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Abstract

While Large Language Models (LLMs) have
achieved remarkable performance in many
tasks, much about their inner workings remains
unclear. In this study, we present novel experi-
mental insights into the resilience of LLMs, par-
ticularly GPT-4, when subjected to extensive
character-level permutations. To investigate
this, we first propose the Scrambled Bench, a
suite designed to measure the capacity of LLMs
to handle scrambled input, in terms of both re-
covering scrambled sentences and answering
questions given scrambled context. The experi-
mental results indicate that multiple advanced
LLMs demonstrate the capability akin to typo-
glycemia 1, a phenomenon where humans can
understand the meaning of words even when
the letters within those words are scrambled,
as long as the first and last letters remain in
place. More surprisingly, we found that only
GPT-4 nearly flawlessly processes inputs with
unnatural errors, a task that poses significant
challenges for other LLMs and often even for
humans. Specifically, GPT-4 can almost per-
fectly reconstruct the original sentences from
scrambled ones, decreasing the edit distance by
95%, even when all letters within each word
are entirely scrambled. It is counter-intuitive
that LLMs can exhibit such resilience despite
severe disruption to input tokenization caused
by scrambled text. 2

1 Introduction

Large language models (LLMs) demonstrate im-
pressive proficiency across a range of tasks, with
certain capabilities emerging as the models scale up
in size—a phenomenon commonly known as emer-
gent abilities. (Wei et al., 2022a). As the LLMs

1Typoglycemia is an internet meme without specific sci-
entific backing. Nonetheless, people do exhibit the ability
to recognize scrambled common words to some extent. Our
focus is not on examining this ability of humans, we use the
concept for illustrative purposes.

2Code will be available at https://github.com/
ccqq77/unnatural-error-correction.

The following sentence contains words with scrambled letters. 
Please recover the original sentence from it.
Scrambled sentence:
oJn amRh wno het 2023 Meatsrs ermtnoTuna no duySan ta
 atgsuAu ntaaNloi Gflo bClu, gnclcinhi ish ifsrt nereg ecatkj
 nad ncedos raecer jroam.
Recovered sentence:

Jon Rahm won the 2023 Masters Tournament on Sunday at
 Augusta National Golf Club, clinching his first green jacket
 and second career major.

Figure 1: GPT-4 can recover the original sentence
from the scrambled sentence, even if the tokenization
drastically changes. (The colors indicate the division
of sub-words during the tokenization.)

become more “intelligent”, many new benchmarks
have been proposed (Liang et al., 2022; Qin et al.,
2023) to investigate the ability of LLMs. Nonethe-
less, the internal mechanisms underlying the capa-
bilities of LLMs remain enigmatic.

Several studies investigate the behavior of LLMs
given some input perturbations. For example, Sinha
et al. (2021a,b); Abdou et al. (2022) investigate
the influence of word-level permutations and show
that models are insensitive to permutations of word
order that corrupt the original syntax, in some
downstream tasks (e.g., natural language inference).
These results are particularly interesting because
they challenge the common assumption of the inner
workings of LLMs, i.e., LLMs understand human-
like syntax to some extent and use it to understand
sentences.

Going beyond the effect of word-level permu-
tations, we investigate the ability of LLMs under
character-level permutations. LLMs are supposed
to rely on the tokenizers to turn natural language
into the form that LLMs can perceive. It would be
counter-intuitive if LLMs could effectively handle
text containing unnatural permutations that sig-
nificantly alter tokenization. In other words, we
propose the following research question: Deos the
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oredr of ltteers in wrods mttaer for LLMs? Note
that the above sentence contains scrambled words,
but humans can somehow recognize and under-
stand such a sentence, as several cognitive stud-
ies have explored (Rawlinson, 2007; Mason, 1982;
Johnson and Eisler, 2012). Analyzing the robust-
ness of LLMs against such character-level permu-
tations can shed light on their word comprehension
capabilities and reveal differences between various
LLMs and human understanding.

To this end, this paper first constructs Scrambled
Bench, which converts existing benchmarks into a
test suite to measure the ability of LLMs to handle
scrambled text. We designed two types of tasks:
(1) Scrambled Sentence Recovery, which tests the
capability of LLMs to reconstruct the original sen-
tences from scrambled ones, and (2) Scrambled
Question Answering, which measures how well
LLMs can answer questions when some context
is scrambled. Note that since the slight change in
letter-order within a word drastically changes the
tokenized output (see Figure 1) , it is questionable
whether LLMs can recognize the scrambled words
in a sentence. Counter-intuitively, we show that the
most powerful LLMs are able to handle scrambled
sentences to varying degrees, when we scramble
words while keeping the first and last letters un-
changed. More surprisingly, we found that only
GPT-4 can almost flawlessly process inputs with
unnatural errors, even under extreme conditions.
That is, even when we scramble all letters in words,
GPT-4 manages to handle such input — a signifi-
cantly challenging task for other models and even
humans. For instance, GPT-4 can reconstruct the
original sentences to near-perfect recovery rate in
the extreme scenario, as in Figure 1.

2 Related Works

The most related works are the studies investigat-
ing the effects of word or sub-word level pertur-
bations (Sinha et al., 2021a,b; Pham et al., 2021;
Abdou et al., 2022) and the studies evaluating the
robustness of LLMs (Wang et al., 2023; Zhu et al.,
2023). To the best of our knowledge, no existing
studies have investigated LLMs’ ability to handle
character-level permutations, particularly those of
an extremely high level that drastically change tok-
enization. Our study aims to fill this gap. Table 2
in Appendix B categorizes the prior studies and
demonstrates the position of our study. Besides, we
directly evaluate the ability to recover the scram-

bled text along with the task accomplishment given
scrambled context. It differs with typographical er-
ror correction (Shah and de Melo, 2020; Sun et al.,
2022), as (i) we do not train models to correct er-
rors, i.e., we measure the ability of LLMs, and (ii)
we add much more severe noises than natural ty-
pographical errors. The word unscrambling task
in BigBench (Srivastava et al., 2023) is similar to
our recovery task. However, it is more akin to a
wordplay puzzle rather than a task for comprehend-
ing scrambled text, since it includes only single
common words and no context is given.

