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Abstract
The cascaded approach continues to be the
most popular choice for speech translation (ST).
This approach consists of an automatic speech
recognition (ASR) model and a machine trans-
lation (MT) model that are used in a pipeline
to translate speech in one language to text in
another language. MT models are often trained
on well-formed text and therefore lack robust-
ness while translating noisy ASR outputs in the
cascaded approach, degrading the overall trans-
lation quality significantly. We address this
robustness problem in downstream MT models
by forcing the MT encoder to bring the repre-
sentations of a noisy input closer to its clean
version in the semantic space. This is achieved
by introducing a contrastive learning method
that leverages adversarial examples in the form
of ASR outputs paired with their correspond-
ing human transcripts to optimize the network
parameters. In addition, a curriculum learning
strategy is then used to stabilize the training
by alternating the standard MT log-likelihood
loss and the contrastive losses. Our approach
achieves significant gains of up to 3 BLEU
scores in English-German and English-French
speech translation without hurting the transla-
tion quality on clean text.

1 Introduction

Neural machine translation (NMT) has made signif-
icant advancements over the past several years with
claims of achieving ‘human parity’ (Hassan et al.,
2018), and ‘super-human performance’ (Barrault
et al., 2019). However, despite making tremendous
progress in quality and coverage (Costa-jussà et al.,
2022), NMT models have been identified to lack
robustness in dealing with noisy inputs (Belinkov
and Bisk, 2018).

Robustness is especially important in cascaded
speech translation (ST) systems, where an NMT
model works on the output of the upstream auto-
matic speech recognition (ASR) system. In this sce-
nario, significant MT performance degradation has

Human Transcript: I’m not sure that’s wise, given the im-
portance of the problem, but there’s now the geoengineer-
ing discussion about: Should that be in the back pocket
in case things happen faster, or this innovation goes a lot
slower than we expect?

ASR Output: I’m not sure that’s why it’s given the im-
portance of the problem. But now that the geoengineering
discussion about should that be in the back pocket in case
things happen faster or this innovation goes a lot slower
than we expect.

Table 1: Example human transcript and OpenAI Whis-
per ASR output from the MuST-C En-De devset. The
underlined text indicates erroneous phrases and itali-
cized indicates punctuation errors.

been measured due to i) error propagation from the
ASR and ii) the mismatch between training-testing
condition as the NMT model is typically trained on
well-formed text making it weak in dealing with
noisy inputs. For these reasons, there has been
significant effort towards building end-to-end ST
models (Bérard et al., 2016; Weiss et al., 2017).
However, due to the lack of sufficient speech trans-
lation datasets in many languages and the flexibility
to independently optimize ASR and MT systems,
cascaded systems continue to be a dominant ap-
proach (Anastasopoulos et al., 2022).

Prior research has tried to tackle the robustness
problem in NMT models independently by (1) syn-
thetic noise injection (Belinkov and Bisk, 2018),
including mimicking ASR errors for the ST task
(Sperber et al., 2017; Li et al., 2018; Martucci et al.,
2021; Wang et al., 2022) or (2) by adding noise to
the continuous-space representations learned by the
NMT model (Sato et al., 2019; Cheng et al., 2020;
Wei et al., 2022). Some of the synthetic noise injec-
tion methods replace words with probable words
from ASR confusion lattices (Martucci et al., 2021;
Wang et al., 2022) but fail to consider the full con-
text and to realistically replicate ASR errors, like
the phrase-level errors and segmentation errors that
ASR models often make (see Table 1). On the other
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Figure 1: Proposed model and the two alternating train-
ing objectives. LNMT is the standard NMT negative
log-likelihood loss and LCTL is the contrastive loss for
improving robustness to ASR outputs.

hand, the latter approaches predominantly generate
arbitrary or random error distributions and over-
look the real-world error signals from the actual
upstream ASR model.

