to-fine methods (Dong and Lapata, 2018;
Ding et al., 2019; Ravishankar et al., 2021) perform
semantic parsing in two stages, by first predicting
a query sketch, and then filling in missing details.
Finally, generation methods (Yin et al., 2021) first
rank candidate parses and then predict the final
parse by conditioning on the utterance and best
retrieved logical forms.

Our task is most related to conversational text-
to-SQL parsing, as manifested in datasets like
SParC (Yu et al., 2019b), CoSQL (Yu et al., 2019a),
and ATIS (Dahl et al., 1994; Suhr et al., 2018).
SParC and CoSQL cover multiple domains and
include multi-turn user and system interactions.
These datasets are challenging in requiring gener-
alization to unseen databases, but the conversation
length is fairly short and the databases relatively
small-scale. ATIS contains utterances paired with
SQL queries pertaining to a US flight booking task;
it exemplifies several long-range discourse phenom-
ena (Jain and Lapata, 2021), however, it covers a
single domain with a simple database schema.

Graph-based methods have been previously em-
ployed in semantic parsing primarily to encode the
database schema, so as to enable the parser to glob-
ally reason about the structure of the output query

8668

(Bogin et al., 2019). Other work (Hui et al., 2022)
uses relational graph networks to jointly represent
the database schema and syntactic dependency in-
formation from the questions. In the context of con-
versational semantic parsing, Cai and Wan (2020)
use a graph encoder to model how the elements of
the database schema interact with information in
preceding context. Along similar lines, Hui et al.
(2021), use a graph neural network with a dynamic
memory decay mechanism to model the interac-
tion of the database schema and the utterances in
context as the conversation proceeds. All these ap-
proaches encode the schema of relational databases
which are significantly smaller in size (e.g., num-
ber of entities and types of relations) compared to
large-scale KGs, where encoding the entire graph
in memory is not feasible.

Closest to our work are methods which cast
conversational KGQA as a semantic parsing
task (Kacupaj et al., 2021; Marion et al., 2021).
These approaches build hand-crafted grammars that
are not directly executable to a KG engine. Further-
more, they assume the KG can be fully encoded in
memory which may not be feasible in real-world
settings. Perez-Beltrachini et al. (2023) develop a
parser which is executable with a real KG engine
(e.g., Blazegraph) but simplify the task by consid-
ering only limited conversation context.

3 Problem Formulation

Given a general purpose knowledge graph, such
as Wikidata, our task is to map user utterances to
formal executable queries, SPARQL in our case.
We further assume an interactive setting where
users converse with the system in natural language
and the system responds while taking into account
what has already been said (see Figure 1). The
system’s response is obtained upon executing the
query against a graph query engine.

Let G denote the underlying KG and I a sin-
gle interaction. I consists of a sequence of turns
where each turn is represented by ⟨Xt, At, Yt⟩ de-
noting an utterance-answer-query triple at time t
(see blocks in Figure 1). A user utteranceXt is a se-
quence of tokens ⟨x1, x2, . . . , x|Xt|⟩, where |Xt| is
the length of the sequence and each xi, i ∈ [1, |Xt|]
is a natural language token. Query string Yt is a
sequence of tokens ⟨y1, y2, . . . , y|Yt|⟩, where |Yt| is
the length of the sequence and each yi, i ∈ [1, |Yt|]
is a either a token from the SPARQL syntax vocab-
ulary (e.g., SELECT, WHERE) or a KG element ∈ G

(e.g., Q3298576). Answer At at time t is the result
of executing Yt against G. Given the interaction
history I[: t− 1] at turn t and current utterance Xt,
our goal is to generate Yt. This involves under-
standing Xt in the context of X:t−1, A:t−1, and G,
and learning to generate Yt based on encoded con-
textual information.

4 Model

Our modeling approach combines three compo-
nents. We first ground named entities in the user
utterance to KG entities, and use these linked enti-
ties to extract a subgraph that functions as context
(Section 4.1). The second component is responsi-
ble for type linking in the context of current and
previously mentioned named entities (Section 4.2).
And finally, our semantic parser learns to map user
utterances into SPARQL queries (Section 4.3).

4.1 Entity Grounding and Disambiguation

We are interested in grounding user utterance Xt

to graph G. Since encoding the entire KG is not
feasible, we extract a subgraph from G which is
relevant to the current turn. To achieve this, we first
perform named entity recognition with an off-the-
shelf NER system, in our experiments we use Al-
lenNLP (Gardner et al., 2018). We perform named
entity linking through efficient string matching1

(Aho and Corasick, 1975) unlike Perez-Beltrachini
et al. (2023) who deploy an ElasticSearch server
for querying an inverted index.

A string can be ambiguous, i.e., link to multiple
entities. For example, Rainer Werner Fassbinder
can be linked to filmmaker (Q44426) and movie
(Q33561976). To deal with ambiguity and to in-
crease recall, Perez-Beltrachini et al. (2023) do not
ever commit to a single entity but instead include
the top-K matching ones; however, this introduces
noise and increased computational cost. Instead,
we disambiguate entities based on their popularity
in the training set (Shen et al., 2015) and compare
the two approaches in Section 6.