3 Scrambled Bench

We propose two tasks to evaluate the capability of
LLMs to handle scrambled text.

(1) Scrambled Sentence Recovery (ScrRec). In
this task, we provide a sentence containing scram-
bled words to LLMs and then ask them to recover
the original sentence from it. This task can be uti-
lized to directly measure the capability of LLMs to
recognize and reconstruct the scrambled words in
a sentence.

(2) Scrambled Question Answering (ScrQA).
While ScrRec can directly measure the capabil-
ity to comprehend and process scrambled text, it is
an “unusual” task for LLMs. If a model does not
perform well on the recovery task, there are two
possible reasons: (i) having difficulty following
the instructions and (ii) not being able to recover
sentences. To distinguish them, we measure the
ability to accomplish a standard task (i.e., QA)
given scrambled context. Specifically, we scramble
the content that contains essential information for
answering questions and then assess the models
based on the variations in their performances.

3.1 Dataset Creation

In this study, we primarily utilize a scrambled ver-
sion of RealtimeQA (Kasai et al., 2022) for eval-
uation. A common issue in evaluating LLMs is
data contamination, which occurs when the test
data of downstream tasks is present in the train-
ing data. It particularly affects our experiments
because the analysis would be useless if some
models memorized the original contents. Real-
timeQA is a dynamic question answering dataset
that weekly announces questions about recent news
that are unlikely to be memorized by the current
LLMs. Specifically, we collect the most recent
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Figure 2: Experimental results on scrambled RealtimeQA dataset. Performance on ScrRec with a zero-shot
setting (left). Metric: RR(%). Performance on ScrRec with a few-shot setting (middle). Metric: RR(%).
Performance on ScrQA with a zero-shot setting (right). Metric: RPG(%). The missing bars represent values
less than zero.

data (2023/03/17–2023/08/04) from RealtimeQA
(totally 419 samples) and process the evidence sen-
tences to construct samples for ScrRec and ScrQA.
Finally, 418 samples are selected for ScrRec (re-
moving a duplicate sentence), and 346 samples are
selected for ScrQA (manually eliminating 73 sam-
ples when the provided evidence does not provide
sufficient information to answer the corresponding
question).

Besides, we also introduce two additional
datasets: DREAM (Sun et al., 2019) and AQuA-
RAT (Ling et al., 2017). DREAM is a dialogue-
based multiple-choice reading comprehension
dataset. AQuA-RAT is a dataset of math word
problems necessitating multi-step reasoning for
their resolution. For DREAM dataset, we con-
structed the dataset by selecting 1025 samples with
annotated categories from the development and test
sets and then scrambling the dialogue part of each
question. For AQuA-RAT dataset, we adopt the
few-shot Chain of Thought (CoT) setting as in Wei
et al. 2022b and evaluate LLMs with scrambled
questions in samples and demonstrations.

For each dataset, we generate scrambled text
with various scramble types and rates. (1) Ran-
domly Scramble (RS). For each sentence, we
randomly select a certain percentage (20%, 50%,
100% in our case3) of words and randomly shuf-
fle the positions of letters in each selected word
(Arabic numerals are kept invariant). (2) Keep
First (KF). We keep the first letter in each word
unchanged and randomly shuffle the letters in other
positions. (3) Keep First and Last (KFL). We
keep the first and last letter in each word unchanged
and randomly shuffle the letters in other positions.
We use KF and KFL to investigate the effects of

3In the latter part of the paper, RS denotes 100% randomly
scrambling, unless a different percentage is specified.

different scramble types in word recognition for
LLMs.

3.2 Metrics
The average Edit Distance (ED) (Levenshtein,
1966) between the original sentences and the re-
covered sentences is a natural metric to quantify
the performance on ScrRec. Besides, we define
Recovery Rate (RR) to measure the proportion of
ED reduced in recovered sentences, which makes
the performance comparison on different settings
more straightforward as:

RR =

∑n
i ED(orii, reci)−

∑n
i ED(orii, scri)∑n

i ED(orii, scri)
(1)

where orii, scri, reci mean the original sentence,
the scrambled sentence, and the recovered sentence
of sample i, respectively. If a model is capable of
recovering scrambled text to some extent, its RR
should range between 0 and 100%.

For ScrQA, accuracy is a natural metric to mea-
sure performance. But varying capabilities of mod-
els on original questions make it hard to compare
the performance among models. So, Relative Per-
formance Gain (RPG) is defined to mitigate the
differences and make evaluations focus on how
well models can extract information from scram-
bled text in comparison to original text as:

RPG =
Accscr −Accsub
Accori −Accsub

(2)

where Accori, Accscr, Accsub are defined as ac-
curacy when using original evidences, scrambled
evidences, substituted evidences (in which all let-
ters of words that can be scrambled have been ran-
domly substituted), respectively. Accori, Accsub
are served as the higher bound and the lower bound
of accuracy, respectively. Normally, RPG ranges
between 0 and 100%.
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4 Experiments

Models and Settings. In the experiments, we
evaluate the most powerful closed-source LLMs,
including text-davinci-003 (Brown et al., 2020),
GPT-3.5-turbo and GPT-4 (OpenAI, 2023) and the
open-source models from Falcon series (Penedo
et al., 2023), Llama-2 series (Touvron et al., 2023),
MPT series (Team, 2023), UL2 series (Tay et al.,
2022), T5 series (Raffel et al., 2020; Chung et al.,
2022; Xue et al., 2022). In scrambled RealtimeQA
dataset, we adopt a zero-shot setting and a few-
shot setting with 3-shot exemplars from the wik-
iQA dataset (Yang et al., 2015) for ScrRec, while
we only conduct experiments on a zero-shot set-
ting (since the task is rather straightforward) for
ScrQA. In scrambled DREAM dataset, the set-
ting is also zero-shot ScrQA. In scrambled AQuA
dataset, we adopt a few-shot CoT setting with
scrambled demonstrations (in the question part).
Note that we are showcasing the results of the
top five most proficient LLMs (i.e., GPT-4, GPT-
3.5-turbo, text-davinci-003, Falcon-180b, Llama-2-
70b) in this section, but comprehensive results can
be found in Appendix C.

