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Abstract

Fine-tuning pretrained language models on
helpful intermediate tasks often greatly im-
proves the performance of target tasks. How-
ever, how to efficiently find the source tasks that
can successfully transfer still remains under-
explored. In this work, we propose to learn
an affinity scoring function to predict transfer-
ability between tasks. Specifically, we con-
duct prompt tuning and regard soft prompts as
task embeddings that summarize task-specific
information. Then we randomly sample task
pairs to train an affinity scoring function. The
goal is to predict the transfer gain (i.e., affin-
ity) between a task pair, by conditioning on
their task embeddings. Once the scoring func-
tion is trained, given a novel target task, we
use it to predict the most transferable source
tasks, without a brute-force search for all pos-
sible source-target pairs. Experimental results
across 50 tasks show that our method efficiently
identifies beneficial tasks for transfer learning.

1 Introduction

Fine-tuning pretrained language models (PLMs),
such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019b), achieves remarkable
performance on various natural language process-
ing tasks. In addition, fine-tuning on intermediate
source tasks yields further gains (Phang et al., 2018;
Vu et al., 2020; Pruksachatkun et al., 2020).

While incorporating intermediate stages of
knowledge transfer has shown compelling bene-
fits on various tasks, choosing inappropriate source
tasks results in negative transfer performance on
the target tasks (Pruksachatkun et al., 2020; Bingel
and Søgaard, 2017; Chang and Lu, 2021). Previous
work use data size, task complexity, or cosine simi-
larity between tasks as well as domains (Vu et al.,
2020; Poth et al., 2021; Vu et al., 2021) to model the
relationship between datasets. However, the condi-
tions for successful transfer remain unclear (Phang
et al., 2018). Given a target task, which source task

is the most helpful is not well investigated. How to
effectively predict the transferability between tasks
is still challenging.

To shed light on the task relationship, in this
paper, we conduct a comprehensive study of the
transferability between 50 tasks, covering a wide
range of text genres and degrees of difficulty. As
fine-tuning and deploying a separate instance of
the entire large model for each downstream task
is prohibitively expensive, we conduct prompt
tuning (Liu et al., 2021b,a; Lester et al., 2021)
on a diverse set of source tasks. Prompt tuning
is a parameter-efficient approach which freezes
all parameters of PLMs and merely tunes soft
prompts (Lester et al., 2021). As prompts effec-
tively simulate the knowledge of a large language
model (Su et al., 2022), we interpret soft prompts
as task embeddings following Vu et al. (2021)
and store task prompts in a prompt pool. Then
we randomly sample task prompt pairs from the
pool, along with their transfer gain (i.e., the per-
formance difference between “with transfer” and
“without transfer”) to learn an affinity scoring func-
tion. Once the scoring function is trained, given
a novel target task, we use it to predict the most
beneficial source task in the prompt pool. Using the
affinity scoring function to predict the most help-
ful source task costs substantially less than using
a brute-force search over all possible source-target
pairs. Experimental results show that the proposed
affinity scoring function efficiently identifies bene-
ficial tasks for transfer learning and obtains larger
transfer gain on the target task than baseline meth-
ods. Moreover, our method effectively predicts
task transferability with much fewer supervision
demands.

Our contributions are as follows:

1) We propose an affinity scoring function to
learn to predict task transferability and demon-
strate that the affinity scoring function can
measure task relationship efficiently and ef-
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fectively.

2) We conduct an extensive study of the transfer-
ability between 50 NLP tasks. We store small
learned task-specific prompts in a prompt pool
while enabling the reuse of a single frozen
pretrained model for all tasks, yielding low
computational and storage costs.

3) Experimental results show that the proposed
method efficiently identifies beneficial source
tasks and predicts task transferability better
than existing methods.

2 Background: Prompt Tuning

Soft prompts are trainable continuous embeddings
prepended to the input. During training, we keep
the large pretrained language model frozen and
only update the parameters of the prompt. We use
soft prompts in our work since discrete prompts
need carefully handcrafted design (Gao et al., 2020;
Sanh et al., 2021; Bach et al., 2022). Even if signifi-
cant effort is invested, discrete prompts are likely to
be suboptimal (Zhao et al., 2021). It is difficult and
time-consuming to finding proper discrete prompts
for each task (Liu et al., 2021a; Vu et al., 2021).

Given a series of K input tokens, x =
{w1, ..., wK}, where wi denotes i-th token and K
denotes the input length. We first utilize PLM
to embed the tokens, forming a matrix X ∈
RK×H , where H is the dimension of the embed-
ding space. Following reparametrization meth-
ods (Li and Liang, 2021; Liu et al., 2021b) which
can lead to more stable optimization (Li and Liang,
2021), we use a two-layer feed-forward neural
network with parameter θ as our prompt encoder.
Then we use the prompt encoder to embed the ran-
domly initialized prompt tokens, forming a matrix
P ∈ RL×H , where L denotes the length of the
prompt. We concatenate it to the embedded input
as [P ;X] ∈ R(L+K)×H which then passes through
the downstream model as normal while only pa-
rameters of the prompt encoder, i.e., θ, are updated.
Given the input embedding X and its label y, the
model is updated by maximizing the likelihood:

max
θ

p(y|[P ;X]) (1)

Notice that we do not use verbalizers and prompt
engineering in our experiments.