Following Perez-Beltrachini et al. (2023),
for each identified KG entity e, we extract
triples (e, r, o) and (s, r, e), where s and o denote
the subject or object of relation r. For instance, en-
tity Dubashi would have triple (Dubashi, country
of origin, India). Subjects and objects are further
mapped to their types in place of actual entities

1Our implementation is based on pyahocorasick https:
//pypi.org/project/pyahocorasick/.

8669

https://pypi.org/project/pyahocorasick/
https://pypi.org/project/pyahocorasick/

Who starred in Mathias Kneissl ? [SEP] Rainer Werner Fassbinder... [SEP] Who was the director of that work of art ?

BERT

BERT

Previous
graph context

state St-1

Current
graph context

state St

Merged
graph context

state S

Transformer Decoder

SELECT ?x WHERE { wd:Q3298576 wdt:P57 ?x . ?x
wdt:P31 wd:Q502895 . }

Extract
Sub-graph

Extract
Sub-graph

GATv2

Figure 2: Model architecture. The previous and current utterance are concatenated and their subgraphs are merged
and encoded in a graph neural network. The subgraphs represent the entity neighborhood and type linking.

(i.e., (e, r, otype) and (stype, r, e)). In our exam-
ple, the triple for Dubashi then becomes (Dubashi,
country of origin, country), where country is type
Q6256. We denote the set of typed triples as Gent

t .

4.2 Context-Dependent Type Linking

Entities in SPARQL queries have types, for example,
in Figure 1, KG element Q502895 is a placeholder
for the type “common name”. Type instances
are often present in the one-hop entity neighbor-
hood Gent

t , but can also be more hops away. Perez-
Beltrachini et al. (2023) index all KG types and
perform a global lookup which is computationally
expensive, and solely applicable to the KG they are
working with. Instead, we perform type linking
based on the entities mentioned in the current con-
text. We expand the grounded entities to extract
triples with type information.2 Since considering
multi-hop neighborhoods would lead to extremely
large subgraphs and would not be memory efficient,
we prune these based on their string overlap with
the user utterance, significantly reducing the num-
ber of triples. The pruned graph Gtype

t is merged
with the previously obtained entity graph Gent

t ,
such that, Gt = Gent

t ∪Gtype
t .

4.3 Dynamic Context Graph Model

Figure 2 shows the overall architecture of our dy-
namic context graph model (which we abbrevi-
ate to DCG). DCG takes as input a tuple of form
⟨Ct, Xt, Gt⟩, where Xt is a user utterance at time t
and Gt is the corresponding subgraph. Ct de-
notes the previous context information that includes
the previous utterance Xt−1, the previous answer

2For entity ent we query select ?r1 ?n1 ?t1 ?r2 ?n2
?t2 where { wd:ent ?r1 ?n1 . ?n1 wdt:P31 ?t1 .
OPTIONAL {?n1 ?r2 ?n2 . ?n2 wdt:P31 ?t2} }.

At−1, and subgraph Gt−1. We use Ĝt to repre-
sent merged context subgraphs Gt and Gt−1 such
that Ĝt = Gt ∪ Gt−1. We encode the context
subgraph Ĝt with a graph neural network (GNN,
Scarselli et al. 2009; Gori et al. 2005) and user utter-
ances and their discourse context with BERT (De-
vlin et al., 2019). Our decoder is a transformer
network (Vaswani et al., 2017) that conditions on
the user utterance encoding and the corresponding
graph representations.

Utterance Encoder We use BERT3 (Devlin
et al., 2019) to represent the concatenation of
previous utterance Xt−1, previous answer At−1,
and current utterance Xt (see Figure 2). To
distinguish between current and past context
we use the [SEP] token. More formally, let
X̂t = [CLS] Xt−1 [SEP] At−1 [SEP] Xt denote
the input to BERT, where Xt = (x1, x2 . . . x|Xt|),
At−1 = (a1, a2 . . . a|At−1|), and Xt−1 =
(x1, x2 . . . x|Xt−1|) are sequences of natural lan-
guage tokens. We obtain latent representations Zt

as Zt = BERT(X̂t).

Graph Encoder We represent the KG sub-
graph Ĝt at time t as a directed graph G = (V, E)
(hereafter, we simplify notation and drop time t),
where V = {v1, v2, . . . , vn} are nodes such
that vi ∈ {entities, relations, types} and E ⊆
V × V . Each node vi consists of a se-
quence of natural language tokens, such that
vi = ⟨vi1, vi2, . . . , vi|vi|⟩. Our KG has a large num-
ber of distinct nodes, but we cannot possibly attest
all of them during training. To handle unseen nodes
at test time, we obtain a generic node representa-

3We employ BERT for a fair comparison with prior work.
Nonetheless, our model does not have any inherent restrictions
that would prevent the use of other pretrained models.

8670

tion h0i for node vi, where h0i = AVG(BERT(vi)).
In other words, we compute encoding h0i by tak-
ing the average of the individual token encodings
obtained from BERT. We do not create a separate
embedding matrix but directly update the BERT
representations during learning, which allows us to
scale to a large number of (unseen) nodes.