Results 1: Effect of different scramble types.
Figure 2 show the results on zero-shot ScrRec, few-
shot ScrRec, and ScrQA, with three scramble types:
randomly scramble (RS), keep first (KF), and keep
first and last (KFL). The results show the perfor-
mance gaps among models are not large in KFL
setup. However, except for GPT-4, performance
significantly decreases as the difficulty of scramble
types increases (KFL, KF, and RS in order). In con-
trast, the performance of GPT-4 remains constantly
high regardless of the scramble types. For ScrRec,
RR of GPT-4 is constantly above 95% for all setups.
For ScrQA, GPT-4 also constantly performs best
with very limited accuracy drop, as the difficulty of
scramble types increases.

Results 2: Effect of different scramble rates.
Figure 3 illustrates the relationship between the
scramble rates (i.e., the percentages of randomly
scrambled words in text) and the performance on
ScrRec with scrambled RealtimeQA. As the scram-
ble rates increases, RR decreases for text-davinci-
003, Falcon-180b and Llama-2-70b. RR of GPT-
3.5-turbo and GPT-4 does not change significantly.
GPT-4 outperforms other models by a wide margin,
with higher than 95% RR for most setups (except
for 20% scramble rate).
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Figure 3: The effect of scramble rates on the perfor-
mance on ScrRec-RealtimeQA. The missing points
represent values less than zero.
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Figure 4: The effect of scramble rates on the perfor-
mance on ScrQA-RealtimeQA.

Similarly, Figure 4 plots RPG against the scram-
ble rates for different models on ScrQA with scram-
bled RealtimeQA. RPG of all models drops as
scramble percentage increases. But GPT-4 main-
tains 87.8% of its original performance even with
100% scrambled evidence. The gap between the
performance of different models becomes larger
when the scramble rates increases. Table 3, Table 4
and Table 5 in Appendix C show full results on
scrambled RealtimeQA dataset, with additional
evaluation metrics (ED for ScrRec and Acc for
ScrQA).

Results 3: Results of additional datasets. Fi-
nally, we test the generality of the finding across
datasets by two additional datasets for ScrQA. For
scrambled DREAM dataset, we evaluate perfor-
mance not only overall but also on different cat-
egories of questions, using the annotations. The
performance disparities between GPT-4 and other
models are more pronounced than those observed
on RealtimeQA, possibly since DREAM requires
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Figure 5: Experimental results of ScrQA on scrambled DREAM dataset. Overall performance and performance
on different categories of questions. The missing bars represent values less than or equal to zero.

Question
Exemplars Original 20% 50% 100%

Original 46.85 | 52.76 | 66.93 47.24 | 51.97 | 70.87 45.67 | 54.72 | 72.05 46.46 | 54.72 | 70.08
20% 40.94 | 49.61 | 66.54 40.16 | 51.57 | 74.02 42.52 | 52.36 | 68.50 45.28 | 50.79 | 71.26
50% 40.94 | 40.94 | 67.72 41.34 | 44.88 | 65.75 40.16 | 47.64 | 64.96 44.09 | 42.91 | 67.32
100% 26.77 | 29.92 | 64.17 27.17 | 31.89 | 62.60 33.47 | 27.17 | 64.96 28.35 | 35.04 | 60.24

Table 1: Experimental results of ScrQA on scrambled AQuA-RAT dataset with a few-shot CoT setting. LLMs
are assessed in various scenarios by adjusting scramble rate of questions in examplars and the main question.
(left: text-davinci-003; middle: GPT-3.5-turbo; right: GPT-4). Metric: Acc (%).

higher-level comprehension of longer texts. Per-
formance on arithmetic questions tends to be more
susceptible to scrambled text compared to other
categories, even for GPT-4. Table 1 demonstrates
experimental results with a 4-shot CoT setting on
scrambled AQuA-RAT dataset (we only test the
performance of three closed-source models here
because even the original questions in AQuA-RAT
are too challenging for most open-source models).
We evaluate models with several different scenar-
ios by changing scramble rates of both questions
in exemplars and main question. The results show
the influence of scrambled exemplars is relatively
small. And the performance of GPT-3.5-turbo
and text-davinci-003 drop significantly when the
scramble rate of main questions increases to 100%,
while GPT-4 remains most of its original perfor-
mance. Table 6, Table 7 and Table 8 in Appendix C
show full results on scrambled DREAM dataset.

5 Conclusion

In this study, we propose Scrambled Bench, a test
suite to measure the ability of LLMs to handle
scrambled text, including two tasks (i.e., scram-
bled sentence recovery and scrambled question an-
swering) and construct scrambled datasets based
on RealtimeQA, DREAM and AQuA-RAT. De-
spite the scrambled text drastically changes the
tokenization, we demonstrate that advanced LLMs
are capable of processing scrambled text to varying
degrees. However, most LLMs have difficulty han-
dling text that is scrambled to an extreme degree
(i.e., 100% randomly scrambling). Surprisingly,
for both tasks, GPT-4 shows good results and out-
performs other models by a large margin. For the
scrambled sentence recovery task, GPT-4 can re-
cover sentences by 95% edit distance reduction
even in 100% randomly scrambling settings. For
the scrambled question answering task, GPT-4 can
maintain a very high proportion of its original ac-
curacy using scrambled context.
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Limitations

For LLMs, there are various ways to disrupt the
tokenization of words (e.g., inserting letters, substi-
tuting letters). In this study, we only investigate the
influence of scrambling the letter-order in words.
Investigating the performance of LLMs to handle
other situations would be an interesting topic.