3 Methodology

As shown in Figure 1, we first construct a prompt
pool which consists of a wide range of source task
prompts. Then, we randomly sample task pairs
from the pool to train a scoring function that learns
affinity scores between tasks. Once the affinity scor-
ing function is learned, given a novel target task,
we use it to effectively predict the most transferable
source task from the pool. Then we initialize the
target prompt encoder with the best source prompt
and conduct prompt tuning on the target task.

3.1 Prompt Pool Construction

Given n source tasks, denoted by S =
{S1,S2, ...,Sn}, we first train a task-specific
model for each task in S. Since updating and stor-
ing the entire model for each specific task is ex-
tremely expensive and the knowledge in a large
pretrained language model can be elicited with
prompts (Liu et al., 2021a; Li and Liang, 2021;
Lester et al., 2021; Ding et al., 2021), we conduct
prompt tuning, a lightweight alternative to fine-
tuning, on each task and store each task prompt in
a prompt pool. Specifically, we first randomly ini-
tialize the prompt encoder and learn a task-specific
model for each task in S using Equation (1). We
choose the best prompts (according to the valida-
tion results) and store them in the prompt pool.
Since the task prompts encode task-specific knowl-
edge which is used to reason about the nature of
those tasks and their relations (Vu et al., 2021), we
interpret the output of the prompt encoder as the
task embeddings to construct a semantic space of
tasks.

In contrast to full fine-tuning, which updates all
transformer parameters and thus requires storing
the entire model for each task, we only optimize
the prompt parameters and store the prompt en-
coder (with ∼ 0.1% parameters) for each task in
the prompt pool, significantly reducing computing
and storage costs.

3.2 Task Affinity Scoring Function

We use an affinity scoring function, denoted by s,
to estimate the transfer gains between tasks, so that
we can choose the most helpful source prompt from
the constructed pool.

Let P1, P2, ..., Pn represent n task embeddings
in the prompt pool. We define the transfer gain
aij (from task i to task j) as follows: First, we
conduct prompt tuning with a randomly initialized
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Figure 1: Overview of the proposed method. We first conduct prompt tuning on a diverse set of source tasks and
store each task prompt in the prompt pool. Then, we randomly sample task pairs from the pool to train an affinity
scoring function s to estimate the transfer gains between tasks. When the affinity scoring function is well learned,
given a novel target task, we first compute its task embedding, then use the affinity scoring function s to select the
best source prompt from the prompt pool, and use it to initialize the prompt encoder for the target prompt tuning.

soft prompt to obtain the performance r1 on the
task j. Second, we employ the task embedding
Pi to initialize the prompt for the task j, denoting
the performance as r2. The transfer gain aij =
r2− r1, i.e., the performance difference on the task
j between “with transfer” and “without transfer”.

We randomly sample M task pairs < i, j >
({i, j} ∈ [1, n], i ̸= j) from the source pool to
train the scoring function s. Labels are their trans-
fer gains aij . The backbone network of the affinity
scoring function s is initialized from the pretrained
model, as language models have demonstrated
great power in learning semantic relationship of
input representations (Qiu et al., 2020; Zhang et al.,
2019). For tasks i, j, we concatenate their task
embeddings as [Pj ;Pi] as the input of the scoring
function s and feed it into the scoring function by
s([Pj ;Pi]) in order to predict the transfer gain aij .
The training objective is:

min
∑

i,j

f(aij , s([Pj ;Pi]))

f(u, v) =

{
1
2(u− v)2/β |u− v|≤β
|u− v|− 1

2β otherwise

(2)

where β specifies the threshold at which to switch
between L1 and L2 loss. We choose smooth L1

loss Baevski et al. (2022) to make training less sen-
sitive to outliers. Once the affinity scoring function
s is learned, we use it to effectively predict the
transfer gain between tasks.

3.3 Evaluation on Novel Target Tasks
Given a novel target task, to find the best source
task from the pool to transfer, it is infeasible to con-
duct an exhaustive search over all possible <source,
target> task pairs. In contrast, we use the afore-
mentioned scoring function s to give each task in
the prompt pool a task affinity score and take the
task with the highest score as the best source task
to transfer.