To address the robustness problem, particularly
in the context of cascaded ST, we propose to com-
bine the best of the two approaches. This is ob-
tained by training the NMT model with adversarial
examples generated from the ASR outputs and en-
couraging the encoder representations of both the
ASR outputs and their corresponding human tran-
scripts to be closer to each other. This is done via
contrastive learning (Saunshi et al., 2019), in addi-
tion to the standard log-likelihood NMT training,
and through curriculum learning (Bengio et al.,
2009) by pretraining on log-likelihood loss fol-
lowed by iteratively alternating between the two
objectives. Our method leads to significant im-
provements in the ST task on two language pairs
(En-De, En-Fr) without hurting the performance
on MT of well-formed texts. Our approach also
follows the standard cascade approach that does
not rely on any end-to-end ST data (speech aligned
with their transcription and translation) unlike that
of Bahar et al. (2021) and Lam et al. (2021), mak-
ing it easier to apply to a wider range of language
pairs.

2 Method

Our NMT model is a Transformer model (Vaswani
et al., 2017) with several encoder and decoder
layers, with self-attention modules within each
block and a cross-attention module to link the

encoder and decoder components. Training
the network parameters Θ is done by mini-
mizing the mean negative log-likelihood over a
batch of n source-target text translation pairs
(X,Y ) = (x(1),y(1)), . . . , (x(n),y(n)). This ob-
jective encourages producing a target sentence y
with a sequence of tokens y1, y2, . . . , y|y| given
the source sentence x with sequence of tokens
x1, x2, . . . , x|x|.

LNMT = −
n∑

i=1

|y(i)|∑

j=1

logP (y
(i)
j |x(i),y

(i)
<j ,Θ)

To improve the robustness of the NMT model on
noisy ASR outputs for cascaded speech translation,
we use a contrastive learning method (Wei et al.,
2021) that is aimed to bring the representations of
a noisy sentence generated by the upstream ASR
closer to its clean version (the human transcript for
the same audio) in the semantic space modeled by
the NMT encoder.

To get the encoder sentence representations ef-
ficiently for contrastive learning, a [CLS] token
is prepended to the input sentences similar to the
BERT model (Devlin et al., 2019). We found that
using encoder output corresponding to the [CLS]
token is slightly better than using the mean of en-
coder outputs as the sentence representation. sx,
which also gets added to each of the decoder out-
puts before softmax (see Figure 1).

Contrastive learning uses speech transcription
corpora (i.e., speech paired with human transcripts).
The speech input is passed through the upstream
ASR model to obtain the ASR outputs. Given the
noisy ASR output x̄ paired with its corresponding
clean human transcript x, we minimize the con-
trastive objective LCTL, which is an average of
two symmetric sentence-level contrastive loss func-
tions.

Given a batch of n examples (X, X̄) =
{(x(1), x̄(1)), . . . , (x(n), x̄(n))}

LCTL =
1

2n

n∑

i=1

(
Lc(x

(i)) + Lc(x̄
(i))

)
(1)

where

Lc(x) =
− exp (D(sx, sx̄))

exp (D(sx, sx̄)) +
∑
x′

exp(D(sx, ŝx′))

D(u,v) denotes the cosine distance between two
vectors u and v. ŝx′ represents a negative example
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constructed for every other sentence x′ in the batch.
Given x′ ∈ (X ∪ X̄) \ {x, x̄} and its sentence
embedding sx′

ŝx′ =

{
sx + λx(sx′ − sx) if, d+x > d−x
sx′ otherwise

(2)

where d+x = ∥sx − sx̄∥2, d−x = ∥sx − sx′∥2, and
λx = d+x

d−x
. The above linear interpolation in Eq 2

with exponentially decaying λx is implemented fol-
lowing Wei et al. (2021) to increase the hardness of
negative examples by not selecting uninformative
negative examples as training progresses. Lc(x̄)
follows similar formulation as Lc(x) with x re-
placed by x̄, and vice versa.

To stabilize the NMT parameters before apply-
ing contrastive learning, we also use curriculum
learning (Bengio et al., 2009). We first pre-train
the model with NMT loss LNMT only for the first
N batches, followed by iteratively training alter-
nate batches with LCTL and LNMT losses, respec-
tively, until convergence. With this model and train-
ing regime, which alternates between training with
translation and speech recognition datasets indepen-
dently, we are able to build robust NMT models for
cascaded ST without any requirement for speech
translation data.