In addition, we have conducted our experiments
using only three datasets, RealtimeQA, DREAM
and AQuA-RAT. Experiments on more diverse
datasets could be another future work. Note that
the two tasks can be applicable for diverse datasets,
and it is easy to extend the analysis.

We investigate the capability of different LLMs
to handle scrambled text in different settings. How-
ever, it is difficult to conclude the reason why
(some) LLMs are capable to these tasks. Espe-
cially, the reason why GPT-4 can perform almost
perfectly would be an interesting topic worth fur-
ther investigation. We can not access the closed-
source models directly and are aware of little in-
formation about them (even the exact model size
of GPT-4). These situation make investigating the
reason difficult. An hypothesis is that this capabil-
ity might be related to training methods, such as
incorporating tasks similar to denoising in the train-
ing objectives, or using a vast amount of text data
containing various errors in the training process.
Another hypothesis is that this capability emerges
as LLMs scale. Validating these hypotheses could
potentially enhance our understanding of the inner
workings of LLMs, thereby enabling us to reverse-
engineer and recreate more sophisticated models
like GPT-4.
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A Examples of different tasks (by GPT-4)

A.1 Zero-shot ScrRec on RealtimeQA
Input:
The following sentence contains words with scram-
bled letters. Please recover the original sentence
from it.
Scrambled sentence: A reGebr byba ulfaorm wsa
titbudiserd ot soetsr epdstie a lclera eovr bslpi-
oes ionmanantitco, grnoadicc ot eth ADF. heT py-
omacn si noniacrggue rptsean ot ckhec yna poduc-
srt yhte evah ta mhoe nda cdisadr sehot taht aym
eb ecaeftdf.
Recovered sentence:
Output:
A Gerber baby formula was distributed to stores
despite a recall over possible contamination, ac-
cording to the FDA. The company is encouraging
parents to check any products they have at home
and discard those that may be affected.

A.2 Few-shot ScrRec on RealtimeQA
Input:
Scrambled Sentence: eTh camp continued to
fnctinuo this ayw ilntu the rwa needd.
Recovered Sentence: The camp continued to
function this way until the war ended.

Scrambled Sentence: It swa first developed
ni the 1980s yb oAcrn Computers tdL ot erowp
their pstodke nmecisah and subsequently supn off
sa a separate paocnmy, now ARM Holdings.
Recovered Sentence: It was first developed in the
1980s by Acorn Computers Ltd to power their
desktop machines and subsequently spun off as a
separate company, now ARM Holdings.

Scrambled Sentence: According to the CIA kcb-
Fotoa, the United States is one fo eethr iusecnort
(het etrhos nebgi Liberia nda mBuar/Myanmar)
that sha not adopted eth International System fo
Utins (SI) rmtcei symset as iethr ffliicao system fo
gswheit dna measures.
Recovered Sentence: According to the CIA Fact-
book, the United States is one of three countries
(the others being Liberia and Burma/Myanmar)
that has not adopted the International System of
Units (SI) metric system as their official system of
weights and measures.

Scrambled sentence: A reGebr byba ulfaorm
wsa titbudiserd ot soetsr epdstie a lclera eovr

bslpioes ionmanantitco, grnoadicc ot eth ADF.
heT pyomacn si noniacrggue rptsean ot ckhec yna
poducsrt yhte evah ta mhoe nda cdisadr sehot taht
aym eb ecaeftdf.
Recovered sentence:
Output:
A Gerber baby formula was distributed to stores
despite a recall over possible contamination, ac-
cording to the FDA. The company is encouraging
parents to check any products they have at home
and discard those that may be affected.

A.3 Zero-shot ScrQA on RealtimeQA
Input:
Question: Which type of product was recently dis-
tributed to some US stores despite a recall notice?
Choices: (A)Salad dressing (B)Baby formula
(C)Ground beef (D)Whole milk
Evidence: A reGebr byba ulfaorm wsa titbudiserd
ot soetsr epdstie a lclera eovr bslpioes ionmanan-
titco, grnoadicc ot eth ADF. heT pyomacn si noni-
acrggue rptsean ot ckhec yna poducsrt yhte evah ta
mhoe nda cdisadr sehot taht aym eb ecaeftdf.
Answer: Based on the evidence, among A through
D, the answer is
Output:
(B)Baby formula

A.4 Zero-shot ScrQA on DREAM
Input:
Dialogue:
M: owH goln veah uyo eben ehctnaig ni iths edmdli
colosh?
W: Fro ent esray. oT eb akfrn, I’m edirt fo higneact
het mesa bokoextt rof os ongl hghuto I od jyneo
gebin a aterceh. I’m idenoncisrg gntriy minseghot
wne.
Question: What’s the woman probably going to
do?
Choices: (A)To teach a different textbook. (B)To
change her job. (C)To learn a different textbook.
Answer: Based on the dialogue, among A through
C, the answer is
Output:
(B)To change her job.

A.5 Few-shot CoT ScrQA on AQuA-RAT
(1)
Input:
Question: hJno nfodu ttah teh gaeerav fo 15
rnsbmue si 40. fI 10 si edadd ot ceha umenbr enht
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Level Natural
errors

Example
(Original: How does the

change affect tokenization?)

Change of
tokenization Severity Studies

Word No How the affect does
tokenization change? Order Low–High

Sinha et al. 2021a,
Sinha et al. 2021b,
Pham et al. 2021,
Abdou et al. 2022

Sub-word No How change token does
affectization the? Order Low–High Abdou et al. 2022

Character Yes How does the chagne
affect tokeniztion? Tokens Low Wang et al. 2023,

Zhu et al. 2023

Character No wHo deso teh chenga
afctfe aotznoenitki? Tokens Middle–Extremely High Ours

Table 2: Categorizing the prior works and demonstrating the position of this work.

teh naem fo het rbenmsu si?
Choices: (A)50 (B)45 (C)65 (D)78 (E)64
Answer: If 10 is added to each number, then the
mean of the numbers also increases by 10. So the
new mean would be 50. The answer is (A).