A graph neural network (GNN) learns node rep-
resentations by aggregating information from its
neighboring nodes. Each GNN layer l, takes as
input node representations {hl−1

i | i ∈ [1, n]}
and edges E . The output of each layer is an up-
dated set of node representations {hli | i ∈ [1, n]}.
We use Graph Attention Network v2 (GATv2,
Brody et al. 2022) for updating node representa-
tions which replaces the static attention mechanism
of GAT (Velickovic et al., 2018) with a dynamic
and more expressive variant. Let Ni = {vj ∈ V |(
j, i

)
∈ E} denote the neighbors of node vi and αij

the attention score between node hi and hj . We
calculate attention as a single-layer feedforward
neural network, parametrized by a weight vector a
and weight matrix W :

αij =
exp

(
ψ
(
hl−1
i , hl−1

j

))
∑

k∈Ni
exp

(
ψ
(
hl−1
i , hl−1

k

)) (1)

The scoring function ψ is computed as follows:

ψ
(
hl−1
i , hl−1

j

)
=

aT LeakyReLU
(
W · [hl−1

i ∥ hl−1
j]

)
(2)

where ·T represents transposition and ∥ is the con-
catenation operation. Attention coefficients corre-
sponding to each node i are then used to compute
a linear combination of the features corresponding
to neighboring nodes as:

hli = σ

∑

j∈Ni

αijWhl−1
j

 (3)

Decoder Our decoder is a transformer net-
work (Vaswani et al., 2017). Let H l

t =(
hl1t, h

l
2t, . . . , h

l
nt

)
denote the sequence of node

representations from the last layer of the graph net-
work (recall t here represents an interaction turn).
Our decoder models the probability of generating a
SPARQL parse conditioned on the graph and input
context representations, i.e., p(Yt | H l

t , Zt). Gener-
ating the SPARQL parse requires generating syntax
symbols (such as SELECT, WHERE) and KG ele-
ments (i.e., entities, types, and relations). Given

decoder state si at the ith generation step, the prob-
ability of generating yi is calculated as:

p(yi | y<i, H
l
t , si) = pG(yi | y<i, H

l
t , si)

+ pS(yi | y<i, si) (4)

where pG and pS are the probability of generat-
ing a graph node and syntax symbol, respectively.
We calculate pS = softmax(W1si), such that
W1 ∈ R|Vs|×d, and |Vs| is the SPARQL syntax vo-
cabulary size. We calculate pG using node embed-
dings H l

t , as pG = softmax(H l
tsi).

Training Our model is trained end-to-end by op-
timizing the cross-entropy loss. Given training in-
stance ⟨Ct, Xt, Yt, Gt⟩, where Yt is a sequence of
gold output tokens ⟨y1, y2, . . . , y|Yt|⟩, we minimize
the token-level cross-entropy as:

L(ŷi) = −logp(yi | Xt, Gt, Ct) (5)

where ŷi denotes the predicted output token at de-
coder step i.

5 Experimental Setup

Dataset We performed experiments on SPICE
(Perez-Beltrachini et al., 2023), a recently released
large-scale dataset4 for conversational semantic
parsing built on top of the CSQA benchmark (Saha
et al., 2018). SPICE consists of user-system in-
teractions where natural language questions are
paired with SPARQL parses and answers provided
by the system correspond to SPARQL execution
results (see Figure 1). We present summary statis-
tics of the dataset in Table 1. As can be seen, it
contains a large number of training instances, the
conversations are relatively long (the average turn
length is 9.5), and the underlying KG is sizeable
(12.8M entities). SPICE has simple factual ques-
tions but also more complicated ones requiring rea-
soning over sets of triples; it also exemplifies vari-
ous discourse-related phenomena such as corefer-
ence and ellipsis. We provide examples of the types
of questions attested in SPICE in Appendix C.

Evaluation Metrics Following previous
work (Perez-Beltrachini et al., 2023), we report ex-
act match accuracy and F1 (or accuracy depending
on question type). Exact match is the percentage
of predicted SPARQL queries that string match
with the corresponding gold SPARQL. F1 (or

4https://github.com/EdinburghNLP/SPICE.

8671

https://github.com/EdinburghNLP/SPICE

instances 197K
entities 12.8M
relations 2,738
types 3,064
Avg. turn length 9.5
Avg. entities per conversation 7.6
Avg. types per conversations 6.5
Avg. neighborhood per turn 181.4 triples

Table 1: Statistics of the SPICE dataset.

answer accuracy) is calculated between execution
results of predicted queries and gold queries.
For Verification queries and queries involving
Quantitative and Comparative Reasoning, we
calculate execution answer accuracy. For other
types of questions, F1 scores are calculated by
treating the results as a set.

Model Configuration Our model is imple-
mented using PyTorch (Paszke et al., 2019) and
trained with the AdamW (Loshchilov and Hutter,
2019) optimizer.5 Model selection was based on ex-
act match accuracy on the validation set. We used
two decoder layers and two GATv2 layers for all
experiments. We used HuggingFace’s pretrained
BERT embeddings (Wolf et al., 2020), specifically
the uncased base version. Our GATv2 implemen-
tation is based on PyTorch Geometric (Fey and
Lenssen, 2019) with two attentions heads. We use
adjacency matrices stacking as a method of cre-
ating mini-batches for our GNN across different
examples. We identify named entities using the
AllenNLP named entity recognition (NER) system
(Gardner et al., 2018). Our execution results are
based on the Wikidata subgraph provided by Perez-
Beltrachini et al. (2023). Our SPARQL server is
deployed using Blazegraph.6 See Appendix B for
more implementation details.