Specifically, given a novel target task t ∈ T , we
first learn target task embeddings Pt using Equa-
tion (1). Then we concatenate Pt with each task
embedding in the prompt pool Pi (i ∈ [1, n]) as
[Pt;Pi]. We use the affinity scoring function to give
each source task i a task affinity score s([Pt;Pi])
(i∈ [1, n]). We choose the source task that has the
highest prediction score, denoted by P ∗, as the best
source task to transfer. The process is formulated
as follows:

P ∗ = Pk

where k = argmax
i

(s([Pt;Pi])), i ∈ [1, n] (3)
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Then we conduct prompt tuning on the target
task t with the prompt encoder initialized by P ∗.
Formally, given the label y and input embedding
X of the target task t, the model is updated by
maximizing the likelihood of the ground-truth y:

max
θ

p(y|[P ∗;X]) (4)

where only the parameters of the prompt encoder,
i.e., θ, are updated.

4 Experiments

4.1 Source and Target Tasks

We experiment on a diverse set of 50 tasks, cov-
ering a wide range of text genres and degrees
of difficulty. We include natural language infer-
ence (NLI) tasks (Williams et al., 2017; Dagan
et al., 2005; Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009), paraphrase iden-
tification (PI) tasks (Dolan and Brockett, 2005),
semantic similarity (Cer et al., 2017), linguistic
acceptability (Warstadt et al., 2019), text classifica-
tion tasks (Socher et al., 2013; Clark et al., 2019) in
GLUE (Wang et al., 2018) and SuperGLUE (Wang
et al., 2019) benchmarks and other classification
tasks (McAuley and Leskovec, 2013; Zhang et al.,
2015; De Gibert et al., 2018; Saravia et al., 2018).
We also include question answering (QA) tasks (Ra-
jpurkar et al., 2016, 2018; Saha et al., 2018), com-
monsense reasoning (Bhagavatula et al., 2019), se-
quence labeling tasks (Pradhan et al., 2012) such
as entity recognition (Sang and De Meulder, 2003;
Carreras and Màrquez) and chunking (Sang and
Buchholz, 2000). We divide them into 44 source
tasks and 6 target tasks. Detailed statistics about
the tasks are presented in Appendix A.

4.2 Implementation Details

We experiment with RoBERTa-large (Liu et al.,
2019b) as the pretrained model and set prompt
length L to be 50. The prompt encoder is a two-
layer feed-forward network and the hidden size is
200. The batch size is set to be 16 and the learn-
ing rate is tuned in {1e-4,2e-4}. We use Adam
optimizer (Kingma and Ba, 2014), with a linear
warmup for the first 6% of steps. For the affinity
scoring function s, we also use RoBERTa-large
model and the learning rate is tuned in {1e-5,2e-
5,3e-5}. The task pool has 44 source tasks in total
and the number of task pairs M for affinity scoring
function learning is 400. The hyperparameter β

in Equation 2 is set to be 1. Due to the test sets
for tasks in GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) is not publicly available,
we evaluate our models on target validation sets.
For source and target tasks, the maximum number
of samples is set to 50k for the training set and 10k
for dev set in consideration of training efficiency.

4.3 Baselines
We compare with the following baselines:

• Brute Force: We use a brute-force search
to identify the best source prompt from the
prompt pool to initialize the prompt encoder
for the target task.

• Random Selection: We randomly choose
source task prompts from the prompt pool to
initialize the prompt encoder for target tasks.

We also compare with different similarity mea-
surements for task embeddings to estimate the re-
lationship between tasks. Let P s, P t denote the
source and target task embeddings respectively,
psi , p

t
j denote the respective prompt tokens, L de-

notes the length of the prompt, we measure task
similarity as follows:

• Dmah: Manhattan distance of the average
representations between source and target
task embeddings, i.e., Dmah(P

s, P t) =
1

1+| 1
L

∑
j p

t
j− 1

L

∑
j p

t
j |

.

• D̂mah: Per-token average Manhat-
tan distance between the source
and target task embeddings, i.e.,
D̂mah(P

s, P t) = 1
1+ 1

L2

∑
i

∑
j |psi−ptj |

.

• Deuc (Su et al., 2021): Euclidean dis-
tance of the average representations between
source and target task embeddings, i.e.,
Deuc(P

s, P t) = 1
1+|| 1

L

∑
j p

t
j− 1

L

∑
j p

t
j ||

.

• D̂euc (Su et al., 2021): Per-token average Eu-
clidean distance between the source and tar-
get task embeddings, i.e., D̂euc(P

s, P t) =
1

1+ 1
L2

∑
i

∑
j ||psi−ptj ||

.

• Dcos (Vu et al., 2021): Cosine similarity of the
average representations between source and
target task embeddings, i.e., Dcos(P

s, P t) =
1
L

∑
i p

s
i
1
L

∑
j p

t
j

|| 1
L

∑
i p

s
i |||| 1L

∑
j p

t
j)||

.
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• D̂cos (Vu et al., 2021): Per-token average co-
sine similarity between the source and tar-
get task embeddings, i.e., D̂cos(P

s, P t) =
1
L2

∑
i

∑
j

psi p
t
j

||psi ||||ptj ||
.