Question: fI a / b = 3/4 dan 8a + 5b = 22,
htne nfid het evual fo a.
Choices: (A)1/2 (B)3/2 (C)5/2 (D)4/2 (E)7/2
Answer: If a / b = 3/4, then b = 4a / 3. So 8a +
5(4a / 3) = 22. This simplifies to 8a + 20a / 3 = 22,
which means 44a / 3 = 22. So a is equal to 3/2.
The answer is (B).

Question: A nprseo si gtlanrvie ta 20 mk/rh
nda hdrecae ihs ynedits ni 2.5 rh neth fdin eth
dicatsen?
Choices: (A)53 km (B)55 km (C)52 km (D)60 km
(E)50 km
Answer: The distance that the person traveled
would have been 20 km/hr * 2.5 hrs = 50 km. The
answer is (E).

Question: wHo aymn etosreyksk ear deeend
ot peyt het nsrbmeu rfmo 1 ot 500?
Choices: (A)1156 (B)1392 (C)1480 (D)1562
(E)1788
Answer: There are 9 one-digit numbers from 1 to
9. There are 90 two-digit numbers from 10 to 99.
There are 401 three-digit numbers from 100 to 500.
9 + 90(2) + 401(3) = 1392. The answer is (B).

Question: A ritna inunrgn ta a eepsd fo 100
mlesi/uhro, eakts 10 hurso ot cerah ist dneitiotsan.
trefA ovgeirnc etarqru fo het cntsdaie, ti tstrsa
grniina nda eth rniat ash ot eb dlseow ot seedp fo

75 liesm/uhor. Wtha si het otalt orjeyun iroatdnu?
Choices: (A)10 (B)11.5 (C)12.5 (D)13.5 (E)15
Answer:
Output:
The train covers a quarter of the distance at
100 miles/hour, so it travels for 2.5 hours (10
hours / 4) at this speed. The remaining distance
is 3/4 of the total distance, which takes the
train 7.5 hours (10 hours - 2.5 hours) at 100
miles/hour. When the train slows down to 75
miles/hour, it takes 1.5 times longer to cover the
same distance (100 miles/hour / 75 miles/hour =
1.33). So the train takes 11.25 hours (7.5 hours
* 1.33) to cover the remaining distance at 75
miles/hour. The total journey duration is 13.75
hours (2.5 hours + 11.25 hours). The answer is (D).

(2)
Input:
Question: John found that the average of 15
numbers is 40. If 10 is added to each number then
the mean of the numbers is?
Choices: (A)50 (B)45 (C)65 (D)78 (E)64
Answer: If 10 is added to each number, then the
mean of the numbers also increases by 10. So the
new mean would be 50. The answer is (A).

Question: If a / b = 3/4 and 8a + 5b = 22,
then find the value of a.
Choices: (A)1/2 (B)3/2 (C)5/2 (D)4/2 (E)7/2
Answer: If a / b = 3/4, then b = 4a / 3. So 8a +
5(4a / 3) = 22. This simplifies to 8a + 20a / 3 = 22,
which means 44a / 3 = 22. So a is equal to 3/2.
The answer is (B).

Question: A person is traveling at 20 km/hr
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and reached his destiny in 2.5 hr then find the
distance?
Choices: (A)53 km (B)55 km (C)52 km (D)60 km
(E)50 km
Answer: The distance that the person traveled
would have been 20 km/hr * 2.5 hrs = 50 km. The
answer is (E).

Question: How many keystrokes are needed
to type the numbers from 1 to 500?
Choices: (A)1156 (B)1392 (C)1480 (D)1562
(E)1788
Answer: There are 9 one-digit numbers from 1 to
9. There are 90 two-digit numbers from 10 to 99.
There are 401 three-digit numbers from 100 to 500.
9 + 90(2) + 401(3) = 1392. The answer is (B).

Question: ieahMnc A psut otu a oy-oy ryeve 6
nsimtue. enicMah B pstu uto a oy-oy veeyr 9
nmusite. tAefr hwo aynm smtnuei lwil yeth hvea
eurdpcod 10 oy-soy?
Choices: (A)24 minutes (B)32 minutes (C)36
minutes (D)64 minutes (E)72 minutes
Answer:
Output:
First, let’s rewrite the question with the words
unscrambled: "Machine A puts out a yo-yo every
6 minutes. Machine B puts out a yo-yo every 9
minutes. After how many minutes will they have
produced 10 yo-yos?"

To solve this problem, we can find the least
common multiple (LCM) of 6 and 9, which is 18.
This means that every 18 minutes, both machines
will have produced a yo-yo at the same time. In 18
minutes, Machine A will have produced 3 yo-yos
(18/6) and Machine B will have produced 2 yo-yos
(18/9), for a total of 5 yo-yos. Since we need 10
yo-yos, we can multiply 18 minutes by 2 to get 36
minutes. The answer is (C) 36 minutes.

B Summary of related work

Table 2 categorizes the related work and demon-
strates the position of our study.

C Full experimental results

We conduct experiments using the most powerful
closed-source LLMs, including text-davinci-003,
GPT-3.5-turbo and GPT-4 and various open-source
LLMs, including the models from Falcon series,

Llama-2 series, MPT series, UL2 series, and T5 se-
ries. The open-source model covers diverse model
architectures (decoder only and encoder-decoder),
model size (from 7b to 180b), training objectives
(e.g., with or without further finetuning) and tok-
enizers (e.g., tokenizer-free: ByT5-xxl).