As described in Section 4.3, at each utter-
ance, our model encodes the previous t subgraphs.
Larger context is informative but can also introduce
noise. We treat t as a hyperparameter and optimize
its value on the development set. We report results
with t = 5 (see Appendix A for details).

Comparison Models We compare against the
semantic parser of Perez-Beltrachini et al. (2023).
Their model is based on BERT (Devlin et al., 2019),
it relies on AllenNLP (Gardner et al., 2018) for
named entity recognition, and performs entity link-

5Our code can be downloaded from https://github.
com/parajain/dynamic_context.

6https://blazegraph.com/

ing with an ElasticSearch7 inverted index. As
mentioned earlier, they do not explicitly perform
named entity disambiguation (they consider the
K = 5 best matching entities and their neighbor-
hood graphs as part of the vocabulary) and use a
global lookup for type linking. As the size of the
linearized subgraph often exceeds BERT’s maxi-
mum number of input tokens (which is 512), they
adopt a workaround where the graph is chunked
into several subsequences, and encoded separately.
We refer to their Semantic Parser as BertSPGL,
where GL is a shorthand for Global Lookup.

In addition to our full dynamic context graph
model which performs Context-dependent Type
Linking (DCGCL), we also build a simpler variant
(DCG) which only relies on the entity neighbor-
hood subgraph for type information. Moreover, we
create two variants of our model, one which disam-
biguates entities, and another one which does not
(similar to Perez-Beltrachini et al. 2023).

6 Results

In this section, we evaluate the performance of our
semantic parser on the SPICE test set. We report
results on individual question types and overall. We
also analyze our system’s ability to handle different
discourse phenomena like ellipsis and coreference
as well as interactions of varying length.

The Effect of Dynamic Context Table 2 sum-
marizes our results. We first concentrate on model
variants without entity disambiguation for a fair
comparison with Perez-Beltrachini et al. (2023).

We compare DCGGL, a version of our model
which adopts a global lookup for type liking simi-
lar to BertSPGL and differs only in how contextual
information is encoded. As we can see, our graph-
based model performs better, reaching an F1 score
of 72.3% compared to 59% obtained by BertSPGL
which is limited by the way it encodes contextual in-
formation. Recall, that BertSPGL linearizes the sub-
graph context, splits into subsequences and feeds it
to the model chunk-by-chunk. Our model alleviates
this problem by efficiently encoding the KG infor-
mation with a graph neural network, preserving
dependencies captured in its structure. As a result,
DCGGL performs better on most question types,
including simple questions, and reasoning-style
questions. We further compare DCGGL against a
variant which uses context-dependent type linking

7https://www.elastic.co/

8672

https://github.com/parajain/dynamic_context
https://github.com/parajain/dynamic_context
https://blazegraph.com/
https://www.elastic.co/

Without Disambiguation With Disambiguation
DCGCL DCGGL BertSPGL DCGCL DCG

Question Type F1 EM F1 EM F1 EM F1 EM F1 EM
Clarification 78.60 73.63 80.42 69.47 83.91 76.58 82.01 74.82 82.03 72.10
Logical Reasoning 64.12 49.51 51.14 31.54 22.74 28.61 93.95 79.52 93.33 78.19
Quantitative Reasoning 55.66 26.29 93.25 76.88 76.20 59.01 59.83 31.17 56.66 28.66
Comparative Reasoning 76.06 35.59 80.59 47.28 69.56 39.37 90.91 62.46 90.09 61.11
Simple Question (Coref) 86.36 72.03 84.92 67.15 76.51 58.83 88.49 79.90 87.41 79.18
Simple Question (Direct) 87.29 71.10 83.24 65.89 71.43 58.71 88.27 62.25 85.60 61.44
Simple Question (Ellipsis) 65.22 56.08 52.84 47.48 58.14 50.90 79.08 83.87 84.35 82.45

AC EM AC EM AC EM AC EM AC EM
Verification (Boolean) 78.30 36.97 69.07 21.00 37.16 24.90 87.41 66.32 86.75 63.66
Quantitative Reasoning (Count) 61.10 56.94 66.59 62.70 50.86 48.44 75.20 70.84 72.96 69.02
Comparative Reasoning (Count) 42.79 30.40 60.91 44.68 43.48 40.67 67.70 57.34 66.76 56.60
Overall 69.55 50.85 72.30 53.41 59.00 48.60 81.28 66.85 80.59 65.24

Table 2: Results on SPICE dataset (test set). BertSPGL (Perez-Beltrachini et al., 2023) uses NER based on AllenNLP)
and global look-up (subscript GL) for type linking. DCGCL uses context-dependent type linking (subscript CL) and
also AllenNLP. DCG has no type linking. We measure F1, Accuracy (AC), and Exact Match (EM).

instead (DCGCL). We find that context-dependent
type linking is slightly worse than global lookup
which is expected given that it does not have access
to the full list of KG types.

In general, we observe that results with exact
match (EM) are lower than F1 or Accuracy. EM is
a stricter metric, it does not allow for any deviation
from the goldstandard SPARQL. However, it is
possible for two queries to have different syntax but
equivalent meaning, and for partially well-formed
queries to evaluate to partially accurate results. In
contrast to EM, F1 and Accuracy give partial credit
and thus obtain higher scores.

