@inproceedings{faysse-etal-2023-revisiting,
title = "Revisiting Instruction Fine-tuned Model Evaluation to Guide Industrial Applications",
author = "Faysse, Manuel and
Viaud, Gautier and
Hudelot, C{\'e}line and
Colombo, Pierre",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.559/",
doi = "10.18653/v1/2023.emnlp-main.559",
pages = "9033--9048",
abstract = "Instruction Fine-Tuning (IFT) is a powerful paradigm that strengthens the zero-shot capabilities of Large Language Models (LLMs), but in doing so induces new evaluation metric requirements. We show LLM-based metrics to be well adapted to these requirements, and leverage them to conduct an investigation of task-specialization strategies, quantifying the trade-offs that emerge in practical industrial settings. Our findings offer practitioners actionable insights for real-world IFT model deployment."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="faysse-etal-2023-revisiting">
<titleInfo>
<title>Revisiting Instruction Fine-tuned Model Evaluation to Guide Industrial Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Faysse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gautier</namePart>
<namePart type="family">Viaud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Céline</namePart>
<namePart type="family">Hudelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pierre</namePart>
<namePart type="family">Colombo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Instruction Fine-Tuning (IFT) is a powerful paradigm that strengthens the zero-shot capabilities of Large Language Models (LLMs), but in doing so induces new evaluation metric requirements. We show LLM-based metrics to be well adapted to these requirements, and leverage them to conduct an investigation of task-specialization strategies, quantifying the trade-offs that emerge in practical industrial settings. Our findings offer practitioners actionable insights for real-world IFT model deployment.</abstract>
<identifier type="citekey">faysse-etal-2023-revisiting</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.559</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.559/</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>9033</start>
<end>9048</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revisiting Instruction Fine-tuned Model Evaluation to Guide Industrial Applications
%A Faysse, Manuel
%A Viaud, Gautier
%A Hudelot, Céline
%A Colombo, Pierre
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F faysse-etal-2023-revisiting
%X Instruction Fine-Tuning (IFT) is a powerful paradigm that strengthens the zero-shot capabilities of Large Language Models (LLMs), but in doing so induces new evaluation metric requirements. We show LLM-based metrics to be well adapted to these requirements, and leverage them to conduct an investigation of task-specialization strategies, quantifying the trade-offs that emerge in practical industrial settings. Our findings offer practitioners actionable insights for real-world IFT model deployment.
%R 10.18653/v1/2023.emnlp-main.559
%U https://aclanthology.org/2023.emnlp-main.559/
%U https://doi.org/10.18653/v1/2023.emnlp-main.559
%P 9033-9048
Markdown (Informal)
[Revisiting Instruction Fine-tuned Model Evaluation to Guide Industrial Applications](https://aclanthology.org/2023.emnlp-main.559/) (Faysse et al., EMNLP 2023)
ACL