3 Experimental Setup

We experiment with English-German (En-De) and
English-French (En-Fr) language directions.
Training Data: For parallel text translation data,
we use WMT’16 En-De (Bojar et al., 2016) and
WMT’14 En-Fr (Bojar et al., 2014) news transla-
tion task data for the corresponding language direc-
tions. To get the ASR data for contrastive learning,
we use Open AI Whisper base ASR (Radford et al.,
2022) to transcribe the speech in the training sets
from Mozilla Common Voice 12.0 (Ardila et al.,
2020), VoxPopuli (Wang et al., 2021), and the En-
glish set of Multilingual LibrSpeech (Pratap et al.,
2020) for both language directions. As an addi-
tional experiment, we also try adding in-domain
MuST-C training data. The full statistics of the
datasets are in Appendix A.2 (Table 8).
Evaluation: We use MuST-C (Di Gangi et al.,
2019) tst-COMMON as our test set and MuST-C dev
as our validation set. For MT and ST tasks, the
inputs to the model are the Whisper (base) ASR
outputs and the corresponding human transcripts,

NMT En-De En-Fr
MT ST MT ST

Transformer-base 28.1 23.5 36.1 30.8
CONF-ASR (Wang et al., 2022) 28.2 25.2 36.3 32.0
CSA-NMT (Wei et al., 2021) 29.5 24.4 37.2 31.3
CLAD-ST 28.8 26.6 36.5 33.4

Table 2: Performance of various models on MT and ST
tasks on MuST-C tst-COMMON.

respectively. We evaluate against the English and
French reference translations for the respective
translation directions. We use case-sensitive, deto-
kenized BLEU computed using sacrebleu1 (Post,
2018). We also compute statistical significance
using paired bootstrap resampling (Koehn, 2004).
Models: We use a base Transformer (Vaswani
et al., 2017) as our baseline NMT model, which
we extend to support our proposed approach, Con-
trastive Learning with Adversarial Data for Speech
Translation (CLAD-ST). We also compare against
two recent state-of-the-art approaches for NMT ro-
bustness which we re-implement: (1) CONF-ASR
(Wang et al., 2022) generates adversarial examples
by substituting random source tokens with can-
didate tokens from ASR confusion set based on
their embedding distances to the original token. (2)
CSA-NMT (Wei et al., 2022)2 uses a separate se-
mantic encoder to model a semantic region around
the source and target sentences. To improve NMT
robustness, samples from this region are used to
augment the NMT decoder representations.

We tokenize all datasets using a sentencepiece
model (Kudo and Richardson, 2018) for each lan-
guage pair on the text translation datasets with a
shared source-target vocabulary size of 32,000. We
use OpenAI Wispher (base) ASR as our main up-
stream model. We also evaluate the ST perfor-
mance of our model using Whisper large ASR.
Other training details and hyperparameters are in
Appendix A.1.

4 Results and Analysis

4.1 Overall Performance

Our proposed CLAD-ST achieves 26.6 and 33.4
BLEU on the En-De and En-Fr ST tasks, sig-
nificantly (p < 0.001) outperforming the Trans-
former baseline by 3.1 BLEU points and 2.6 BLEU

1https://github.com/mjpost/sacrebleu. Signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp

2Code and network hyperparameters are from
https://github.com/pemywei/csanmt
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Figure 2: BLEU scores compared to the number of
token-level errors in the ASR outputs on En-De ST task
on MuST-C tst-COMMON dataset.

points (see Table 2). Our approach consistently per-
forms better than other baselines (CONF-ASR and
CSA-NMT), yielding gains of 1.4 BLEU points
(p < 0.001) on both language directions. The
improvement of our approach over CONF-ASR
shows the importance of contextual modeling of
the ASR errors instead of simulating them with
ASR confusion lattices. CSA-NMT achieves the
largest improvement in the MT task but fails to spe-
cialize to ASR errors, yielding lower improvements
compared to our approach.

4.2 Robustness

In Figure 2, we report the performance of all the En-
De models as the number of ASR errors increases
in the input sequence. We group the ASR outputs
based on the number of tokens different from the
reference transcripts on the test set. The perfor-
mance of the Transformer baseline model drasti-
cally drops as the number of ASR errors increases.
CONF-ASR performs better than the Transformer
baseline in all the ASR error conditions and closely
with CLAD-ST on ASR outputs with one or two
errors. However, CLAD-ST notably outperforms it
as the number of errors increases. CSA-NMT per-
forms slightly better than the baseline Transformer
when the number of errors is few and performs
slightly better than CONF-ASR when increasing
the number of errors due to their semantic aug-
mentation. Overall, our approach has shown to be
robust against sequences having several ASR er-
rors and performs consistently better than the other
baselines, irrespective of the number of errors in
the sequence.