The Effect of Entity Disambiguation We now
present results with a variant of our model which
operates over disambiguated entities (compare sec-
ond and fifth blocks in Table 2, with heading
DCGCL). We observe that disambiguation has a
significant effect on model performance, leading
to an F1 increase of more than 11%. We further
assess the utility of context-dependent linking by
comparing DCGCL to a variant which does not
have access to the type graph Gtype

t , neither during
training nor during evaluation (see column DCG,
With Disambiguation). This type-deficient model
performs overall worse both in terms of F1 and
EM, but is still superior to BertSPGL, even though
the latter has access to more information via the
top-K entity lookup and global type linking. This
points to the importance of encoding context in
a targeted manner rather than brute force. In Ap-
pendix A we discuss the effect of context length on
the availability of type information.

2 4 6 8 10 12 14 16

0.4

0.6

0.8

1

Turn Position

E
xa

ct
M

at
ch

A
cc

ur
ac

y
(%

)

BertSPGL (−D)
DCGGL (−D)
DCGCL (−D)

DCGCLD (+D)

Figure 3: Exact Match Accuracy averaged across ques-
tion types at different turn positions. +/−D denotes the
presence/absence of entity disambiguation.

The Effect of Conversation Length We next
examine the benefits of modeling context dynam-
ically. Ideally, a model should produce an ac-
curate semantic parse no matter the conversation
length. Figure 3 plots exact match accuracy (aver-
aged across question types) against different turn
positions. In general, we observe that utterances
occurring later in the conversation are more diffi-
cult to parse. As the dialogue progresses, subse-
quent turns become more challenging for the model
which is expected to leverage the common ground
established so far. This involves maintaining the
subgraph context based on the conversation history
in addition to handling linguistic phenomena such
as coreference and ellipsis. Overall, DCGCL (with
and without entity disambiguation) is superior to
BertSPGL, and the gap between the two models is
more pronounced for later turns.

8673

Without Disambiguation With Disambiguation
DCGCL DCGGL BertSPGL DCGCL DCG

Coref=−1 58.25 51.10 49.39 74.23 72.22
Coref< −1 23.52 12.42 00.00 33.64 32.40
Ellipsis 39.30 39.90 26.39 62.26 61.10
MEntities 43.71 53.46 41.64 61.59 58.90

Table 3: Average Exact Match accuracy. Coref=−1 are
utterances with referring expressions resolved in the
previous turn. Coref< −1 are utterances with referring
expressions resolved in the wider discourse context, be-
yond the previous turn. MEntities abbreviates multiple
entities and refers to utterances with plural mentions.

Modeling Discourse Phenomena Discourse
phenomena, such as ellipsis and coreference, are
prevalent in conversations. Ellipsis refers to gram-
matical omissions from an utterance that can be
recovered from context. In the interaction:

(Q1) What does Andrei Neagoe do for a living?

(Q2) And how about Wilhelm Dietrichson?

the phrase do for a living is elided from (Q2) but
can be understood in the context of (Q1). Corefer-
ence on the other hand, occurs between utterances
that refer to the same entity. For example, between
utterances 2 and 3 in Figure 1.

In Table 3, using exact match, we assess how
different models handle ellipsis and coreference
across question types. Coref=−1 refers to cases
where coreference can be resolved in the immediate
context, i.e., the previous turn. Coref< −1 involves
utterances that require access to wider conversation
context, beyond the previous turn. In the setting
that does not disambiguate entities, we observe that
models which exploit discourse context (variants
DCGGL and DCGCL) are better at resolving co-
referring and elliptical expressions compared to
BertSPGL. We also see that entity disambiguation
is very helpful, leading to substantial improvements
for DCGCL across discourse-related phenomena.

Similar to Perez-Beltrachini et al. (2023), we
also evaluate model performance on utterances
with plural mentions; these are typically linked
to multiple entities which the semantic parser must
enumerate in order to build a correct parse (MEn-
tities in Table 3). DCGCL with disambiguation is
overall best, while DCG (without type linking) is
worse. This is not surprising, utterances with mul-
tiple entities generally have complex parses, with
multiple sub-queries and entity types, which DCG
does not have access to.

The Nature of Parsing Errors Overall, we find
that our model is able to predict syntactically valid
SPARQL queries. Errors are mostly due to mis-
interpretations of the question’s intent given the
graph context and previous questions or missing
information. Our model also has difficulty parsing
Clarification and Quantitative Reasoning questions.
For Clarification questions, it is not able to select
the right entity after clarification. For example, in
the following conversation:

Answer: Peter G. Van Winkle, Arthur I. Boreman,
William E. Stevenson

Utterance: Which language is that person capable of
writing ?

Clarification: Did you mean Arthur I. Boreman ?
Answer: No, I meant Peter G. Van Winkle. Could

you tell me the answer for that?

it selects Arthur I. Boreman (Q709961) instead of
Peter G. Van Winkle (Q1404201) leading to an in-
correct SQL parse. In this case, the broader context
overrides useful information in the immediately
preceding turn. Determining relevant context based
on specific question intents would be helpful, how-
ever, we leave this to future work.