For GPT-4, the version GPT-4-0314 is used. For
GPT-3.5-turbo, the version GPT-3.5-turbo-0301 is
used. For Falcon-180b and Falcon-180b-chat, the
quantized method (Dettmers et al., 2023) is used to
load the model and run the experiments. It probably
affects their performance to some extent.

C.1 Full experimental results on scrambled
RealtimeQA dataset

Table 3 and Table 4 illustrates the full experimental
results on scrambled RealtimeQA dataset for few-
shot ScrRec and zero-shot ScrRec, respectively.

Table 5 illustrates the full experimental results
on scrambled RealtimeQA dataset for zero-shot
ScrQA.

C.2 Full experimental results on scrambled
DREAM dataset

Table 6 illustrates the full experimental results on
scrambled DREAM dataset for zero-shot ScrQA.

Table 7 and Table 8 illustrates the experimental
results on different question types of the top five
models (like in Figure 5) with accuracy and RPG
as the metrics, respectively.
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Model 20% 50% 100% KF KFL

GPT-4
1.49 2.40 4.79 3.79 2.24

94.51 96.46 96.45 96.37 97.04

GPT-3.5-turbo
5.80 15.38 36.87 20.76 7.40
78.57 77.29 72.63 80.14 90.22

text-davinci-003
5.38 18.89 84.39 22.21 8.36

80.13 72.11 37.35 78.75 88.95

Falcon-180b
4.18 21.84 116.73 28.77 9.40

84.55 67.76 13.34 72.47 87.58

Falcon-180b-chat
11.61 38.19 186.65 63.51 21.73
57.12 43.62 < 0 39.24 71.28

Falcon-40b
17.27 69.86 185.26 119.00 66.03
36.18 < 0 < 0 < 0 12.71

Falcon-40b-instruct
18.79 74.26 192.86 130.82 62.39
30.56 < 0 < 0 < 0 17.53

Llama-2-70b
7.85 37.30 169.85 56.25 18.99
71.0 44.93 < 0 46.19 74.9

Llama-2-70b-chat
11.11 54.49 196.44 106.31 43.18
58.97 19.56 < 0 < 0 42.93

Llama-2-13b
14.18 59.13 192.67 103.50 42.67
47.62 12.71 < 0 0.99 43.59

Llama-2-13b-chat
20.75 73.04 201.50 119.52 56.03
23.35 < 0 < 0 < 0 25.93

Llama-2-7b
20.90 79.83 194.48 135.50 68.18
22.77 < 0 < 0 < 0 9.88

Llama-2-7b-chat
25.14 83.13 196.88 132.44 73.84
7.11 < 0 < 0 < 0 2.39

MPT-30b
14.36 54.81 181.43 90.92 36.14
46.96 19.08 < 0 13.02 52.23

MPT-30b-instruct
19.36 66.05 170.88 99.38 50.44
28.46 2.49 < 0 4.92 33.33

UL2
18.12 68.79 153.53 109.47 71.70
33.03 < 0 < 0 < 0 5.22

Flan-UL2
20.51 62.91 137.15 105.67 74.35
24.21 7.13 < 0 < 0 1.72

Flan-T5-xxl
16.60 59.34 136.41 105.44 73.97
38.68 12.4 < 0 < 0 2.22

ByT5-xxl
79.27 104.28 160.17 123.97 102.50
< 0 < 0 < 0 < 0 < 0

Table 3: The experimental results on the few-shot ScrRec using RealtimeQA dataset (upper: ED; lower: RR).
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Model 20% 50% 100% KF KFL

GPT-4
1.69 2.78 5.47 4.19 2.53
93.76 95.89 95.94 95.99 96.66

GPT-3.5-turbo
4.68 13.00 29.80 14.22 6.94
82.72 80.82 77.88 86.39 90.82

text-davinci-003
15.02 31.86 109.63 30.88 13.30
44.52 52.96 18.61 70.45 82.41

Falcon-180b
7.18 26.53 159.36 43.63 13.08
73.48 60.84 < 0 58.25 82.72

Falcon-180b-chat
15.92 50.50 180.13 76.31 29.29
41.17 25.46 < 0 27.0 61.29

Falcon-40b
20.59 66.33 177.33 92.45 39.04
23.94 2.08 < 0 11.56 48.39

Falcon-40b-instruct
26.42 78.94 178.55 104.46 48.42
2.4 < 0 < 0 0.07 36.0

Llama-2-70b
8.11 41.10 180.82 60.16 21.68
70.04 39.32 < 0 42.45 71.34

Llama-2-70b-chat
12.65 60.23 181.30 118.13 51.73
53.26 11.08 < 0 < 0 31.62

Llama-2-13b
20.21 75.54 231.41 127.63 59.77
25.32 < 0 < 0 < 0 20.99

Llama-2-13b-chat
26.79 84.09 191.85 120.51 63.82
1.03 < 0 < 0 < 0 15.64

Llama-2-7b
29.81 106.38 192.05 165.56 88.65
< 0 < 0 < 0 < 0 < 0

Llama-2-7b-chat
48.92 123.66 202.16 167.49 112.03
< 0 < 0 < 0 < 0 < 0

MPT-30b
20.54 70.69 226.34 135.58 62.16
24.11 < 0 < 0 < 0 17.84

MPT-30b-instruct
36.01 84.98 233.60 132.77 76.60
< 0 < 0 < 0 < 0 < 0

UL2
72.39 139.14 205.86 188.57 163.67
< 0 < 0 < 0 < 0 < 0

Flan-UL2
33.10 71.76 136.94 106.48 78.55
< 0 < 0 < 0 < 0 < 0

Flan-T5-xxl
27.07 68.02 136.47 106.08 76.69
< 0 < 0 < 0 < 0 < 0

ByT5-xxl
85.83 111.53 155.27 136.99 117.80
< 0 < 0 < 0 < 0 < 0

Table 4: The experimental results on the zero-shot ScrRec using RealtimeQA dataset (upper: ED; lower: RR).
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Model Ori 20% 50% 100% KF KFL Sub