4.3 Curriculum Learning
We study the effect of the curriculum learning strat-
egy (Section 2) and reports the results in Table 3.
We find that curriculum learning strategy brings
an improvement of 0.5 BLEU on En-De and 0.7
BLEU On En-Fr ST tasks, respectively.

Model En-De En-Fr
Transformer-base 23.5 30.8
CLAD-ST 26.6 33.4

w/o Curriculum learning 26.1 32.7

Table 3: Performance on ST tasks with and without
curriculum learning on MuST-C tst-COMMON.

4.4 Out-of-distribution ASR
In Table 4, we report the performance of all the En-
De systems using Whisper base as the ASR model
during training and a higher-quality ASR (Whisper
large) during testing. Although training on lower-
quality ASR outputs with more errors, a similar
BLEU score improvement is also noticed for all
the systems when fed better ASR outputs. However,
CLAD-ST achieves the largest improvements over
the baseline, showing that it better generalizes over
different ASR-quality outputs.

Model En-De
Wbase Wlarge

(WER = 14.3) (WER = 7.6)
Transformer-base 23.5 24.4
CONF-ASR (Wang et al., 2022) 25.2 26.3
CSA-NMT (Wei et al., 2022) 24.4 25.8
CLAD-ST 26.6 27.4

Table 4: BLEU scores on MuST-C En-De tst-
COMMON ST task when using Whisper-large (Wlarge)
vs. Whisper-base (Wbase) ASR. Word error rate (WER)
of the ASR model is provided.

4.5 Model Size
To investigate if our results scale when we increase
the size of the network, we use Transformer-large
instead of Transformer-base for our baseline mod-
els as well as CLAD-ST. The results are reported
in Table 5. We find that we get improvements of
1.5 and 1.3 BLEU score points for the ST task on
En-De and En-Fr, respectively, compared to CONF-
ASR, demonstrating its advantage even on larger
NMT architectures.

4.6 In-domain Training Data
We also experiment with adding in-domain training
data from MuST-C for training the NMT models in
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NMT En-De En-Fr
MT ST MT ST

Transformer-big 29.6 24.9 38.7 33.3
CONF-ASR (Wang et al., 2022) 29.8 26.6 38.8 34.6
CSA-NMT (Wei et al., 2021) 31.1 25.7 39.9 33.7
CLAD-ST 30.3 28.1 39.1 35.9

Table 5: Performance of using Transformer-large as the
model architecture on MT and ST tasks on MuST-C
tst-COMMON.

CLAD-ST and the baselines (see Table 6). In line
with our expectations, we find a notable improve-
ment in performance of all the systems. Despite the
improved baselines, we observe similar improve-
ments for CLAD-ST of 1.4 BLEU on both En-De
and En-Fr ST tasks compared to CONF-ASR, and
2.4 and 2.2 BLEU on En-De and En-Fr ST tasks,
respectively, compared to CSA-NMT.

NMT En-De En-Fr
MT ST MT ST

Transformer-base 31.0 26.1 37.9 32.9
CONF-ASR (Wang et al., 2022) 30.9 27.9 38.0 33.9
CSA-NMT (Wei et al., 2021) 32.1 26.9 38.8 33.1
CLAD-ST 31.6 29.4 38.2 35.3

Table 6: Performance of various models on MT and
ST tasks on MuST-C tst-COMMON when adding in-
domain MuST-C training data.

5 Related Work

Several prior works tried to improve the robustness
of MT models to noisy ASR inputs for cascaded
speech translation. Sperber et al. (2017) randomly
sampled synthetic noise in the form of insertions,
deletions, and substitutions and injected them into
the source side of MT training data. Li et al. (2018)
encoded the syllables (Pinyin) for Chinese ST and
injected synthetic character-level substitutions to
simulate ASR errors. In contrast, Martucci et al.
(2021) trained a lexical noise model using confu-
sion sets extracted by aligning the actual ASR out-
put to reference transcript to inject synthetic errors.
Wang et al. (2022) picked substitution candidates
from the ASR confusion set that are farthest away
from the source token embeddings leading to more
robust MT models. Cheng et al. (2019) also used
the actual ASR output in training incorporating an
additional discriminator network that tries to dis-
tinguish between human transcript and the ASR
output following Cheng et al. (2018) to improve ro-
bustness. Padfield and Cherry (2021) simulated not
only token-level errors but also segmentation errors