We use the aforementioned different methods to
measure the similarity between task embeddings.
The source prompt whose associated task embed-
ding has the highest similarity to the target embed-
ding is chosen as the best source prompt. Then we
use the best source prompt to initialize the target
prompt encoder and conduct prompt tuning on the
target task. For fair comparisons, experiment set-
tings except the source prompt choice are set to be
the same.

4.4 Results
We compare different methods of predicting the
most beneficial source task given a novel target
task and report their performance on each target
task in Table 1. We first conduct a brute force
search with all source and target task combinations.
Experimental results demonstrate that the choice of
intermediate source tasks can heavily affect target
task performance1, e.g., improve the performance
of MRPC target task by 8.83% and degrade the
performance on the SST-2 target task by almost
10%. On average, a brute-force search for the best
source task has 4.29% accuracy improvements over
no transfer baseline.

In general, tasks with fewer training samples
benefit the most from transfer learning, e.g., 8.28%
accuracy improvements on CoNLL2004 and 8.83%
accuracy improvements on MRPC task. It shows
the importance and necessity of task transferability
prediction. Transferring from useful intermediate
source tasks can provide significant gain on the
target task.

We also observe that positive transfer can occur
when the source task has a small size or a different
task type, e.g., question answering tasks such as
SQuAD produce high transfer gain on semantic
similarity task QQP, CoNLL2000 task which has a
small amount of data improves the performance on
MRPC task by a large margin. It indicates that tra-
ditional methods such as using data size or domain
similarity fail to estimate task affinity precisely.

When adopting different transferability metrics
to choose source tasks, experimental results show

1The detailed results of all source and target combinations
and transfer gains on each target task with different source
tasks in the pool are presented in Appendix B

that using Manhattan distance and Euclidean dis-
tance for task similarity computation always have
the same transfer gain on the target task, as these
methods tend to predict the same source task to
transfer. However, these heuristic methods can not
measure the task similarity well, and even degrade
the performance on the target tasks (e.g., -2.35%
on average for Dmah). Using cosine similarity to
measure task relationship performs better but still
achieves sub-optimal performance on the target
task.

Compared with other similarity measurements,
the affinity scoring function measures the task trans-
ferability more effectively and achieves the highest
average transfer gains on the target task. It im-
proves the performance on the target task by 3.78%
on average, close to the upper bound results with
brute-force search which is 4.29%.

Besides, we also evaluate the correlation be-
tween task transferability and task similarity mea-
sured by the aforementioned methods. Given a
target task, we rank all the source tasks in the
prompt pool by different similarity measurements.
The ranking is evaluated using three metrics: Pear-
son correlation, Spearman correlation, and Re-
gret@k (Renggli et al., 2020) which measures the
relative performance difference between the Top-k
selected source tasks and the optimal one following
Poth et al. (2021). Results are shown in Table 2,
using Manhattan distance and Euclidean distance
achieves similar but sub-optimal performance. Us-
ing per-token average cosine similarity between
the source and target task embeddings performs
better than calculating the cosine similarity of the
average representations to measure task similarity.
However, none of them can effectively learn the
task relationship. The proposed affinity scoring
function correlates better with task transferability
and provides higher transfer gain on the target task
than existing methods. It also demonstrates that the
soft prompt effectively encodes task-specific char-
acteristics and serves as a good means to explore
task transferability.

4.5 Ablation Studies

Effect of β. We study the effect of β in Equa-
tion (2) which controls the transition from a
squared loss to an L1 loss. We vary β ∈
{0.5, 1, 1.5, 2, 2.5} and report the Spearman corre-
lation between the prediction of the affinity scoring
function and the ground-truth transfer gains. As
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SST-2 QQP MRPC IMDB SciTail CoNLL2004 MEAN(∆)
Upper bound results of task transfer with brute-force search

Brute Force 96.22 86.56 90.69 94.78 97.09 95.31 4.29
Baseline results without transfer or using random source task for transfer

No Transfer 95.07 83.94 81.86 93.90 93.10 87.03 -
Random Selection 84.29 84.79 79.90 93.68 95.78 84.78 -1.95

Use transferability metrics to choose source tasks
Dman 94.15 83.35 78.19 93.76 85.97 85.37 -2.35
Deuc (Su et al., 2021) 94.15 83.35 78.19 93.76 89.80 85.37 -1.71
Dcos (Vu et al., 2021) 96.22 85.83 78.19 94.58 94.87 95.31 1.68
D̂man 94.15 83.35 78.19 93.76 89.80 85.37 -1.71
D̂euc (Su et al., 2021) 94.15 83.35 78.19 93.76 89.80 85.37 -1.71
D̂cos (Vu et al., 2021) 95.41 85.58 78.19 94.58 96.70 95.31 1.81
Affinity Scoring Function 95.53 86.25 89.46 94.48 97.09 94.75 3.78

Table 1: Accuracy on the target tasks. All values are scaled by 100. “No Transfer” shows the baseline performance
when training on the target task with randomly initialized prompt without transfer. We also report the average
absolute transfer gain in the rightmost column of the table. A positive delta indicates successful transfer.