Failures in type linking are a major cause
of errors for Quantitative Reasoning questions
which typically have no or very limited context
(e.g., “Which railway stations were managed by
exactly 1 social group ?”). However, our model
relies on the availability of types in the entity neigh-
borhood, as it performs type linking in a context
dependent manner. We observe that it becomes
better at parsing such questions when given access
to all KG types (see Table 2, DCGGL vs. DCGCL).

7 Conclusions

In this paper, we present a semantic parser for
KBQA which interactively maps user utterances
into executable logical forms, in the context of pre-
vious utterances. Our model represents information
about utterances and their context as KG subgraphs
which are created dynamically and encoded us-
ing a graph neural network. We further propose a
context-dependent approach to type linking which
is efficient and scalable.

Our experiments reveal that better modeling of
contextual information improves performance, in
terms of entity and type linking, resolving coref-
erence and ellipsis, and keeping track of the in-
teraction history as the conversation evolves. Di-
rections for future work are many and varied. In

8674

experiments, we use an off-the shelf NER system,
however, jointly learning a semantic parser and an
entity linker would be mutually beneficial, avoiding
error propagation. Given that it is prohibitive to en-
code the entire KG, we encode relevant subgraphs
on the fly. We could further explicitly model the
relationship between KG entities and question to-
kens which previous work has shown is promising
(Wang et al., 2020). Finally, it would be interest-
ing to adapt our model so as to handle non-i.i.d
generalization settings.

8 Limitations

Our model relies on a pre-trained NER module
for entity linking. As this module is trained and
evaluated on specific datasets, its performance may
not generalize on unseen domains within Wikidata.
Moreover, we did not explicitly consider relations.
We assume that the correct information will be
available which may not always be the case. We
focus on encoding KG structural information and
pass the learning of the interactions between the
KG and the linguistic utterances to the decoder. As
shown in previous work (Zhang et al., 2022), effec-
tively combining KG information with a language
model can be mutually beneficial in the context of
question answering. However, it requires an exten-
sive study in itself to determine the task specific
parametrization (Wang et al., 2022).

Acknowledgements

This work is supported in part by Huawei and the
UKRI Centre for Doctoral Training in Natural Lan-
guage Processing (grant EP/S022481/1). Lapata
gratefully acknowledges the support the UK Engi-
neering and Physical Sciences Research Council
(grant EP/W002876/1).

References
Alfred V. Aho and Margaret J. Corasick. 1975. Effi-

cient string matching: An aid to bibliographic search.
Commun. ACM, 18(6):333–340.

Nikita Bhutani, Xinyi Zheng, and H V Jagadish. 2019.
Learning to answer complex questions over knowl-
edge bases with query composition. In Proceedings
of the 28th ACM International Conference on In-
formation and Knowledge Management, CIKM ’19,
page 739–748, New York, NY, USA. Association for
Computing Machinery.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global reasoning over database structures for text-

to-SQL parsing. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 3659–3664, Hong Kong, China. Association
for Computational Linguistics.

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Yitao Cai and Xiaojun Wan. 2020. IGSQL: Database
schema interaction graph based neural model for
context-dependent text-to-SQL generation. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 6903–6912, Online. Association for Computa-
tional Linguistics.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS
task: The ATIS-3 corpus. In Human Language Tech-
nology: Proceedings of a Workshop held at Plains-
boro, New Jersey, March 8-11, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jiwei Ding, Wei Hu, Qixin Xu, and Yuzhong Qu. 2019.
Leveraging frequent query substructures to generate
formal queries for complex question answering. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2614–
2622, Hong Kong, China. Association for Computa-
tional Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-
coding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for

8675

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://doi.org/10.18653/v1/2020.emnlp-main.560
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1263
https://doi.org/10.18653/v1/D19-1263
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/W18-2501
https://doi.org/10.18653/v1/W18-2501

NLP Open Source Software (NLP-OSS), pages 1–6,
Melbourne, Australia. Association for Computational
Linguistics.

M. Gori, G. Monfardini, and F. Scarselli. 2005. A new
model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729–734 vol. 2.

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su. 2022.
Knowledge base question answering: A semantic
parsing perspective.

Xixin Hu, Yiheng Shu, Xiang Huang, and Yuzhong
Qu. 2021. Edg-based question decomposition for
complex question answering over knowledge bases.
In The Semantic Web – ISWC 2021, pages 128–145,
Cham. Springer International Publishing.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021. Dynamic hy-
brid relation exploration network for cross-domain
context-dependent semantic parsing. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(14):13116–13124.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2SQL: Injecting syntax to question-schema
interaction graph encoder for text-to-SQL parsers.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 1254–1262, Dublin,
Ireland. Association for Computational Linguistics.

Parag Jain and Mirella Lapata. 2021. Memory-Based
Semantic Parsing. Transactions of the Association
for Computational Linguistics, 9:1197–1212.

Endri Kacupaj, Joan Plepi, Kuldeep Singh, Harsh
Thakkar, Jens Lehmann, and Maria Maleshkova.
2021. Conversational question answering over
knowledge graphs with transformer and graph atten-
tion networks. In Proceedings of the 16th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 850–862,
Online. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Pierre Marion, Pawel Nowak, and Francesco Piccinno.
2021. Structured context and high-coverage grammar
for conversational question answering over knowl-
edge graphs. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 8813–8829, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca

Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Process-
ing Systems, volume 32, pages 8026–8037. Curran
Associates, Inc.