and projected them on the target side as well. Bahar
et al. (2021), on the other hand, proposes to jointly
optimize the ASR and MT components in the cas-
caded system using speech-translation data. Simi-
larly, Lam et al. (2021) also uses speech-translation
data to reduce error propagation between the two
components by mutually training the MT system on
ASR n-best outputs and using cyclic feedback from
MT outputs for self-training of the ASR model.

6 Conclusion

We improve the robustness of MT to ASR outputs
using contrastive learning to bring the represen-
tations of clean and noisy examples closer in the
semantic space. Our approach does not require
any speech translation corpus. We significantly
improve the translation accuracy on noisy ASR
outputs without degrading translation accuracy on
clean text. We also show that the approach is scal-
able to better-quality ASR models in the cascade
other than the one used during training. The pro-
posed approach is generic and is applicable beyond
the context of speech translation alone, such as
translating user-generated chat text or non-native
text if paired noisy-clean data is available.

Limitations

The limitations of our paper are:

• As in any ST cascade architecture, the per-
formance of our MT system depends on the
quality of the ASR model outputs. Since we
use examples generated by the ASR to train
the MT model, the quality of ASR outputs
directly affects the model performance. In
our work we tested two ASR systems having
different quality (base: 14.3 WER and large:
7.6 WER). This is particularly relevant when
English is not the source language side.

• Evaluation is done using only the BLEU score.
We did not use human evaluation or COMET.

• The evaluation is limited to two language pairs
having English as the source. This selection of
the source language is quite important because
having a no-English language as a source will
expose our MT model to a) ASR models of
probably lower quality and b) different and
more varied linguistic challenges that might
affect the work of the adversarial method.
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A Implementation Details

A.1 Training Details and Hyperparamters

We implement our approach and (Wang et al., 2022)
using Fairseq3. For Wang et al. (2021), we ran-
domly selected 14% tokens of sentences for a re-
placement to generate adversarial examples based
on the ASR word error rate. All experiments are
performed on A100 GPU, and gradient accumula-
tion and batch size are set to 8 iterations and 8k
tokens. For CLAD-ST, our NMT model is pre-
trained for the first 50K batches for NMT loss in
the curriculum. For evaluation, the beam size and
length penalty are set to 4 and 0.6 for both tasks.
Hyperparameters for all the models are shown in
Table 7.

3https://github.com/facebookresearch/fairseq
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Baseline CONF-ASR CSA-NMT CLAD-STHyperparameter
encoder layers 6
encoder embed dim 256
encoder ffn embed dim 2048
encoder attention heads 8
decoder layers 6
decoder embed dim 256
decoder ffn embed dim 2048
decoder attention heads 8
dropout 0.3
optimizer adam
adam-β (0.9, 0.98)
clip-norm 0.0
lr scheduler invers-sqrt
learning rate 5e-4
warmup-updates 4000
label-smoothing 0.1
max tokens 12800 8192 6144 8192
num-initial-updates-nmt N/A 50000 50000 50000
csanmt-semantic-samples N/A N/A 20 N/A

Table 7: Model hyperparameters

Type Name Lang. #Examples

MT Data WMT’16 En-De 4.5M
WMT’14 En-Fr 40 M
MuST-C En-De 251K

train En-Fr 275K

ASR Data
VoxPopuli En 0.18M

Commonvoice En 0.99M
MLS En 11M

Dev MuST-C Dev En-De 1415
En-Fr 1412

Test MuST-C En-De 2580
tst-COMMON En-Fr 2632

Table 8: Statistics of datasets used in the experiments.

A.2 Datasets
Dataset statistics can be found in Table 8. WMT’16
En-De training data4 includes Europarl, Common
Crawl corpus, and News Commentary corpora.
WMT’14 En-Fr5 training data includes Europarl,
Common Crawl, UN corpus, News Commentary,
and Fr-En Gigaword corpus.

4https://www.statmt.org/wmt16/
translation-task.html

5https://www.statmt.org/wmt14/
translation-task.html
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