S. (↑) P. (↑) R@1 (↓) R@3 (↓)
Dman 0.45 0.39 1.55 1.17
Deuc 0.45 0.40 1.40 1.17
Dcos 0.26 0.22 0.61 0.61
D̂man 0.33 0.29 1.40 1.17
D̂euc 0.33 0.30 1.40 1.17
D̂cos 0.39 0.41 0.58 0.51

Affinity Scoring
Function

0.55 0.45 0.12 0.06

Table 2: Evaluation of intermediate source task rank-
ings produced by different methods. S. and P. are short
for Spearman correlation and Pearson correlation, re-
spectively. R@k is short for Regret@k. For Spearman
and Pearson correlation, higher is better; for Regret@k,
lower is better.

shown in Fig 2, a larger β improves the affinity
scoring function, while too large values tend to
harm results. The best performance is achieved
when β = 1.

4.6 Analysis

4.6.1 Efficiency
To demonstrate the efficiency of the proposed affin-
ity scoring function, we vary the number of selected
task pairs M ∈ {100, 200, 300, 400} and use them
to train the affinity scoring function respectively.
Then we use the affinity scoring function trained
with the respective amount of supervision signal to
access tasks in the prompt pool and select best of
Top-k (k ∈ {1, 3}) source prompt to initialize the
target prompt encoder. We compare the proposed
affinity scoring function with the most competitive

Figure 2: Effect of β on affinity scoring function learn-
ing. The y-coordinate denotes the Spearman correlation
between the prediction of the affinity scoring function
and the ground-truth transfer gains.

baselines: Dcos and D̂cos in Vu et al. (2021).

Results are shown in Figure 3. Though using
cosine similarity as task similarity measurement
improves the performance of the model on the tar-
get task, the affinity scoring function consistently
performs better than them by a large margin. Even
when the number of task pairs to train the affin-
ity scoring function is 100, which is much fewer
than the total task pairs (44 × 44 = 1936 task pair
combinations in total), the affinity scoring function
still outperforms the baseline methods by 1.54%
on average for best of Top-1 and 1.75% for best
of Top-3 setting. As the number of the training
task pairs increases, the affinity scoring function
performs better. When there are only 400 training
task pairs, the affinity scoring function achieves
4.01% gain in accuracy with the best of Top-3
source prompt while the oracle selection of source

8834



Affinity Scoring Function

(a) Best of Top-1

Affinity Scoring Function

(b) Best of Top-3

Figure 3: Average absolute transfer gain on the target
tasks with the Best of Top-1 and Top-3 source prompt
chosen by different methods.

prompts (exhaustively brute force fine-tuning on all
possible source-target pairs) is 4.29%. It indicates
that with randomly selected few task pairs from the
prompt pool, the proposed affinity scoring function
is able to effectively predict the task transferability,
rather than enumerate every possible task combi-
nation pair. Given a novel target task, the affinity
scoring function efficiently predicts the most ben-
eficial source tasks with much fewer supervision
demands.

4.6.2 Generalization
To investigate the generalization of the affinity scor-
ing function on new task types 2, we remove the
sequence labeling tasks (including named entity
recognition, word segmentation, chunking, and part
of speech) from the pool, using the remaining tasks
to train the affinity scoring function and test its pre-
diction performance on the new task CoNLL2004
(named entity recognition task). Experimental re-
sults show that the affinity scoring function is still
able to select beneficial source tasks from the pool
and achieve positive transfer gain on the target task:
the largest transfer gain on the CoNLL2004 task
is 5.71% in accuracy. It suggests that the affinity
scoring function is generalizable to different task
types.

2Detailed task division by type is presented in Appendix A

Figure 4: Absolute transfer gain on the target task with
different target datasize.

4.6.3 Low-Resource Setting
To investigate how the affinity scoring function per-
forms when the target task is in the low-resource
scenario, we take SST-2 task as the target task and
subsample the full datasets to obtain small sets of
size {2000, 5000, 10000, 20000}. We use the pro-
posed affinity scoring function to select the most
beneficial source task, i.e., MNLI task, to initialize
the target prompt encoder and conduct prompt tun-
ing on SST-2 in the settings of different data sizes.
We report the absolute transfer gain on SST-2 tar-
get task for each data size in Figure 4. We observe
that the proposed affinity scoring function yields
larger transfer learning improvement when the tar-
get data is in a low-data regime. Though the model
achieves low accuracy for data-constrained target
tasks, the performance is significantly improved
with the help of transfer learning (38.99% with
2000 training samples). It also echoes that effec-
tive task transferability prediction greatly reduces
the supervision cost on the target task, which can
be particularly valuable when there is insufficient
data to train or finetune the model.