Laura Perez-Beltrachini, Parag Jain, Emilio Monti, and
Mirella Lapata. 2023. Semantic parsing for conver-
sational question answering over knowledge graphs.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 2499–2514, Dubrovnik, Croatia.
Association for Computational Linguistics.

Srinivas Ravishankar, June Thai, Ibrahim Abdelaziz,
Nandana Mihindukulasooriya, Tahira Naseem, Pa-
van Kapanipathi, Gaetano Rossillo, and Achille Fok-
oue. 2021. A two-stage approach towards generaliza-
tion in knowledge base question answering. CoRR,
abs/2111.05825.

Amrita Saha, Vardaan Pahuja, Mitesh Khapra, Karthik
Sankaranarayanan, and Sarath Chandar. 2018. Com-
plex sequential question answering: Towards learn-
ing to converse over linked question answer pairs
with a knowledge graph. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence
(AAAI-18), pages 705–713, New Orleans, Louisiana,
USA. AAAI Press.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Wei Shen, Jianyong Wang, and Jiawei Han. 2015. Entity
linking with a knowledge base: Issues, techniques,
and solutions. IEEE Transactions on Knowledge and
Data Engineering, 27(2):443–460.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to exe-
cutable formal queries. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2238–2249, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th International
Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

8676

https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.1109/IJCNN.2005.1555942
https://doi.org/10.48550/ARXIV.2209.04994
https://doi.org/10.48550/ARXIV.2209.04994
https://doi.org/10.1609/aaai.v35i14.17550
https://doi.org/10.1609/aaai.v35i14.17550
https://doi.org/10.1609/aaai.v35i14.17550
https://doi.org/10.18653/v1/2022.findings-acl.99
https://doi.org/10.18653/v1/2022.findings-acl.99
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.18653/v1/2021.eacl-main.72
https://doi.org/10.18653/v1/2021.eacl-main.72
https://doi.org/10.18653/v1/2021.eacl-main.72
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://doi.org/10.18653/v1/2021.emnlp-main.695
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aclanthology.org/2023.eacl-main.184
https://aclanthology.org/2023.eacl-main.184
http://arxiv.org/abs/2111.05825
http://arxiv.org/abs/2111.05825
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/N18-1203
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJXMpikCZ

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578, Online. Association for
Computational Linguistics.

Kuan Wang, Yuyu Zhang, Diyi Yang, Le Song, and
Tao Qin. 2022. GNN is a counter? revisiting GNN
for question answering. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph.
2021. Neural machine translating from natural lan-
guage to SPARQL. Future Generation Computer
Systems, 117:510–519.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511–4523, Florence, Italy.
Association for Computational Linguistics.

Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga,
Hongyu Ren, Percy Liang, Christopher D. Manning,

1 3 5 7 9 10

70

72

74

76

Turn Position

E
xa

ct
M

at
ch

A
cc

ur
ac

y
(%

)

DCGCL (+D)

Figure 4: Exact Match Accuracy for different context
lengths averaged across question types (validation set;
+D: with entity disambiguation).

and Jure Leskovec. 2022. GreaseLM: Graph REA-
Soning enhanced language models. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

A The Effect of Context Length

Figure 4 plots the performance of DCGCL (disam-
biguation setting) against progressively increasing
context length ∈ [1, 10]. We observe that access
to wider context is beneficial up to a point. Perfor-
mance deteriorates with very long contexts (beyond
turn position 5). We stipulate two reasons for this.
Firstly, longer interactions might be long because
users ask about more than one entity or topic, in
which case local context might be sufficient to pro-
vide an answer. And secondly, longer interactions
might be genuinely confusing and noisy for anno-
tators to create, let alone models.

We further assess how context length interacts
with the availability of type information. Table 4
shows the difference in performance with and with-
out explicit type linking at context lengths 1 and 5.
As described in Section 5, DCG does not have
explicit type linking while DCGCL uses context-
dependent linking, while both models apply entity
disambiguation. ∆F11 is the absolute difference
in F1 score between DCGCL and DCG for context
length 1. Similarly, ∆F15 denotes the difference
for context length 5.

Overall, we find a significant drop in perfor-
mance for context length 1 compared to context
length 5. This indicates that more type information
becomes available with increased context length.
However, performance varies with question types.
Specifically, the exact match difference is lot bigger
for Clarification questions compared to Quantita-

8677

https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://openreview.net/forum?id=hzmQ4wOnSb
https://openreview.net/forum?id=hzmQ4wOnSb
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/https://doi.org/10.1016/j.future.2020.12.013
https://doi.org/https://doi.org/10.1016/j.future.2020.12.013
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://openreview.net/forum?id=41e9o6cQPj
https://openreview.net/forum?id=41e9o6cQPj

Context Length 1 Context Length 5 Diff due to type linkingDCGCL DCG DCGCL DCG
Question Type F1 EM F1 EM F1 EM F1 EM ∆F11 ∆EM1 ∆F15 ∆EM5