GPT-4
97.69 97.40 96.82 93.35 93.35 95.66 62.14
100.0 99.19 97.56 87.80 87.80 94.31 0.0

GPT-3.5-turbo
97.11 94.80 91.33 81.79 88.44 93.06 52.60
100.0 94.81 87.01 65.58 80.52 90.91 0.0

text-davinci-003
93.93 91.62 87.28 77.46 84.10 88.15 54.91
100.0 94.07 82.96 57.78 74.81 85.19 0.0

Falcon-180b
84.68 82.37 78.61 65.03 70.52 74.28 57.23
100.0 91.58 77.89 28.42 48.42 62.11 0.0

Falcon-180b-chat
75.43 72.54 71.39 58.09 63.87 67.34 54.62
100.0 86.11 80.56 16.67 44.44 61.11 0.0

Falcon-40b
58.96 59.25 54.62 44.51 44.51 50.29 39.60
100.0 101.49 77.61 25.37 25.37 55.22 0.0

Falcon-40b-instruct
65.90 63.87 61.27 48.55 53.47 60.69 46.82
100.0 89.39 75.76 9.09 34.85 72.73 0.0

Llama-2-70b
88.44 86.13 80.35 67.92 75.43 80.64 57.23
100.0 92.59 74.07 34.26 58.33 75.00 0.0

Llama-2-70b-chat
96.24 92.49 83.82 64.74 75.43 82.66 54.91
100.0 90.91 69.93 23.78 49.65 67.13 0.0

Llama-2-13b
66.18 65.03 57.51 47.40 52.89 57.80 44.80
100.0 94.59 59.46 12.16 37.84 60.81 0.0

Llama-2-13b-chat
84.68 78.90 66.18 47.98 55.20 59.83 44.51
100.0 85.61 53.96 8.63 26.62 38.13 0.0

Llama-2-7b
47.40 45.09 42.77 38.73 40.75 43.64 39.31
100.0 71.43 42.86 < 0 17.86 53.57 0.0

Llama-2-7b-chat
82.08 75.14 64.16 45.09 52.31 56.94 43.93
100.0 81.82 53.03 3.03 21.97 34.09 0.0

MPT-30b
62.72 56.36 50.87 37.86 47.69 53.47 37.28
100.0 75.00 53.41 2.27 40.91 63.64 0.0

MPT-30b-instruct
65.03 66.76 58.67 47.11 54.62 61.27 39.88
100.0 106.90 74.71 28.74 58.62 85.06 0.0

UL2
87.57 84.68 76.30 45.95 60.69 71.10 38.44
100.0 94.12 77.06 15.29 45.29 66.47 0.0

Flan-UL2
98.55 95.95 89.31 49.71 65.61 76.88 46.24
100.0 95.03 82.32 6.63 37.02 58.56 0.0

Flan-T5-xxl
97.40 96.24 87.86 49.42 66.47 82.66 40.75
100.0 97.96 83.16 15.31 45.41 73.98 0.0

ByT5-xxl
73.12 57.23 46.24 26.30 35.84 41.91 25.14
100.0 66.87 43.98 2.41 22.29 34.94 0.0

Table 5: The experimental results on the zero-shot ScrQA using RealtimeQA dataset (upper: Acc; lower: RPG).
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Model Ori 20% 50% 100% KF KFL Sub

GPT-4
96.68 96.29 94.43 87.40 93.65 96.39 46.48
100.0 99.22 95.53 81.52 93.97 99.42 0.0

GPT-3.5-turbo
92.48 87.30 77.83 45.61 71.78 83.89 26.07
100.0 92.21 77.94 29.41 68.82 87.06 0.0

text-davinci-003
92.29 89.45 80.27 52.44 76.66 87.50 43.85
100.0 94.15 75.20 17.74 67.74 90.12 0.0

Falcon-180b
93.65 89.65 82.23 55.37 75.39 84.47 51.17
100.0 90.57 73.10 9.89 57.01 78.39 0.0

Falcon-180b-chat
92.68 89.16 78.32 49.90 70.51 80.76 45.31
100.0 92.58 69.69 9.69 53.20 74.85 0.0

Falcon-40b
70.12 65.04 56.45 44.34 50.78 58.30 43.26
100.0 81.09 49.09 4.00 28.00 56.00 0.0

Falcon-40b-instruct
75.20 67.48 58.59 43.65 50.00 60.06 42.87
100.0 76.13 48.64 2.42 22.05 53.17 0.0

Llama-2-70b
93.26 89.75 80.96 54.30 73.34 84.38 47.85
100.0 92.26 72.90 14.19 56.13 80.43 0.0

Llama-2-70b-chat
91.11 85.74 75.10 48.24 59.67 74.02 45.12
100.0 88.32 65.18 6.79 31.63 62.85 0.0

Llama-2-13b
69.53 63.87 53.32 38.67 44.63 52.25 37.21
100.0 82.48 49.85 4.53 22.96 46.53 0.0

Llama-2-13b-chat
78.61 71.78 59.77 41.80 48.44 57.42 40.92
100.0 81.87 50.00 2.33 19.95 43.78 0.0

Llama-2-7b
60.55 55.08 47.46 37.60 43.07 46.39 37.30
100.0 76.47 43.70 1.26 24.79 39.08 0.0

Llama-2-7b-chat
73.63 64.45 56.25 40.04 45.41 53.81 39.84
100.0 72.83 48.55 0.58 16.47 41.33 0.0

MPT-30b
74.02 69.24 59.47 47.17 50.00 57.71 43.46
100.0 84.35 52.40 12.14 21.41 46.65 0.0

MPT-30b-instruct
83.50 75.68 65.43 44.82 54.30 60.64 41.41
100.0 81.44 57.08 8.12 30.63 45.71 0.0