4.6.4 Intermediate-Task Full Fine-Tuning
Setting

The task relationship predicted by the affinity scor-
ing function is helpful not only for prompt transfer
learning but also for intermediate-task full fine-
tuning setting. To demonstrate this, we first ran-
domly select 20 source tasks from the pool and
test their transfer performance on the target in-pool
task (e.g., RTE task) and out-of-pool task (e.g.,
MRPC task) respectively with different fine-tuning
methods. We find that the transfer gain obtained
by prompt tuning is positively correlated with the
transfer gains achieved by full fine-tuning, as the
Spearman correlation is 0.13 for MRPC task and
0.54 for RTE task. Furthermore, we choose the
most transferable source task predicted by the affin-
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Method SST-2 MRPC QQP SciTail IMDB CoNLL2004
No Tranfer 96.10 88.97 88.43 97.32 94.96 95.57

Intermediate Fine-Tuning 96.22 91.91 88.76 97.39 95.06 96.20
∆ +0.12 +2.94 +0.33 +0.07 +0.10 +0.63

Table 3: Accuracy on the target tasks with vanilla fine-tuning and intermediate fine-tuning. All values are scaled by
100. We also calculate the absolute transfer gain obtained by transfer learning on these target tasks.

ity scoring function and conduct full fine-tuning on
the six target tasks respectively, following sequen-
tial fine-tuning setup in Phang et al. (2018), i.e.,
first fine-tune on the chosen intermediate source
task, then fine-tune the model on the specific tar-
get task. Table 3 shows the absolute transfer gain
on the target tasks with intermediate source task
fine-tuning. We find that the source tasks selected
by the affinity scoring function achieve consistent
gains on the target tasks in full fine-tuning setting.
The transfer gain is more obvious for low-resource
target tasks, e.g., it achieves 2.94% gain in accuracy
on the MRPC task. It indicates that the proposed
affinity scoring function is capable of choosing
beneficial source tasks for the given target task not
only in the parameter-efficient setting but also in
full model fine-tuning.

5 Related work

Transfer between tasks has been investigated in
many research areas, such as NLP (Poth et al.,
2021; Bingel and Søgaard, 2017; Pruksachatkun
et al., 2020; Vu et al., 2020; Liu et al., 2019a; Li
et al., 2022) and computer vision (Zamir et al.,
2018; Achille et al., 2019; Wang et al., 2022). Li
et al. (2022) propose a prompt-based method in a
transferable setting for text generation tasks while
we focus on natural language understanding (NLU)
tasks. Phang et al. (2018) explore whether fine-
tuning on intermediate source tasks can further
improve the performance on the target tasks for
text classification. Talmor and Berant (2019) con-
duct an empirical investigation of generalization
and transfer in reading comprehension. Vu et al.
(2020) compute a task embedding based on the
model’s gradients with respect to the task-specific
loss while Poth et al. (2021) focus on adapter-
based intermediate fine-tuning. To investigate task
transferability in a more parameter-efficient way,
Vu et al. (2021) propose a prompt-based transfer
learning approach and cast task prompts as task em-
beddings which further reduce the computational
costs. They use cosine similarity to select the best

source tasks given the target task. Compared with
them, we adopt an affinity scoring function which
is more effective and efficient to predict the task
transfer gain. Besides, the proposed method is not
only helpful for prompt transfer learning, but also
can be generalized to intermediate-task transfer as
well.

Prompt tuning is a parameter-efficient method
that only tunes “soft prompts” with frozen lan-
guage models. In contrast to discrete prompts with
carefully handcrafted design (Brown et al., 2020;
Schick and Schütze, 2020; Jiang et al., 2020; Sanh
et al., 2021; Bach et al., 2022), soft prompts are
trainable continuous embeddings to the original
sequence of input word embeddings which can
be learned through back-propagation (Liu et al.,
2021b; Wang et al., 2021; Lester et al., 2021;
Schick and Schütze, 2020; Wu and Shi, 2022; Asai
et al., 2022a). Lester et al. (2021) learns task-
specific soft prompts and shows that prompt tuning
can be comparable to fine-tuning when the model
exceeds billions of parameters. Gu et al. (2021)
explore the effectiveness of prompt pre-training.
Vu et al. (2021) cast each task into a unified text-
to-text format and propose a prompt-based trans-
fer learning approach with T5 model. Wang et al.
(2022) learns to dynamically prompt a pre-trained
model to learn tasks sequentially for computer vi-
sion tasks. Liu et al. (2021a) adapt prefix-tuning (Li
and Liang, 2021) for natural language understand-
ing. They apply continuous prompts for every layer
of pretrained models, showing that prompt tun-
ing can be comparable to fine-tuning universally
across scales and tasks. Asai et al. (2022b) pro-
poses parameter-efficient multi-task tuning via at-
tentional mixtures of soft prompts, which requires
high-resource source datasets and multiple target
tasks. By contrast, in our work, the target can be
from one or more tasks and the source data can be
less sufficient. Besides, the proposed method is
helpful not only for prompt transfer learning, but
also for intermediate-task transfer.
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6 Conclusions

In this paper, we conduct an extensive study of the
transferability between 50 tasks and propose an
affinity scoring function to predict transferability
between tasks. We interpret soft prompts as task
embeddings, and store task prompts in a prompt
pool. The affinity scoring function is trained with
task pairs sampled from the pool to learn to esti-
mate task affinity. Then given a novel target task,
we use the affinity scoring function to predict help-
ful source tasks from the pool. Experimental results
show that the proposed method outperforms the
baseline methods on task affinity prediction. More-
over, our method effectively predicts task transfer-
ability with much fewer supervision demands.