Clarification 75.66 68.61 52.22 53.87 82.01 74.82 82.03 72.1 23.44 14.74 0.02 2.72
Logical Reasoning 92.59 77.07 86.9 67.94 93.95 79.52 93.33 78.19 5.69 9.13 0.62 1.33
Quantitative Reasoning 36.1 13.74 30.91 11.04 59.83 31.17 56.66 28.66 5.19 2.7 3.17 2.51
Comparative Reasoning 76.72 39.75 74.77 37.79 90.91 62.46 90.09 61.11 1.95 1.96 0.82 1.35
Simple Question (Coref) 88.18 79.83 83.04 76.27 88.49 79.9 87.41 79.18 5.14 3.56 1.08 0.72
Simple Question (Direct) 87.56 61.59 79.74 58.21 88.27 62.25 85.6 61.44 7.82 3.38 2.67 0.81
Simple Question (Ellipsis) 80.38 81.75 74.2 76.84 79.08 83.87 84.35 82.45 6.18 4.91 5.27 1.42

AC EM AC EM AC EM AC EM ∆AC1 ∆EM1 ∆AC5 ∆EM5

Verification (Boolean) 88.02 61.45 82.15 48.24 87.41 66.32 86.75 63.66 5.87 13.21 0.66 2.66
Quantitative Reasoning (Count) 69.41 65.34 65.16 60.58 75.2 70.84 72.96 69.02 4.25 4.76 2.24 1.82
Comparative Reasoning (Count) 42.81 30.5 39.74 28.69 67.7 57.34 66.76 56.6 3.07 1.81 0.94 0.74
Overall 73.74 57.96 66.88 51.95 81.28 66.85 80.59 65.24 6.86 6.01 0.69 1.61

Table 4: Interaction of context length and type linking. ∆F11 is the absolute difference in F1 score between DCGCL
and DCG for context length 1. ∆F15 is the absolute F1 difference for context length 5.

tive Reasoning questions which seem to require
access to larger KB subgraphs.

B Model Details

Our model is implemented using Py-
Torch (Paszke et al., 2019) and trained with
the AdamW (Loshchilov and Hutter, 2019)
optimizer. It was trained with an A100 GPU with
a batch size of 64 and an initial learning rate of
0.001. AdamW coefficients β1 and β2 (used for
computing running averages of gradient and its
square) were set to 0.9 and 0.999, respectively. W
The weight decay coefficient was set to 0.01 for
all experiments. Hyperparameters were set based
on initial experiments using a manually selected
grid. We did not tune learning rate parameters. We
choose the number of GATv2 and decoder layers
from [1, 4] and found 2 to work best. Our SPARQL
query server was deployed using Blazegraph.8

which uses only CPU-based resources and has
access to 100G of RAM.

We use two attention heads with GATv2. Specif-
ically, let K denote the attention head as com-
puted (Velickovic et al., 2018) in Equation (3). The
output of each head is concatenated as follows:

hl =

K

∥
k=1

σ

∑

j∈Ni

αk
ijW

khl−1
j

where ∥ represents concatenation. αk
ij are normal-

ized attention coefficients computed by the k-th
attention mechanism as in Equation (1).

Our graph is represented as an adjacency ma-
trix. To create a mini-batch, adjacency matrices

8https://blazegraph.com/

are diagonally stacked (Fey and Lenssen, 2019).
This creates a combined graph that holds multiple
isolated subgraphs as shown below:

A =

A1

. . .
An

where n is the batch-size number of graphs. Node
input H and target H̄ features are simply concate-
nated in the node dimension as follows:

H =

H1

...
Hn

 , H̄ =

H̄1

...
H̄n

 .

8678

https://blazegraph.com/

C The SPICE Dataset: Question Types

Simple Question (Ellipsis)

Utterance: Who created the design for Samus Aran?
Answer: Hiroji Kiyotake
Utterance: And how about The Dreamland Chronicles: Freedom Ridge?
Answer: Julian Gollop

Simple Question (Direct)
Utterance: Who starred in Mathias Kneissl ?
Answer: Rainer Werner Fassbinder, Volker Schlöndorff, Hanna Schygulla

Simple Question (Coreferenced)
Utterance: Who was the director of that work of art ?
Answer: Reinhard Hauff

Verification (Boolean)
Utterance: Does Dubashi have that person as actor ?
Answer: No

Logical Reasoning (All)
Utterance: Which works of art are Rainer Werner Fassbinder or
Laura Esquivel a screenwriter of ?
Answer: The American Soldier, Lili Marleen, Love Is Colder Than Death...

Clarification

Utterance: How many administrative territories or political territories
did that work of art originate ?
Did you mean Lili Marleen ?
No, I meant Querelle. Could you tell me the answer for that?
Answer: 2

Quantitative Reasoning (Count)
Utterance: How many still waters are situated nearby Norway
or Austria-Hungary ?
Answer: 2

Comparative Reasoning (Count)
Utterance: How many watercourses are more number of landscapes
located on than Kafue River ?
Answer: 2

Comparative Reasoning (All)
Utterance: Which political territories are located nearby lesser number
of watercourses or bodies of water than Bareyo ?
Answer: 2

Table 5: Examples of question types attested in SPICE (Perez-Beltrachini et al., 2023). The utterance in gray is
provided for ease of interpretation.

8679