UL2
43.36 39.36 29.88 14.55 17.38 25.20 12.79
100.0 86.90 55.91 5.75 15.02 40.58 0.0

Flan-UL2
94.24 91.21 80.96 49.80 62.99 75.39 48.14
100.0 93.43 71.19 3.60 32.20 59.11 0.0

Flan-T5-xxl
95.02 92.87 84.67 51.17 67.09 81.54 51.07
100.0 95.11 76.44 0.22 36.44 69.33 0.0

ByT5-xxl
43.16 40.23 36.23 31.93 33.50 36.62 31.84
100.0 74.14 38.79 0.86 14.66 42.24 0.0

Table 6: The experimental results on the zero-shot ScrQA using DREAM dataset (upper: Acc; lower: RPG).
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Model Type Ori 20% 50% 100% KF KFL Sub
GPT-4 all 96.68 96.29 94.43 87.40 93.65 96.39 46.48

arithmetic 76.09 78.26 67.39 45.65 58.70 71.74 32.61
commonsense 94.69 94.41 93.02 82.40 91.90 94.41 42.46
logic 95.97 95.84 93.42 85.77 92.62 95.97 47.65
matching 99.07 97.22 98.15 92.59 97.22 99.07 47.22
summary 98.47 97.71 96.18 90.08 95.42 96.95 36.64

GPT-3.5-turbo

all 92.48 87.30 77.83 45.61 71.78 83.89 26.07
arithmetic 60.87 60.87 52.17 21.74 41.30 50.00 15.22
commonsense 89.11 84.36 76.54 39.39 63.69 79.61 25.42
logic 91.01 85.64 76.11 44.83 71.28 82.95 25.10
matching 99.07 91.67 81.48 56.48 78.70 89.81 30.56
summary 95.42 93.13 82.44 41.22 70.99 83.97 24.43

text-davinci-003

all 92.29 89.45 80.27 52.44 76.66 87.50 43.85
arithmetic 47.83 45.65 41.30 21.74 41.30 45.65 17.39
commonsense 90.78 87.99 77.37 46.37 71.79 84.92 45.25
logic 91.01 87.92 78.39 52.89 75.03 86.71 41.34
matching 99.07 94.44 86.11 57.41 87.96 93.52 48.15
summary 94.66 94.66 86.26 48.09 77.86 87.79 49.62

Falcon-180b

all 93.65 89.65 82.23 55.37 75.39 84.47 51.17
arithmetic 52.17 47.83 45.65 34.78 43.48 47.83 34.78
commonsense 91.34 88.55 79.33 56.15 74.58 83.24 52.23
logic 92.62 88.59 79.87 52.35 73.02 82.55 50.47
matching 98.15 90.74 87.04 62.96 78.70 89.81 51.85
summary 96.18 93.89 89.31 67.18 87.02 91.60 56.49

Llama-2-70b

all 93.26 89.75 80.96 54.30 73.34 84.38 47.85
arithmetic 58.70 47.83 50.00 36.96 47.83 43.48 36.96
commonsense 91.34 89.39 80.73 53.63 73.18 84.36 44.97
logic 92.62 88.99 79.73 54.50 73.02 84.16 48.05
matching 94.44 89.81 79.63 50.93 73.15 79.63 50.93
summary 96.18 94.66 86.26 58.02 79.39 90.84 50.38

Table 7: The experimental results of different categories on the zero-shot ScrQA using DREAM dataset (Acc).
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Model Type Ori 20% 50% 100% KF KFL Sub
GPT-4 all 100.0 99.22 95.53 81.52 93.97 99.42 0.0

arithmetic 100.0 105.00 80.00 30.00 60.00 90.00 0.0
commonsense 100.0 99.47 96.79 76.47 94.65 99.47 0.0
logic 100.0 99.72 94.72 78.89 93.06 100.00 0.0
matching 100.0 96.43 98.21 87.50 96.43 100.00 0.0
summary 100.0 98.77 96.30 86.42 95.06 97.53 0.0

GPT-3.5-turbo

all 100.0 92.21 77.94 29.41 68.82 87.06 0.0
arithmetic 100.0 100.00 80.95 14.29 57.14 76.19 0.0
commonsense 100.0 92.54 80.26 21.93 60.09 85.09 0.0
logic 100.0 91.85 77.39 29.94 70.06 87.78 0.0
matching 100.0 89.19 74.32 37.84 70.27 86.49 0.0
summary 100.0 96.77 81.72 23.66 65.59 83.87 0.0

text-davinci-003

all 100.0 94.15 75.20 17.74 67.74 90.12 0.0
arithmetic 100.0 92.86 78.57 14.29 78.57 92.86 0.0
commonsense 100.0 93.87 70.55 2.45 58.28 87.12 0.0
logic 100.0 93.78 74.59 23.24 67.84 91.35 0.0
matching 100.0 90.91 74.55 18.18 78.18 89.09 0.0
summary 100.0 100.00 81.36 < 0 62.71 84.75 0.0

Falcon-180b

all 100.0 90.57 73.10 9.89 57.01 78.39 0.0
arithmetic 100.0 75.00 62.50 0.00 50.00 75.00 0.0
commonsense 100.0 92.86 69.29 10.00 57.14 79.29 0.0
logic 100.0 90.45 69.75 4.46 53.50 76.11 0.0
matching 100.0 84.00 76.00 24.00 58.00 82.00 0.0
summary 100.0 94.23 82.69 26.92 76.92 88.46 0.0

Llama-2-70b

all 100.0 92.26 72.90 14.19 56.13 80.43 0.0
arithmetic 100.0 50.00 60.00 0.00 50.00 30.00 0.0
commonsense 100.0 95.78 77.11 18.67 60.84 84.94 0.0
logic 100.0 91.87 71.08 14.46 56.02 81.02 0.0
matching 100.0 89.36 65.96 0.00 51.06 65.96 0.0
summary 100.0 96.67 78.33 16.67 63.33 88.33 0.0

Table 8: The experimental results of different categories on the zero-shot ScrQA using DREAM dataset (RPG).
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