Limitations

Given a novel target task, we predict the most ben-
eficial source task and show that fine-tuning on
a helpful intermediate source task can greatly im-
prove the performance on the target task. In this
paper, we use one source task prompt to initialize
the prompt encoder for the target task. We con-
duct single intermediate-task training to study the
affinity between intermediate source tasks and tar-
get tasks. It is possible that the performance on
the target task can be further improved by properly
combining multiple source tasks. We will explore
mixing up prompts from multiple source tasks for
intermediate-task transfer learning for future work.
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Appendix

A Datasets

Detailed statistics of source and target tasks are
presented in Table 4.

B Transfer Results

Detailed transfer results on target tasks with dif-
ferent source tasks are presented in Table 5. We
further group source tasks by different task types
and show the transfer gains on each target task in
Fig. 5.
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Task |Train| |Dev| Task Type Metrics
Cosmos QA (Huang et al., 2019) 25.3k 3k Commonsense Reasoning ACC
SWAG (Zellers et al., 2018) 50k 10k Commonsense Reasoning ACC
DuoRC-s (Saha et al., 2018) 50k 10k QA F1
DuoRC-p (Saha et al., 2018) 50k 10k QA F1
SICK (?) 4.4k 0.5k NLI ACC
TREC (?) 4.4k 1k Question Classification ACC
SciCite (Cohan et al., 2019) 8.2k 1k Citation Intent Classification ACC
CoLA (Warstadt et al., 2019) 8.6k 1k Linguistic Acceptability MCC
Emotion (Saravia et al., 2018) 16k 2k Emotion Classification ACC
IMDB (Maas et al., 2011) 20k 5k Sentiment Classification ACC
Rotten Tomatoes (Pang and Lee, 2005) 8.5k 1.1k Sentiment Classification ACC
STS-B (Cer et al., 2017) 5.7k 1.5k Semantic Textual Similarity Pearson
Yelp Polarity (Zhang et al., 2015) 50k 10k Sentiment Classification ACC
SNLI (Bowman et al., 2015) 50k 9.8k NLI ACC
MNLI (Williams et al., 2017) 50k 9.8k NLI ACC
QQP 3 50k 10k Semantic Textual Similarity ACC
QNLI (Wang et al., 2018) 50k 5.5k NLI ACC
SST-2 (Socher et al., 2013) 50k 0.9k Sentiment Classification ACC
SciTail (Khot et al., 2018) 27k 1.3k NLI ACC
SQuAD 1.0 (Rajpurkar et al., 2016) 50k 10k QA F1
SQuAD 2.0 (Rajpurkar et al., 2018) 52.2k 10.6k QA F1
NER-WNUT17 (Derczynski et al., 2017) 3.4k 1k NER ACC
Chunk-CoNLL2000 (Sang and Buchholz, 2000) 7.1k 1.8k Chunking ACC
POS-CoNLL2003 (Sang and De Meulder, 2003) 14k 3.3k POS ACC
NER-CoNLL2003 (Sang and De Meulder, 2003) 14k 3.3k NER ACC
ST-PMB (Abzianidze and Bos, 2017) 50k 10k Semantic Tagging ACC
NER-MIT Movie 6.3k 1.6k NER ACC
FCE-error-detection (Rei and Yannakoudakis, 2016) 2.9k 2.2k Error Detection ACC
BoolQ (Clark et al., 2019) 9.4k 3.3k QA ACC
CB (De Marneffe et al., 2019) 250 57 NLI ACC
COPA (Gordon et al., 2012) 400 100 Commonsense Reasoning ACC
MultiRC (Khashabi et al., 2018) 27k 4.8k QA F1_a
RTE (Dagan et al., 2005) 2.5k 277 NLI ACC
WiC (Pilehvar and Camacho-Collados, 2018) 5.4k 638 WSD ACC
MRPC (Dolan and Brockett, 2005) 3.7k 408 Semantic Textual Similarity ACC
CoNLL2004 (Carreras and Màrquez) 922 231 NER ACC
AG news (Zhang et al., 2015) 50k 10k Topic Classification ACC
Amazon Polarity (McAuley and Leskovec, 2013) 50k 10k Sentiment Classification ACC
Hate-speech18 (De Gibert et al., 2018) 8.8k 2189 hatespeech identification ACC
Hate-speech-offensive (Davidson et al., 2017) 19.8k 5k Hatespeech Identification ACC
CoNLL2012 (Pradhan et al., 2012) 50k 10k POS ACC
ATIS (Hemphill et al., 1990) 3982 996 Intent Classification ACC
CR (Ding et al., 2008) 2.9k 719 Sentiment Classification ACC
ontonotes (Weischedel et al., 2013) 50k 8.5k NER ACC
DBpedia14 (Lehmann et al., 2015) 50k 10k Ontology Classification ACC
Laptop14 (Pontiki et al., 2016) 1.7k 432 Sentiment Classification ACC
Emo (Chatterjee et al., 2019) 24k 6k Emotion Classification ACC
ART (Bhagavatula et al., 2019) 50k 1.5k Commonsense Reasoning ACC

Table 4: Detailed statistics about the source and target tasks. WSD stands for Word Sense Disambiguation task. QA
stands for question answering task. NLI stands for natural language inference task. NER stands for Named Entity
Recognition task. POS stands for part-of-speech task. MCC is short for Matthews Correlation Coefficient and ACC
stands for accuracy.
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SST-2 MRPC QQP SciTail IMDB CoNLL2004
No transfer 95.07 81.86 83.94 93.1 93.9 87.03
AG News 95.18 81.86 83.80 93.25 93.96 92.06

Amazon Polarity 95.41 86.76 84.79 94.63 94.30 90.73
APP Reviews 84.29 79.17 77.43 93.48 86.70 84.01

ART 95.18 87.99 84.19 95.78 93.08 84.36
ATIS 92.43 82.11 84.07 92.79 92.90 89.09

BoolQ 94.84 71.81 78.17 71.55 89.38 87.26
CB 86.47 79.41 82.17 87.27 87.88 89.02

COLA 94.72 82.84 83.55 93.87 93.50 84.27
CoNLL2000 95.30 90.69 85.63 96.63 94.56 94.75

NER-CoNLL2003 95.30 87.25 85.67 96.17 94.40 95.31
POS-ConNLL2003 95.07 83.58 85.33 95.78 94.56 93.09

CoNLL2012 94.50 88.73 85.70 96.09 94.06 94.22
COPA 94.15 78.19 83.35 89.80 93.76 85.37

Cosmos QA 95.30 89.22 85.58 97.09 94.78 92.74
CR 95.07 82.84 84.36 95.55 93.68 88.30

DBpedia_14 94.72 86.27 85.30 95.71 94.30 91.35
DuoRC_p 95.99 90.20 86.10 96.17 94.48 94.29
DuoRC_s 95.64 89.46 86.16 96.63 94.64 93.32

Emo 95.07 83.82 85.42 92.95 94.12 88.27
Emotion 93.81 78.19 84.55 93.63 87.36 88.65

FCE-error-detection 95.76 86.27 85.09 95.63 94.50 91.66
Hate_speech18 83.03 78.43 84.20 91.79 85.54 86.23

hate_speech_offensive 88.76 83.82 83.36 88.11 91.22 84.78
Laptop14 93.58 81.37 83.15 92.48 87.30 89.80

MIT movie 96.10 88.24 85.57 96.01 93.72 94.51
MNLI 95.53 89.22 86.32 94.87 94.24 90.26

MultirRC 94.38 72.30 82.59 85.97 93.68 84.84
ontonotes 95.07 86.76 85.85 96.47 94.34 95.05
ST-PMB 95.76 72.06 85.35 96.47 94.72 93.71

QNLI 95.41 83.82 85.83 93.72 93.84 88.15
QuAIL 93.81 80.64 83.61 93.02 93.88 84.93

Rotten Tomatoes 96.22 83.33 85.35 96.32 94.28 88.57
RTE 90.71 79.17 83.42 90.72 85.28 81.87

SciCite 95.18 84.56 85.22 93.49 94.12 90.30
SICK 96.10 87.25 85.52 93.72 93.98 86.41
SNLI 96.21 88.97 85.85 94.10 93.88 90.75

SQuAD 95.99 89.71 86.25 95.94 94.58 93.55
SQuAD_v2 95.64 90.44 86.56 96.70 94.54 92.56

STS-B 94.61 85.05 84.55 94.71 86.58 88.59
SWAG 93.35 73.04 84.19 93.25 93.40 89.76
TREC 95.18 82.35 85.89 93.41 94.02 89.93
WiC 95.64 79.90 84.55 94.79 93.28 88.86

NER-WNUT17 95.64 77.70 85.52 94.56 94.58 94.75
Yelp Polarity 95.41 84.56 85.49 95.78 94.58 87.29

Table 5: Accuracy on each target task with different source tasks. All values are scaled by 100.
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Figure 5: Transfer gains on each target task with different source tasks. Each violin represents one target task. Each
point inside a violin represents an individual source task. The point color denotes task type, and the y-coordinate
denotes the absolute transfer gains on the specific target task with source tasks. Here we group named entity
recognition, word segmentation, chunking, and part of speech into sequence labeling tasks; sentiment classification,
emotion classification, hate speech identification, question classification, intent classification, grammatical judgment,
and topic classification into text classification tasks.
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